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Introduction

The purpose of this note is to show that the complex 2-dimensional locally
conformal Kéhler solvmanifold obtained by L. de Andres, Fernandez, Men-
cia and Cordero [ACFM] coincides bihomolophically with the Inoue surface
equipped with the locally conformal Kéhler structure constructed by Tricerri
[TR]. In order to prove it, we supplement several facts related to the existence
of locally conformal Kéhler structure on compact complex surfaces.

1 Seifert manifolds with solvable fundamen-
tal groups |

We collect several facts to complex 2-dimensional infrasolvmanifolds. Let
G be a connected simply connected Lie group and Aut(G) its automor-
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phism group. The affine group A(G) is defined to be the semidirect product
G x Aut(G) with group law (g,a) - (h,8) = (ga(h),aB). Viewed G as a
space, A(G) acts on G by (g,a)(z) = ga(z) for z € G. Let K be a maximal
compact subgroup of Aut(G). Form E(G)= G x K. It is a closed subgroup
of A(G). Suppose that G is a connected simply connected solvable Lie group
S. If 7 is a discrete uniform subgroup of E(S), then 7 acts properly discon-
tinuously on S with compact quotient. In addition, when = is torsionfree,
the orbit space m\S is a compact smooth manifold. 7\S is called a gener-
alized solvmanifold. Let I' be the intersection of 7 with S(C E(S)). If T
is uniform in S (i.e., I'\S is a compact solvmanifold), then the generalized
solvmanifold 7\:S is said to be an infrasolvmanifold. An infrasolvmanifold is
finitely covered by a solvmanifold under preserving the structure of the affine
group A(S). In the case that G is a nilpotent Lie group N, the Bieberbach
- Auslander theorem says that a generalized nilmanifold 7\N is always an
infranilmanifold. It is noted that a generalized solvmanifold need not be an
infrasolvmanifold. However we see that a generalized solvmanifold is topo-
logically an infrasolvmanifold. In fact, given a generalized solvmanifold 7\S,
7 is a discrete subgroup of E(S). As E(S) is an extension of the solvable Lie
group S by a compact group K, E(S) is an amenable Lie group. Therefore,
7 is a virtually polycyclic group of rank 7 = dim S.

Conversely, given a virtually polycyclic group 7 of rank equal to dim S,
7 can be realized as the fundamental group of an infrasolvmanifold w\S’ by
[AJ]. It is proved that there is a simply connected solvable Lie group S’ such
that an extension of S’ by a finite group S’ x F' contains 7 as a discrete
uniform subgroup. On the other hand, such = is realized as the fundamental
group of an injective Seifert fiber space M(m) by the result of [KLR]. In this
case, M(m) is a (singular) fiber space over some k (= 2)-torus with typical
fiber a nilmanifold (exceptional fiber an infranilmanifold). Moreover, there
is a smooth rigidity between such injective Seifert fiber spaces. A map which
represents a rigidity between them can be chosen to be a fiber preserving dif-
feomorphism. It is known that a generalized solvmanifold admits a structure
of injective Seifert fiber space. (Compare also [LR].) Applying the soomth
rigidity, we have

Corollary 1.1 A generalized solvmdnifold m\S is diffeomorphic to an infra-
solvmanifold w\S'. , |

2 Supplement to complex 2-infrasolvmanifolds

Suppose that M is a closed aspherical complex surface whose fundamental
group is virtually polycyclic. The classification of Enriques and Kodaira (cf.
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[BPV]) implies that M is biholomorphic to a complex surface of type V1,
a hyperelliptic surface C?/7 (m C E¢(2)), or a primary (resp. secondary)

Kodaira surface S* X Nil®/A (where F is a finite cyclic subgroup and A is

a nilpotent subgroup of rank 3.) Bogomolov’s assertion has been shown in
[LYZ] that a complex surface of type VI is one of the Inoue surfaces Su,
Sf, Sy. By the classification of 4-dimensional Riemannian homogeneous

geometries by Wall [WA], there exist solvable Lie groups Solg, Soli, or S old’
(cf. §4) whose quotients are identified biholomorphically with the Inoue
surfaces. It is noticed that the Inoue surface Sy is modeled on Solg,_the
other Inoue surfaces Sj; (t € R), Sy are modeled on Solf, and Sy (t & R)

is modeled on Sol4'. Note that E(Sol) = Sol§ x U(1), E(Solf) = Soli,
E(Sol4') = Solf'. In summary we obtain that (Compare §4.)

