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Introduction
The purpose of this note is to show that the complex -dimensional locally
conformal K\"ahler solvmanifold obtained by L. de Andres, Fernandez, Men-
cia and Cordero [ACFM] coincides bihomolophically with the Inoue surface
equipped with the locally conformal K\"ahler structure constructed by Ricerri
[TR]. In order to prove it, we supplement several facts related to the existence
of locally conformal K\"ahler structure on compact complex surfaces.

1 Seifert manifolds with solvable fundamen-
tal groups

We collect several facts to complex -dimensional infrasolvmanifolds. Let
$\mathcal{G}$ be a connected simply connected Lie group and $\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{G})$ its automor-
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phisrn group. The affine group $\mathrm{A}(\mathcal{G})$ is defined to be the semidirect product
$\mathcal{G}\chi \mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{G})$ with group law $(g, \alpha)$ $(h,\beta)=(g\alpha(h), \alpha\beta)$ . Viewed $\mathcal{G}$ as a
space, $\mathrm{A}(\mathcal{G})$ acts on $\mathcal{G}$ by $(g, \alpha)(x)=g\alpha(x)$ for $x\in \mathcal{G}$ . Let $\mathcal{K}$ be a maximal
compact subgroup of $\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{G})$ . Form $\mathrm{E}(\mathcal{G})=\mathcal{G}n\mathcal{K}$ . It is a closed subgroup
of A $(\mathcal{G})$ . Suppose that $\mathcal{G}$ is a connected simply connected solvable Lie group
S. lf $\pi$ is a discrete uniform subgroup of $\mathrm{E}(S)$ , then $\pi$ acts properly discon-
tinuously on $S$ with compact quotient. In addition, when $\pi$ is torsionfree,
the orbit space $\pi\backslash S$ is a compact smooth manifold. $\pi\backslash S$ is called a gener-
aliz.ed solvmanifold. Let $\Gamma$ be the intersection of $\pi$ with $S(\subset \mathrm{E}(S))$ . If $\Gamma$

is uniform in $S$ ( $i.e.,$ $\Gamma\backslash S$ is a compact solvmanifold), then the generalized
solvmanifold $\pi\backslash S$ is said to be an infrasolvmanifold. An infrasolvmanifold is
finitely covered by a solvmanifold under preserving the structure of the affine
group $\mathrm{A}(S)$ . In the case that $\mathcal{G}$ is a nilpotent Lie group $N$, the Bieberbach
- Auslander theorem says that a generalized nilmanifold $\pi\backslash N$ is always an
infranilmanifold. It is noted that a generalized solvmanifold need not be an
inhasolvmanifold. However we see that a generalized solvmanifold is $\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{c}\succ$

logically an infrasolvmanifold. In fact, given a generalized solvmanifold $\pi\backslash S$ ,
$\pi$ is a discrete subgroup of $\mathrm{E}(S)$ . As $\mathrm{E}(S)$ is an extension of the solvable Lie
group $S$ by a compact group $\mathcal{K},$ $\mathrm{E}(S)$ is an amenable Lie group. Therefore,
$\pi$ is a virtually $\mathrm{p}_{0}$}$\mathrm{y}\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}_{\mathrm{C}}$ group of rank $\pi=\dim S$ .

Conversely, given a virtually polycyclic group $\pi$ of rank equal to $\dim S$ ,
$\pi$ can be realized as the fundamental group of an infrasolvmanifold $\pi\backslash S’$ by
[AJ]. It is proved that there is a simply connected solvable Lie group $S’$ such
that an extension of $S’$ by a finite group $S’\aleph F$ contains $\pi$ as a discrete
uniform subgroup. On the other hand, such $\pi$ is realized as the fundamental
group of an injective Seifert fiber space $M(\pi)$ by the result of [KLR]. In this
case, $M(\pi)$ is a (singular) fiber space over some $k(\geqq 2)$-torus with typical
fiber a nilmanifold (exceptional fiber an infranilmanifold). Moreover, there
is a smooth rigidity between such injective Seifert fiber spaces. A map which
represents a rigidity between them can be chosen to be a fiber preserving dif-
feomorphism. It is known that a generalized solvmanifold admits a structure
of injective Seifert fiber space. (Compare also [LR].) Applying the soomth
rigidity, we have

Corollary 1.1 A generalized solvmanifold $\pi\backslash S$ is diffeomorphic to an infra-
solvmanifold $\pi\backslash S’$ .