Theorem 2.1 Let M be a closed aspherical complex surface with virtually

polycylic fundamental group. Then, M is biholomorphic to the complex eu-

clidean space form C2/m, an infranilmanifold S* x Nil®/A, or the Inoue sur-
F

faces Solé/, Solt/m, Sol¥ /.
0 1 1

Corollary 2.2 If a generalized solvmanifold m\S admits a complex struc-
ture compatible with the the group E(S), then m\S is biholomorphic to one

of C?/m, S éNils/A, or Solé/m, Solt/m, Sol¥'/n. In particular, Solt/m,

Sol¥'/n are solvmanifolds with an infinite central subgroup. Sol§/m is an in-
frasolvmanifold if and only if the projection of 7 into U(1) has a finite cyclic
summand. :

3 Conformal Kahler homogeneous spaces

A conformal Kéhler homogeneous space is a simply connected Kéhler man-
ifold X on which a finite dimensional Lie group G acts transitively as a
group of conformal holomorphic transformations with compact stbilizer. Let
X = G/K where K is the stabilizer G, at somepoint z € X. If a subgroup
I' of G acts properly discontinuously and freely on X, then the orbit space
is said to be a locally conformal Kéhler homogeneous manifold. Especially
when G happens to be a group of Kéhler isometries of X, then a locally ho-
mogeneous spaceX/T" is nothing but a Kéhler maniofld. We are interested in
the non-Kahler case, that is, G has a nontrivial conformal transformations.
Suppose that dim X > 2. Then a conformal transformation preserving
its complex structure J on X must be a homothetic transformation. Let
g be a Kahler metric on (X, J) and Q be its fundamental 2- form. If o €
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G, then o*Q = p(a) - Q for some constant p(a) € RT. Hence we have
a continuous homomorphism p : G—R*. By our hypothesis that G has
a nontrivial homothetic summand, p is surjective. As the stabilizer G, is
compact, p(Gz) = 1. The map p naturally extends to a map p : X =
G - z—R*. Then we can define a Hermitian metric

(Y, Z )
A(p)

for each p € X and arbitrary Y, Z € T, X. Since p(ap) = p(a)s(p) for a € G,
it follows that ha.p(0uY, o Z) = hy(Y, Z). G acts on X as a group of holomor-
phic isometries with respect to h. Given a conformal Kéhler homogeneous
geometry (G, X), we obtain a G-invariant Hermitian metric A which is lo-
cally conformal to a Kahler metric. As a consequence, the compact locally
conformal Ké&hler manifold I'\ X is also a locally homogeneous Riemannian
manifold compatible with a preferable complex structure.

Now in the sense of Thurston, recall that a geometric complex manifold
is a 2n-dimensional manifold locally modeled on a Riemannian homogeneous
geometry (G, X) compatible with the preferable complex structure on X.
Here G is a finite dimensional Lie group which acts holomorphically and
transitively on a simply connected complex manifold X whose stabilizer is
compact.

hp(Y, Z) -

4 Classification of compact geometric com-
plex surfaces |

It is known that 4-dimensional Riemannian homogeneous geometries consist
of 19 isomorphism classes (cf. [FL]). Among them, Wall [WA] has determined
that the 14 geometries (G, X) carry a complex structure invariant under the
automorphism group G the complex structure is unique up to isomorphism,
except for the solvable geometry. He has further observed that out of the
14 geometries, only the 9 geometries (G, X) can admit a Kahler structure
compatible with a geometric structure (i.e., each element of G is a holo-
morphic transformation preserving its Kahler structure.) In the remaining
cases, there is no Kahler structure compatible with G. (Compare Theorem
1.2 [WA].) Thus the problem is left to the remaining 5 geometries which
Hermitian geometry is compatible with its homogeneous structure. Tricerri
[TR] and Vaisman [VA3] took up this problem to find a locally conformal
Kahler structure compatible with G (abbreviated to l.c. Kahler from now.)

The remaining 5 geometries are locally modeled on the products of the
positive real numbers Rt with the sphere S2, the Heisenberg nilpotent Lie



164

group N, or the complete simply connected Lorentz space of constant neg-
ative curvature H'2, or locally modeled on one 4-dimensional solvable Lie
group Sol, and the other solvable Lie group Solf with two isomorphism
classes of complex structures. Vaisman ([VA1],[VA2]) has observed that the
compact complex surfaces S x S1, N/A x S!, and H“?/T' x S* are lc.
Kahler manifolds whose Hermitian metrics are invariant under the automor-
phism group. On the other hand, Wall noticed that the compact complex
surfaces modeled on the above solvable Lie groups are Inoue surfaces. (See
[BPV].) Tricerri [TR] has proved that the Inoue surfaces modeled on Solg,
Sol} are l.c. Kahler manifolds. In this case, Vaisman [VASJ has proved that
the canonical Hermitian metrics are invariant under Solj, Sol{, while he
showed the Inoue surface modeled on the solvable Lie group Sol{’ (which is
Sol{ with another complex structure) cannot admit any l.c. Kéhler structure
whose Hermitian metric is invariant under Sol}'.

We observe the necesarry conditions when the geometric complex mani-
fold I\ X (=I'\G/K) will be a l.c. Kahler manifold. Let (G, X) be a confor-
mal Kéahler homogeneous geometry. As G consists of finitely many compo-
nents, there exists a 1-parameter subgroup R from G such that p(R) = R*.
Thus G = H x R where H = Ker p. In summary, (G, X) has the following
properties:

1. (G,X) is a 4-dimensional Riemannian homogeneous geometry.

2. X supports a complex structure compatible with the automorphism
group G.

3. There exists a cofinite discrete subgroup I' in G. (That is, G/T is of
finite volume.)

4. (G is the semidirect product H x R.

We have alreday treated the case G = Hx R in [KA]. (Compare [VA1],[VA2].)
So we study the semidiect case.

Semidirect product H x R*. We shall construct a 4-dimensional confor-
mal Kéhler homogeneous geometry (G, X) when G is the semidirect product
H % R*. Consider the solvable Lie groups Sol§, Sol} characterized by Wall
[WA]; they act on the domain of the complex affine space C* by holomorphic
affinely flat transformations.

Let Ac(2) = C? x GL(2, C) be the 2-dimensional complex affine group acting
on the complex number space C2. Choose the upper half plane H from C so
that C x H is a domain of C2.
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Case 1 (Tricerri [TR]). Let G be the subgroup of Ac(2) generated by the
elements:

(22 ) e remace)

 Put Sol§ = {h € G |X\ € RT}. Then, G = Sol} x U(1l). Each element h
leaves (C X H invariant. Thus G is the tran51t1ve subgroup of holomorphic
transformations of C x H with respect to the restricted complex structure.
The stabilizer at (0,%) is isomorphic to the circle U(1).

If we assign to each h the positive number |A[?, then G splits as the semidirect
product H x R* where

H:{((Z)(é ?)) lacC, beR, /\eU(l)}.

Note that H is the product Ec(1) x R where the complex euclidean group
Ec(1l) =Cx U(1).

We give a Kéhler structure on the domain C x H on which G acts as
homothetic transformations. Choose the coordinates § and ¢ > 0 with 8+t €
H. Put

0= :;—dz Adz+t=3dt AdO (= do A dy + t-3dt A dO).

Then O? = —it3dzAdz Adt Adf # 0 and dQ = 0. Moreover, if J is
the canonical complex structure on C x H, then Q is invariant under J and
9(X,JY) = Q(X,Y) is positive definite. Hence 2 is a Kéhler structure on
C x H. Let h € G so that

n(2)=(5 )+ (B )

Then it is easy to see that h*Q = |A\|2Q. Therefore,

#={(8)(3 ) wer)

acts as homothetic transformations of Q.

Case 2 (Tricerri [TR]). Let G; be the subgroup of AC( ) generated by
the elements:

(((2).(5 ) tobeem amnemst)
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Put Solt = {h € G1 | e = 1}. The group Solf acts transitively on the domain
C x H with trivial stabilizer. Moreover, G = Sol{ x Z/2 which is the full
group leaving invariant C x H whose stabilizer at (0, 1) is isomorphic to Z/2.

We give a Kahler structure on CxH = {(z,w) | 2 = z+yi, w = 0+ti, t >
0} for which G; acts as homothetic transformations. Put

_ 2
Q_—__i_z. (1";?’ dt/\d@—-—%(dt/\da:+dy/\d6)+dy/\dx>.
2
Then Q2 = 8—(-1—:79——)& AdOAdyAdz # 0 and dQ = 0. Obviously Q2 is

invariant under J. Since g(X,JY) = Q(X,Y) is positive definite, 2 is a
Kahler structure on C x H. If h € Gy, then

b c+yi\ _ [ (c+ex+bd)+ (ey + bt)e
O+t ) (a+ af) + ott '

Then it is easy to see that h*Q = a~! - Q. So the group

v (3).(5 2)) oo

acts as homothetic transformations of §2. It is easy to see that G is isomor-
phic to the semidirect product (A % Z/2) x R* where N is the 3-dimensional
nilpotent Lie group consisting of the elements