2 Supplement to complex 2-infrasolvmanifolds
Suppose that $M$ is a closed aspherical complex surface whose fundamental
group is virtually polycyclic. The classification of Enriques and Kodaira (cf.

161



[BPV]$)$ implies that $M$ is biholomorphic to a complex surface of type $VII_{0}$ ,
a hyperelliptic surface $C^{2}/\pi(\pi\subset \mathrm{E}_{C}(2))$ , or a primary (resp. secondary)

Kodaira surface $S^{1}\cross Ni,l^{3}F/\triangle$ (where $F$ is a finite cyclic subgroup and $\Delta$ is

a nilpotent subgroup of rank 3.) Bogomolov’s assertion has been shown in
[LYZ] that a complex surface of type $VII_{0}$ is one of the Inoue surfaces $S_{M}$ ,
$S_{N}^{+},$ $S_{N}^{-}$ . By the classification of -dimensional Riemannian homogeneous
geometries by Wall [WA], there exist solvable Lie groups $Sol^{4}0’ So\iota_{1}^{4}$ , or $Sol_{1}^{4’}$

(cf. \S 4) whose quotients are identified biholomorphically with the lnoue
surfaces. It is noticed that the Inoue surface $S_{M}$ is modeled on $Sol^{4}0$

’ the
other Inoue surfaces $S_{N}^{+}(t\in \mathbb{R}),$ $S_{N}^{-}$ are modeled on $Sol_{1}^{4}$ , and $S_{N}^{+}(t\not\in \mathbb{R})$

is modeled on $Sol^{4}1/$ . Note that $\mathrm{E}(S_{\mathit{0}}l_{0}4)=Sol^{4}0\aleph \mathrm{U}(1))\mathrm{E}(Sol4)1=Sol_{1}^{4}$ ,
$\mathrm{E}(So\iota^{4’})0=Sol^{4’}0$ . In summary we obtain that (Compare \S 4.)

Theorem 2.1 Let $M$ be a closed aspherical complex surface with virtually
polycylic fundamental group. Then, $M$ is biholomorphic to the complex eu-
clidean space form $C^{2}/\pi_{\mathrm{z}}$ an infranilmanifold $S^{1}\cross Nil^{3}/\triangle Ff$ or the Inoue sur-

faces $Sol^{4}\mathrm{o}/\pi,$ $Sol^{4}/1\pi,$ $S_{\mathit{0}}l_{1’}4/\pi$ .

Corollary 2.2 If a generalized solvmanifold $\pi\backslash S$ admits a complex struc-
ture compatible with the the group $\mathrm{E}(S)$ , then $\pi\backslash S$ is $biholomo7phi_{C}$ to one
of $C^{2}/\pi,$

$S^{1}\mathrm{x}NFil^{\mathrm{s}}/\triangle$, or $Sol^{4}/0\pi,$ $Sol_{1}^{4}/\pi,$ $Sol^{4’}/1\pi$ . In parficzdar, $Sol_{1}^{4}/\pi$ ,

$Sol^{4}1//\pi$ are solvmanifolds with an infinite central subgroup. $Sol^{4}\mathrm{o}/\pi$ is an in-
frasolvmanifold if and only if the projection of $\pi$ into $\mathrm{U}(1)$ has a finite cyclic
summand.

3 Conformal K\"ahler homogeneous spaces
A conformal K\"ahler homogeneous space is a simply connected K\"ahler man-
ifold $X$ on which a finite dimensional Lie group $G$ acts transitively as a
group of conformal holomorphic transformations with compact stbilizer. Let
$X=G/K$ where $K$ is the stabilizer $G_{x}$ at somepoint $x\in X$ . If a subgroup
$\Gamma$ of $G$ acts properly discontinuously and freely on $X$ , then the orbit space
is said to be a locally conformal K\"ahler homogeneous manifold. Especially
when $G$ happens to be a group of K\"ahler isometries of $X$ , then a locally $\mathrm{h}\mathrm{e}\succ$

mogeneous $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}x/\Gamma$ is nothing but a K\"ahler maniofld. We are interested in
the non-K\"ahler case, that is, $G$ has a nontrivial conformal transformations.

Suppose that $\dim X>2$ . Then a conformal transformation preserving
its complex structure $J$ on $X$ must be a homothetic transformation. Let
$g$ be a K\"ahler metric on (X, $J$) and $\Omega$ be its fundamental 2- form. If $\alpha\in$
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$G$ , then $\alpha^{*}\Omega=\rho(\alpha)\cdot\Omega$ for some constant $\rho(\alpha)\in R^{+}$ . Hence we have
a continuous homomorphism $\rho$ : $Garrow R^{+}$ . By our hypothesis that $G$ has
a nontrivial homothetic summand, $\rho$ is surjective. As the stabilizer $G_{x}$ is
compact, $\rho(G_{x})=1$ . The map $\rho$ naturally extends to a map $\hat{\rho}$ : $X=$
$G\cdot xarrow R^{+}$ . Then we can define a Hermitian metric

$h_{p}(Y, Z)= \frac{g_{p}(Y,Z)}{\hat{\rho}(p)}$

for each $p\in X$ and arbitrary $\mathrm{Y},Z\in T_{p}X$ . Since $\hat{p}(\alpha p)=p(\alpha)\hat{\rho}(p)$ for $\alpha\in G$ ,
it follows that $h_{\alpha\cdot p}(\alpha_{*}Y, \alpha*Z)=h_{p}(Y,Z)$ . $G$ acts on $X$ as a group of holomor-
phic isometries with respect to $h$ . Given a conformal K\"ahler homogeneous
geometry $(G,X)$ , we obtain a $G$-invariant Hermitian metric $h$ which is $1\mathrm{e}\succ$

cally conformal to a K\"ahler metric. As a consequence, the compact locally
conformal K\"ahler manifold $\Gamma\backslash X$ is also a locally homogeneous Riemannian
manifold compatible with a preferable complex structure.

Now in the sense of Thurston, recall that a geometric complex manifold
is a $2n$-dimensional manifold locally modeled on a Riemannian homogeneous
geometry $(G,X)$ compatible with the preferable complex structure on $X$ .
Here $G$ is a finite dimensional Lie group which acts holomorphically and
transitively on a simply connected complex manifold $X$ whose stabilizer is
compact.

4 Classification of compact geometric com-
plex surfaces

It is known that 4–dimensional Riemannian homogeneous geometries consist
of 19 isomorphism classes (cf. [FL]). Among them, Wall [WA] has determined
that the 14 geometries $(G, X)$ carry a complex structure invariant under the
automorphism group $G$ ; the complex structure is unique up to isomorphism,
except for the solvable geometry. He has further observed that out of the
14 geometries, only the 9 geometries $(G,X)$ can admit a K\"ahler structure
compatible with a geometric structure (i.e., each element of $G$ is a holo-
morphic transformation preserving its K\"ahler structure.) In the remaining
cases, there is no K\"ahler structure compatible with G. (Compare Theorem
1.2 [WA].) Thus the problem is left to the remaining 5 geometries which
Hermitian geometry is compatible with its homogeneous structure. Tricerri
[TR] and Vaisman [VA3] took up this problem to find a locally conformal
K\"ahler structure compatible with $G$ (abbreviated to $1.\mathrm{c}$ . K\"ahler from now.)

The remaining 5 geometries are locally modeled on the products of the
positive real numbers $\mathbb{R}^{+}$ with the sphere $S^{3}$ , the Heisenberg nilpotent Lie
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group $N$, or the complete simply connected Lorentz space of constant neg-
ative curvature $\tilde{\mathbb{H}}^{1,2}$ , or locally modeled on one -dimensional solvable Lie
group $Sol^{4}0$

’ and the other solvable Lie group $Sol_{1}^{4}$ with two isomorphism
classes of complex structures. Vaisman $([\mathrm{V}\mathrm{A}1],[\mathrm{V}\mathrm{A}2])$ has observed that the
compact complex surfaces $S^{3}\cross S^{1},$ $N/\Delta\cross S^{1}$ , and $\tilde{\mathbb{H}}^{1,2}/\Gamma\cross S^{1}$ are $1.\mathrm{c}$ .
K\"ahler manifolds whose Hermitian metrics are invariant under the automor-
phisn group. On the other hand, Wall noticed that the compact complex
surfaces modeled on the above solvable Lie groups are Inoue surfaces. (See
[BPV].) $r_{\mathrm{R}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{i}}[\mathrm{T}\mathrm{R}]$ has proved that the Inoue surfaces modeled on $Sol^{4}0$

’

showed the Inoue surface modeled on the solvable Lie group $Sol_{1}^{4}$
’ (which is

$Sol_{1}^{4}$ with another complex structure) cannot admit any $1.\mathrm{c}$ . K\"ahler structure
whose Hermitian metric is invariant under $Sol_{1}^{4}l$ .