{((2)-(a1)) resecmy

Case 3. We have another isomorphism class of complex structures on Solj.
Denote by Sol#’ the holomorphic action of Solf on the domain C x H. By
the result of Wall [WA], Sol¥' is a subgroup of Ac(2) represented by the

~ elements:

{h:<<c+zloga>’<1 b >> | a, b,c € R, a>0}.
a 0 a

As is remarked before (cf. [VA3]), there exists no l.c. Kahler structure on

C x H whose Hermitian metric is invariant under Sol{'. In summary, we have
obtained the following.
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Theorem 4.1 Eve'}‘y compact geometric complex surface T\ X emcépt for the

Inoue surface I\Sol¥', admits a L.c. Kdihler structure compatible with the
homogeneous structure. Among them, non-Kdhler manifolds are one of the
following types. It is unique up to holomorphically conformal diffeomorphism:

(i) An infra-Hopf manifold S 3 X R*. (Some finite covering is homeomorphic
to a Hopf manifold S® x S'. Hy(X/T) = Z + {torsion}.)

(ii) An infranilmanifold N X R*. (Some finite covering is a T?-bundle over
a torus T%.

Hy(X/T) = Z3+{torsion} if T C N'x R, or Hi(X/T) = Z+{torsion}
if T has a nontrivial summand in U(1), which lies in Z/4 at most.)

(iii) A Lorentz space form H'? x R*. (Some finite covering is a T?-bundle
T

over a closed orientable surface ¥q. Hl(.X JT) = Z**! + {torsion}
(922))

(iv) An generalized solvmanifold I'\Solg/U(1). (Some finite covering is a
T3-bundle over S*.
H(X/T') = Z + {torsion}.)

(v) Solvmanifolds T'\Sol}. ( Some finite covering is a fiber space over S!
with fiber a nilmanifold A\N. Hy(X/T) = Z + {torsion}.)

Remark 4.2 Note that a more refined fiber space structure for X/T" can be
described in terms of the injective Seifert fibering with fiber a nilmanifold.
(Compare [KLR].) |

Recently, Belgun [BE] has shown that there is no l.c. Kdihler structure

~on the Inoue surface I‘\Sol‘{'. As a consequence, the existence of locally
conformal Kdhler structure on locally homogeneous complex surfaces has been
done. Namely, among all compact geometric complex non-Kdhler surfaces,
the geometric complex surfaces of the above 5 types can only admit a locally
conformal Kdhler structure.

5 Invariant l.c Kihler structure on I'\Sol{

As an applicatibn to the above results, we shall prove that the locally con-
formal Kahler solvmanifold obtained by Andres, Fernandez, Mencia and
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Cordero ([ACFM]) coincides with the locally conformal Kéhler structure on
the Inoue surface '\ Sol{ constructed by Tricerri [TR).

As in Case 2, the group Solf acts on C x H as a group of homothetic transfor-
mations with respect to £, i.e., i*Q = a~1-Q for the element h € Sol} x Z/2.
If we set © = t-, then d® = dlogt A © so that h*© = ©. Letting
g9(X,JY) = ©(X,Y), g is a left invariant l.c. Kahler metric on C x H and
(Sol4,C x H,g) is a left invariant homogeneous l.c. Kéhler space. As the
orbit space Sol% - (0,7) = C x H, Solf is viewed as the space. We show that
Sol} admits also a right invariant l.c. Kahler metric. Moreover, it is indeed
the l.c. Kéhler metric on the solvmanifold obtained in [ACFM]. To see this,
let NV be the space R3 with group law;

T z z+z —0-y
y |-y | = Y+
0 g 0+

Then, note that N is isomorphic to the 3-dimensional Heisenberg Lie group
consisting of unipotent matrices

1 60 =z
01 yyi ] |z, y,0€R
0 0 1

Form the 4-dimensional Lie group G(k,1) = N X R* with group law:

T z! r+z' -0ty
y |.t]- y .t ] = y+ -y .
0 0 0+t%. ¢

Here k is a real number such that e 4-e* is an integer but not 2. The group
G(k,1) is the solvable Lie group G(k,n) in [ACFM] when n = 1. (Note that
G(k,n) has been introduced in [ACFM], however we work with the universal
covering space Y and so n = 1 is sufficient.) G(k,1) has a central group

0
extension 1—R—G(k,n)—Sol®*—1 where Sol® = R* x R" = { ( Yy ) ,t}
6
is the 3-dimensional solvable Lie group.
Viewed G(k, 1) as the space Y, G(k,1) acts on Y as translations from the

T c
right. In fact, let p = ( y |,t}] €Y,and h= (( b |,al| € G(k1),
0 a
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G(k,1) actson Y as

| T+ c— 0tkb |
Ry -p=p-h= y + t*b Jta ] .