We observe the necesarry conditions when the geometric complex mani-
fold $\Gamma\backslash X(=\Gamma\backslash G/K)$ will be a $1.\mathrm{c}$ . K\"ahler manifold. Let $(G,X)$ be a confor-
mal K\"ahler homogeneous geometry. As $G$ consists of finitely nany compo-
nents, there exists a 1-parameter subgroup $R$ from $G$ such that $\rho(R)=R^{+}$ .
Thus $G=H\mathrm{x}R$ where $H=\mathrm{K}\mathrm{e}\mathrm{r}\rho$ . In sumnary, $(G,X)$ has the following
properties:

1. $(G,X)$ is a -dimensional Riemannian homogeneous geometry.

2. $X$ supports a complex structure compatible with the automorphism
group $G$ .

3. There exists a cofinite discrete subgroup $\Gamma$ in G. (That is, $G/\Gamma$ is of
finite volume.)

4. $G$ is the semidirect product $H\aleph R$ .

We have alreday treated the case $G=H\cross R$ in [KA]. (Compare $[\mathrm{V}\mathrm{A}1],[\mathrm{v}\mathrm{A}2].$ )
So we study the semidiect case.

Semidirect product $\mathrm{H}\aleph \mathrm{R}^{+}$ . We shall construct a -dimensional confor-
mal K\"ahler homogeneous geometry $(G, X)$ when $G$ is the senidirect product
$HxR^{+}$ . Consider the solvable Lie groups $Sol^{4}0’ So\iota^{4}1$ characterized by Wall
[WA]; they act on the domain of the complex affine space $\mathbb{C}^{2}$ by holomorphic
affinely flat transformations.
Let $A_{\mathbb{C}}(2)=\mathbb{C}^{2}\mathrm{x}\mathrm{G}\mathrm{L}(2, \mathbb{C})$ be the -dimensional complex affine group acting
on the complex number space $\mathbb{C}^{2}$ . Choose the upper half plane $\mathbb{H}$ from $\mathbb{C}$ so
that $\mathbb{C}\cross \mathbb{H}$ is a domain of $\mathbb{C}^{2}$ .
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Case 1 $(?\}\mathrm{i}\mathrm{C}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{i}[\mathrm{T}\mathrm{R}])$ . Let $G$ be the subgroup of $A_{\mathbb{C}}(2)$ generated by the
elements:

$\{h=(,$ $)|a\in \mathbb{C},$ $b\in \mathbb{R},$ $\lambda\in C^{*}\}$ .

Put $Sol^{4}0=\{h\in G|\lambda\in R^{+}\}$ . Then, $G=Sol^{4}\mathrm{N}0\mathrm{U}(1)$ . Each element $h$

leaves $\mathbb{C}\cross \mathbb{H}$ invariant. Thus $G$ is the transitive subgroup of holomorphic
transformations of $\mathbb{C}\cross \mathbb{H}$ with respect to the restricted complex structure.
The stabilizer at $(0,i)$ is isomorphic to the circle $\mathrm{U}(1)$ .
If we assign to each $h$ the positive number $|\lambda|^{2}$ , then $G$ splits as the semidirect
product $H\rangle\triangleleft R^{+}$ where

$H=\{$ (
Note that $H$ is the product $\mathrm{E}_{\mathbb{C}}(1)\cross \mathbb{R}$ where the complex euclidean group
$\mathrm{E}_{\mathbb{C}}(1)=\mathbb{C}\aleph \mathrm{U}(1)$ .

We give a K\"ahler structure on the domain $\mathbb{C}\cross$ IHI on which $G$ acts as
homothetic $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{S}\mathrm{f}_{0},\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}$ . Choose the coordinates $\theta$ and $t>0$ with $\theta+it\in$

$\mathbb{H}$ . Put

$\Omega=\frac{-i}{2}d\overline{z}\wedge dz+t^{-3}dt\wedge d\theta(=dx\wedge dy+t^{-3}dt\wedge d\theta)$ .

Then $\Omega^{2}=-it^{-3}d\overline{z}\wedge dz\wedge dt\wedge d\theta\neq 0$ and $d\Omega=0$ . Moreover, if $J$ is
the canonical complex structure on $\mathbb{C}\cross \mathbb{H}$ , then $\Omega$ is invariant under $J$ and
$g(X, JY)=\Omega(X, Y)$ is positive definite. Hence $\Omega$ is a K\"ahler structure on
$\mathbb{C}\cross \mathbb{H}$. Let $h\in G$ so that

$h=+$ .

Then it is easy to see that $h^{*}\Omega=|\lambda|^{2}\Omega$. Therefore,

$\mathbb{R}^{+}=\{())|\lambda\in \mathbb{R}^{+}\}$

acts as homothetic transformations of $\Omega$ .
Case 2 (bicerri [TR]). Let $G_{1}$ be the subgroup of $A_{\mathbb{C}}(2)$ generated by
the elements:

$\{(,$ $)|a,b,$ $c\in \mathbb{R},$ $\alpha>0,$ $\epsilon=\pm 1\}$ .
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Put $So\iota^{4}1=\{h\in G_{1}|\epsilon=1\}$ . The group $So\iota^{4}1$ acts transitively on the domain
$\mathbb{C}\cross \mathbb{H}$ with trivial stabilizer. Moreover, $G_{1}=Sol_{1}^{4}\aleph \mathbb{Z}/2$ which is the full
group leaving invariant $\mathbb{C}\cross \mathbb{H}$ whose stabilizer at $(0,i)$ is isomorphic to $\mathbb{Z}/2$ .

We give a K\"ahler structure on $\mathbb{C}\mathrm{x}\mathbb{H}=\{(z,w)|z=X+yi,$ $w=\theta+ti,$ $t>$

$0\}$ for which $G_{1}$ acts as homothetic transformations. Put

$\Omega=\frac{-2}{t}(\frac{1+y^{2}}{t^{2}}dt\wedge d\theta-\frac{y}{t}(dt\wedge dX+dy\wedge d\theta)+dy\wedge dx)$ .

Then $\Omega^{2}=\frac{8(1+y^{2})}{t^{4}}dt\wedge d\theta\wedge dy\wedge dx\neq 0$ and $d\Omega=0$ . Obviously $\Omega$ is

invariant under $J$ . Since $g(X, JY)=\Omega(X,Y)$ is positive definite, $\Omega$ is a
K\"ahler structure on $\mathbb{C}\cross \mathbb{H}$ . If $h\in G_{1}$ , then

$h=$.

Then it is easy to see that $h^{*}\Omega=\alpha^{-1}\cdot\Omega$ . So the group

$\mathrm{R}^{+}\rangle\triangleleft \mathbb{Z}/2=\{(,$ $)|\alpha\in \mathbb{R}^{+},$ $\epsilon=\pm 1\}$

acts as homothetic transformations of $\Omega$ . It is easy to see that $G_{1}$ is isomor-
phic to the semidirect product $(N\rangle\triangleleft \mathbb{Z}/2)\aleph R^{+}$ where $N$ is the 3-dimensional
nilpotent Lie group consisting of the elements

$\{(,$ $)|a,$ $b,$ $c\in \mathbb{R}\}$ .

Case 3. We have another isomorphism class of complex structures on $Sol_{1}^{4}$ .
Denote by $Sol_{1}^{4^{J}}$ the holomorphic action of $Sol_{1}^{4}$ on the domain $\mathbb{C}\cross \mathbb{H}$. By
the result of Wall [WA], $Sol_{1}^{4’}$ is a subgroup of $A_{\mathbb{C}}(2)$ represented by the
elements:

$\{h=((c+i\log\alpha a),$ $)|a,$ $b,$ $c\in \mathbb{R},$ $\alpha>0\}$ .

As is remarked before (cf. [VA3]), there exists no $1.\mathrm{c}$ . K\"ahler structure on
$\mathbb{C}\cross \mathbb{H}$ whose Hermitian metric is invariant under $Sol_{1}^{4^{J}}$ . In summary, we have
obtained the following.
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Theorem 4.1 Every compact geometric complex surface $\Gamma\backslash X$ except for ffie
Inoue surface $\Gamma\backslash Sol_{1}^{4’}$, admits a $l.c.$ K\"ahler structure compatible wiffi $\hslash e$

$homogeneo\iota \mathit{1}S$ structure. Among them, non-K\"ahler manifolds are one of the
following types. It is unique up to holomorphically conformal diffeomorphism:

(i) An infra-Hopf manifold $S^{3}\cross R^{+}$ . (Some finite covering is homeomorphic

to a Hopf manifold
$S^{3}\cross S^{1}\Gamma$ . $H_{1}(X/\Gamma)=\mathbb{Z}+\{torsi_{\mathit{0}}n\}.)$

(ii) An infranilmanifold $N\cross\Gamma R^{+}$ . (Some finite covering is a $T^{2}$ -bundle over

a torus $T^{2}$ .
$H_{1}(X/\Gamma)=\mathbb{Z}^{3}+\{\mathrm{t}orSi_{\mathit{0}}n\}$ if $\Gamma\subset N\cross R^{+}$ , or $H_{1}(X/\Gamma)=\mathbb{Z}+\{torSion\}$

if $\Gamma$ has a nontrivial summand in $U(1)$ , which lies in $\mathbb{Z}/4$ at most.)