6+t *a
| k
Choose the coordinates z,y,0,t in Y. Put o/ = dy — —nydt, B = do+
%th, v = %—t-dt and 7' = dz + ydf + -k—ztl—gdt. Then they are right invariant

l-forms on Y, ie., Rjo' = o for h € G(k,1), etc. It is easy to check that
d NGB = dyAdo+ -tlfd(yﬁ) A dt = dnf. So the 1-form 7/ is viewed as a

connection form (up to a scale factor) on the principal bundle: R—Y —Sol3.
Put

V=@ AT +E-FAY)=
=2 (—’fil—;iﬂdt/\d9+ydy/\d9+ 0 gy A dt — -"igidt/\derdy/\dx) :
Then we can check that dﬂ’l = 0 and so ' is a Kéhler form on Y. A calcu-
lation shows that R;Q) = -(—;EQ’, i.e., G(k,1) acts as a group of homothetic
transformations with respect to . Define a 2-form ©' to be t* - ¥ on Y.
Then we see that d®' = k -dlogt A ©'. Since ©' = ——2(%&' A+ B ANY),

and o, 8,,n are all right invariant, ©' is also a right invariant l.c. Kahler
metric on Y.
We define an equivariant map

| (¥, ®) : (Solf,C x H)—(G(k,1),Y).
by setting '

| [ 3=
Slz+iy,0+it) = (| y |,t5)

e
()32 = L)
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It is easy to see that @ is a dlffeomorphlsm between C x H and Y, and
U(g-h) =Y (h) - Y(g) for g, h € Sol}, i.e., ¥ is an a,ntl-lsomorphlsm between
Solt and G(k,1). Moreover we can check that for h € Solf,

T+1 ) ) z+1y
@(h-( 0_*_-7:? )) = &(z + iy, 0 +it) - V(h) =R\Ir(h)‘1’(( 04 it >)

Thus @ is U-equivariant. Using this map, we can define a complex struc-

ture J' on Y by setting J' o ®, = @, 0o J : T,(C x H)—>Ty(,)Y for each
0

z €Y. If we put <S> =Qande=| 0 |,1), then ®(O) = e. Moreover,
0

a calculation shows that <I>*(<éi——> ) = %(%) , (I)A(%) ) = (%) ,
o) e o] e

d 1/d d 1/d
P, = —= o, S i |
((d9> ) = % (d@) ((dt> ) = p (dt)e As the tangent space
1Y is 1dent1ﬁed with the Lie algebra g(k 1), we have the rlght invariant vec-

d d d
tor fields on G(k, 1), T' = dRy, <Zz§) X' =dRy, (d—y> = dRy ( de)
d

Z' = dRy, (Zl_i . The right invariance of the form 7/ implies that #'(T") =

a\ ., /d
RZn’((;;) )= n’((;l;) ) =1, and 7/ (X') = #/(Y') = 1/(Z’) = 0, similarly
for a’,ﬁ’,*y’,e i.e., o (X) = 1, B(Y") =1,4(Z") =1, and so on. Since the

(left invariant) complex structure J on C x H satisfies that J (z?—) = ”—c—l(i’
T Y

d d d d d
J(— = we obtain that J'T' = —kX’,

d
&) = d J(@' = - J(E) = 2
1
JX = ET,’ JY'=27' JZ' = =Y'. When we look at p. 230 of [ACFM],
this implies that

Proposition 5.1 The complex structure J' on'Y = G(k,1) coincides with
one defined in [ACFM].

Theorem 5.2 The pair (¢,V) induces a holomorphically homothetic tmns-
formation between the locally conformal Kihler structure onY = G(k,1) by
Andres, Fernandez, Mencia and Cordero and the locally conformal Kdihler
structure on C x H by Tricerrt.
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P roof. By the construction of complex structure on Y, we have alreday
shown that (¥, ®) : (Solf,C x H, J)—(G(k,1),Y, J') is a holomorphic dif-
feomorphism. It has only to prove that ® is homothetic with respect to §2
and . When we reca]l the 2-forms

O=t-0=-2 Hy dt/\da'—ﬂ(dt/\czﬁdy/\de)+dy/\dx> on C x H

from Case 2 and ©' = t* . Q) = -—2(—]1;

that ®*6' = 76_15@‘ Thus @ is homothetic. Similary we have ®*()/ = k2Q

o Ag+BAY) onY, we can show
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