(iii) A Lorentz space form $\tilde{\mathbb{H}}^{1,2}\cross\Gamma R^{+}$ . (Some finite covering $\dot{u}$ a $T^{2}$ -bundle

over a closed orientable surface $\Sigma_{g}$ . $H_{1}(X/\Gamma)=\mathbb{Z}^{2g+1}+\{torSi_{\mathit{0}}n\}$

$(g\geqq 2).)$

(iv) An generalized solvmanifold $\Gamma\backslash Sol04/\mathrm{U}(1)$ . (Some finite covering is a
$T^{3}$ -bundle over $S^{1}$ .
$H_{1}(X/\Gamma)=\mathbb{Z}+\{t_{orS}ion\}.)$

(v) Solvmanifolds $\Gamma\backslash Sol^{4}1$ . (Some finite covering is a fiber space over $S^{1}$

with fiber a ndmanifold $\triangle\backslash N$. $H_{1}(X/\Gamma)=\mathbb{Z}+\{torsi_{\mathit{0}}n\}.)$

Remark 4.2 Note ffiat a more refined fiber space structure for $X/\Gamma$ can be
described in terms of the injective Seifert fibering with fiber a nilmanifold.
(Compare $[KLR].$ )

Recently, Belgun [BE] has shown that there is no $l.c.$ K\"ahler stracture
on the Inoue surface $\Gamma\backslash Sol_{1}4’$ . As a consequence, the existence of locally
conformal K\"ahler structure on locally homogeneous complex surfaces has been
done. Namely, among all compact geometric complex $non- K\ddot{a}u_{e}r$ surfaces,
the geometric complex surfaces of the above 5 types can only admit a locally
conformal K\"ahler structure.

5 Invariant l.c K\"ahler structure on $\Gamma\backslash SoJ^{4}1$

As an application to the above results, we shall prove that the locally con-
formal K\"ahler solvmanifold obtained by Andres, Fernandez, Mencia and
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Cordero ([ACFM]) coincides with the locally conformal K\"ahler structure on
the Inoue surface $\Gamma\backslash Sol^{4}1$ constructed by bicerri [TR].
As in Case 2, the group $Sol_{1}^{4}$ acts on $\mathbb{C}\cross \mathbb{H}$ as a group of homothetic transfor-
mations with respect to $\Omega,$ $i.e.,$ $h^{*}\Omega=\alpha^{-1}\cdot\Omega$ for the element $h\in So\iota^{4}1\rangle\triangleleft Z/2$ .
lf we set $\mathrm{O}-=t\cdot\Omega$ , then $d\mathrm{O}-=d\log t\wedge \mathrm{O}-\mathrm{s}\mathrm{o}$ that $h^{*}\mathrm{O}-=\mathrm{O}-$ . Letting
$g(X, JY)=\Theta(X,Y),$ $g$ is a left invariant $1.\mathrm{c}$ . K\"ahler metric on $\mathbb{C}\cross \mathbb{H}$ and
$(So\iota_{1}^{4}, \mathbb{C}\cross \mathbb{H},g)$ is a left invariant homogeneous $1.\mathrm{c}$ . K\"ahler space. As the
orbit space $Sol_{1}^{4}\cdot(0, i)=\mathbb{C}\cross \mathbb{H},$ $Sol_{1}^{4}$ is viewed as the space. We show that
$Sol_{1}^{4}$ admits also a right invariant $1.\mathrm{c}$ . K\"ahler metric. Moreover, it is indeed
the $1.\mathrm{c}$ . K\"ahler metric on the solvmanifold obtained in [ACFM]. To see this,
let $N$ be the space $\mathbb{R}^{3}$ with group law;

Then, note that $N$ is isomorphic to the 3–dimensional Heisenberg Lie group
consisting of unipotent matrices

$\{|x,$ $y,\theta\in \mathbb{R}\}$ .

Form the $4\cdot \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{0}\mathrm{n}\mathrm{a}1$ Lie group $G(k, 1)=N\mathrm{x}R^{+}$ with group law:

$(,t)$ $()t’)=(,$$tt’)$

Here $k$ is a real number such that $\mathrm{e}^{k}+\mathrm{e}^{-k}$ is an integer but not 2. The group
$G(k, 1)$ is the solvable Lie group $G(k, n)$ in [ACFM] when $n=1$ . (Note that
$G(k, n)$ has been introduced in [ACFM], however we work with the universal
covering space $Y$ and so $n=1$ is sufficient.) $G(k, 1)$ has a central group

extension $1arrow Rarrow G(k, n)arrow Sol^{3_{arrow 1}}$ where $Sol^{3}=\mathbb{R}^{2}\aleph R^{+}=\{$ , $t\}$

is the 3–dimensional solvable Lie group.
Viewed $G(k, 1)$ as the space $Y,$ $G(k, 1)$ acts on $Y$ as translations from the

right. In fact, let $p=($
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$G(k, 1)$ acts on $\mathrm{Y}$ as

$R_{h}\cdot p=p\cdot h=(,$ $t\alpha)$

Choose the coordinates $x,$ $y,$ $\theta,$ $t$ in $Y$ . Put $\alpha’=dy-\frac{ky}{t}dt,$ $\beta’=d\theta+$

$\frac{k\theta}{t}dt,$ $\gamma’=\frac{dt}{\mathrm{t}}dt$ and $\eta’=dx+yd\theta+\frac{ky\theta}{t}dt$ . Then they are right invariant
1-forms on $Y,$ $i.e.,$ $R_{h}^{*}\alpha’=\alpha’$ for $h\in G(k, 1)$ , etc. It is easy to check that
$\alpha’\wedge\beta’=dy\wedge d\theta+\frac{k}{t}d(y\theta)\wedge dt=d\eta’$ . So the 1-form $\eta’$ is viewed as a
connection form (up to a scale factor) on the principal bundle: $Rarrow \mathrm{Y}arrow so\iota^{3}$ .
Put

$\Omega’=\frac{-2}{k\cdot t^{k}}(\alpha\wedge’\eta’+k\cdot\beta/\wedge\gamma’)=$

$\frac{-2}{k\cdot l^{k}}(-\frac{k(1+y^{2})}{t}dt\wedge d\theta+ydy\wedge d\theta+\frac{ky\theta}{t}dy\wedge dt-\frac{ky}{t}dt\wedge dx+dy\wedge dx)$ .

Then we can check that $d\Omega_{1}’=0$ and so $\Omega’$ is a K\"ahler form on $Y$ . A calcu-
lation shows that $R_{h}^{*}\Omega’=\overline{\alpha^{k}}\Omega’,$ $i.e_{f}.G(k, 1)$ acts as a group of homothetic

transformations with respect to $\Omega’$ . Define a 2-form $\Theta’$ to be $t^{k}\cdot\Omega’$ on Y.
Then we see that $d\mathrm{O}-’=k\cdot d\log t\wedge\Theta’$ . Since $\Theta’=-2(\frac{1}{k}\alpha’\wedge\eta’+\beta’\wedge\gamma’)$ ,
and $\alpha’,$ $\beta^{\prime//_{\mathrm{a}}},$

$\gamma,$ $\eta\Gamma \mathrm{e}$ all right invariant, $0-/_{\mathrm{i}\mathrm{s}}$ also a right invariant $1.\mathrm{c}$ . K\"ahler
metric on $Y$ .

We define an equivariant map

$(\Psi, \Phi):(Sol_{1}4, \mathbb{C}\mathrm{x}\mathbb{H})arrow(G(k, 1),$ $\mathrm{Y})$ .
by setting

:

$\Phi$ (
$.+$

it)

$-$

$=$ $(,t^{\frac{1}{k}})$

$\Psi((),.)$ $=$ $(, \alpha^{\frac{1}{k}})$ .
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It is easy to see that $\Phi$ is a diffeomorphism between $\mathbb{C}\cross \mathbb{H}$ and $Y$ , and
$\Psi(g\cdot h)=\Psi(h)\cdot\Psi(g)$ for $g,$ $h\in Sol_{1}^{4},$ $i.e.,$ $\Psi$ is an anti-isomorphism between
$So\iota^{4}1$ and $G(k, 1)$ . Moreover we can check that for $h\in Sol_{1}^{4}$ ,

$\Phi(h\cdot)=\Phi(x+i,y, \theta+it)\cdot\Psi(h)=R\Psi(h)\Phi()$ .

Thus $\Phi$ is $\Psi$-equivariant. Using this map, we can define a complex struc-
ture $J’$ on $Y$ by setting $J^{;_{\mathrm{O}}}\Phi_{*}=\Phi_{*}\mathrm{o}J$ : $T_{z}(\mathbb{C}\cross \mathbb{H})arrow\tau\Phi(z)Y$ for each

$z\in Y$ . If we put $=O$ and $e=$ , 1), then $\Phi(O)=e$ . Moreover,

a calculation shows that $\Phi_{*}((\frac{d}{dx})_{\mathit{0}})=\frac{1}{k}(\frac{d}{dx})_{e},$ $\Phi_{*}((\frac{d}{dy})_{\mathit{0}})=(\frac{d}{dy})_{e}$ ,

$\Phi_{*}((\frac{d}{d\theta})_{\mathit{0}})=-\frac{1}{k}(\frac{d}{d\theta})_{e},$ $\Phi_{*}((\frac{d}{dt})_{\mathit{0}})=\frac{1}{k}(\frac{d}{dt})_{e}$ As the tangent space

$T_{e}Y$ is identified with the Lie algebra $\mathcal{G}(k, 1)$ , we have the right invariant vec-

tor fields on $G(k, 1),$ $T’=dRh( \frac{d}{dx})_{e})x’=dR_{h}(\frac{d}{dy})_{e},$ $Y’=dR_{h}( \frac{d}{d\theta})_{e}$ ,

$Z’=dR_{h}( \frac{d}{dt})_{e}$ The right invariance of the form $\eta’$ implies that $\eta’(T’)=$

$R_{h}^{*} \eta^{l}((\frac{d}{dx})_{e})=\eta’((\frac{d}{dx})_{e})=1$ , and $\eta’(X/)=\eta’(Y’)=\eta’(Z/)=0$ , similarly

for $\alpha’,$ $\beta’,$ $\gamma’,$ $i.e.,$ $\alpha’(X’)=1,$ $\beta’(Y’)=1,$ $\gamma’(Z/)=1$ , and so on. Since the

(left invariant) complex structure $J$ on $\mathbb{C}\cross \mathbb{H}$ satisfies that $J( \frac{d}{dx})=-\frac{d}{dy}$ ,

$J( \frac{d}{dy})=\frac{d}{dx}$ $J( \frac{d}{d\theta})=-\frac{d}{dt},$ $J( \frac{d}{dt})=\frac{d}{d\theta’}$ we obtain that $J’T’=-kX’$,

$J’X’= \frac{1}{k}T’,$ $J’Y’=Z’,$ $J’Z’=-Y’$ . When we look at p. 230 of [ACFM],
this implies that

Proposition 5.1 The complex structure $J’$ on $Y=G(k, 1)$ coincides with
one defined in [ACFMJ.

Theorem 5.2 The pair $(\Phi, \Psi)$ induces a $holomo7phicdly$ homothetic trans-
formation between the locally conformal K\"ahler structure on $Y=G(k, 1)$ by
$Andre\mathit{8}$ , Femandez, Mencia and Cordero and the locally conformal K\"ahler

structure on $\mathbb{C}\cross \mathbb{H}$ by Tricerri.
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$\mathrm{P}$ roo $\mathrm{f}$. By the construction of complex structure on $Y$ , we have alreday
shown that $(\Psi, \Phi)$ : $(So\iota_{1}^{4}, \mathbb{C}\cross \mathbb{H}, J)-(G(k, 1),Y,$ $J/)$ is a holomorphic dif-
feomorphism. It has only to prove that $\Phi$ is homothetic with respect to $\Omega$

and $\Omega’$ . When we recall the 2-forms
$\mathrm{O}-=t\cdot\Omega=-2(\frac{1+y^{2}}{t^{2}}dt\wedge d\theta-\frac{y}{t}(dt\wedge dx+dy\wedge d\theta)+dy\wedge dx)$ on $\mathbb{C}\cross \mathbb{H}$

from Case 2 and $0-/=t^{k} \cdot\Omega’=-2(\frac{1}{k}\alpha’\wedge\eta’+\beta\wedge\gamma’)$ on $Y$ , we can show

that $\Phi^{*}\mathrm{O}-/=\frac{1}{k^{2}}\mathrm{O}-$. Thus $\Phi$ \‘is homothetic. Similary we have $\Phi^{*}\Omega’=\frac{1}{k^{2}}\Omega$.
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