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Preface
Pleating coordinate theory is a novel approach to understanding deformation
spaces of holomorphic families of Kleinian groups, introduced in recent years
by the author and Linda Keen. The key idea is to study deformation spaces
via the internal geometry of the associated hyperbolic 3-manifold, in partic-
ular, the geometry of the boundary of its convex core. This allows one to
relate combinatorial, analytical and geometrical data in hitherto unobserved
ways. One important outcome is to give algorithms enabling one to compute
the exact position of the deformation space, as a subset in $\mathbb{C}^{n}$ . The idea is
loosely similar to finding the Mandelbrot set by drawing its external rays. It
is based on the observation that there is a close link between the geometry
of boundary of the convex core and the complex analytic trace or length
function of its bending lamination: a geodesic axis is a bending line implies
that the corresponding group element has real $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ . In these lectures, we
develop the theory as it relates to once punctured tori. We show that,from
this simple starting point, one can give a complete description of the position
of the pleating varieties, that is, the loci on which the projective class of the
bending measure of each of the two components of the convex hull boundary
is fixed. We then discuss how this enables one to compute an arbitrarily
accurate picture of the parameter space for various one dimensional families
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of groups, and conclude with a detailed description of how to compute the
exact image of any embedding of the space of once punctured torus groups
into $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ .

The lectures on which these notes are based were given in Osaka City
University in July 1998. They are an exposition of material which has been
developed in a series of papers by the author and L,Keen. We have not al-
tered the informal style of the lectures: this account is intended as a short
user friendly guide. There are certainly many inaccuracies, some deliberate
in the interests of brevity and some inadvertent. Detailed proofs are to be
found in the papers of Keen and Series, especially in [KS98] and [KS93].
Useful background may also be found in an earlier series of lectures given by
the author in Seoul, Korea [Se92]. Since these lectures were given we have
revised the preprint [KS98] to correct a gap in the proof of the limit pleating
theorem 3.11, and to give a shortened proof of the real length lemma 3.8.
These changes have been incorporated into these notes. Since otherwise
the two versions are largely the same, we refer mainly to the original ver-
sion [KS98]. Where there is substantial difference, we refer to the revised
version as $[\mathrm{K}\mathrm{S}98\mathrm{a}]$ .

The computer graphics have been done at various times by various people,
notably David Wright, Ian Redfern and Peter Liepa. We thank them for
permission to include them here. The author would especially like to thank
Yohei Komori for organizing the Osaka conference to give her the opportunity
of presenting this work, and Hideki Miyachi, without whose help the notes
would probably not have seen the light of day. Most of all, it is a pleasure
to thank Komori for his untiring interest in all aspects of this work.
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Lecture 1: Introduction and discussion of
several examples

In this lecture we introduce quasifuchsian space for once punctured tori and de-
scribe the general problem we aim to solve in these notes. We give examples of
some families of Kleinian groups we shall be studying and discuss the Mumford-
Wright exploration of parameter space which provided the original motivation for
our approach. We conclude with a brief introduction to the hyperbolic convex hull.

The general setting for these lectures is that of a holomorphic family of
Kleinian groups. Recall that a Kleinian group $G$ is a discrete subgroup of
$\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ . Its action on the Riemann sphere $\hat{\mathbb{C}}$ decomposes into the regular
set $\Omega$ , on which the elements of $G$ act properly discontinuously and form a
normal family, and the limit set $\Lambda=\hat{\mathbb{C}}-\Omega$ on which the $G$-action is minimal,
that is, on which every orbit is dense. By the Ahlfors Finiteness Theorem,
if $G$ is finitely generated then $\Omega/G$ is a finite union of Riemann surfaces of
finite genus with finitely many punctures. In these lectures we concentrate
especially on quasifuchsian once punctu$7^{\cdot}ed$ torus groups. For these groups
$\Omega$ has exactly two connected components, $\Omega^{+}$ and $\Omega^{-}$ , each of which is G-
invariant and simply connected, such that $\Omega^{\pm}/G$ are both punctured tori.
The limit set $\Lambda$ is a topological circle. Such a group $G$ is a free group on
two generators $\mathrm{A},$ $B$ whose commutator $[A, B]=ABA^{-1}B^{-1}$ is necessarily
parabolic. The generators are represented by generating loops $\alpha,$

$\beta$ on $\Omega^{\pm}/G$

so that $\langle\alpha, \beta\rangle=\pi_{1}(\Omega^{\pm}/G)$ . (Note however that the relative orientation of $\alpha$

and $\beta$ on $\Omega^{+}/G$ and $\Omega^{-}/G$ is opposite.)
By Bers’ Simultaneous Uniformization Theorem, given any two (marked)

complex structures $\omega^{\pm}$ on a once punctured torus, there exists a quasifuchsian
once punctured torus group $G$ for which $\Omega^{+}/G=\omega^{+},$ $\Omega^{-}/G=\omega^{-}$ This
group is unique up to conjugation in $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ .

A holomorphic family of finitely generated Kleinian groups $G=G(\xi)$ ,
$\xi\in \mathbb{C}^{n}$ , is a family of Kleinian groups $G=\langle g_{1}(\xi), \ldots , g_{k}(\xi)\rangle$ for which the
generators $g_{i}(\xi)$ are holomorphic functions of $\xi$ on some open set $U\subseteq \mathbb{C}^{n}$ . By
a result of Sullivan, if $U\subset \mathbb{C}^{n}$ is open and all the representations $G_{0}arrow G(\xi)$

are faithful (for some fixed group $G=\langle g_{1}^{0},$
$\ldots$ , $g_{k}^{0}\rangle$ ), then $G(\xi)$ is quasi-

conformally equivalent to $G_{0}$ . In the case of quasifuchsian once punctured
torus groups, after correct normalization, we find $n=2$ . This corresponds
to the fact that the Bers parameters $\omega^{\pm}$ are each points in the upper half
plane $\mathbb{H}$, the classical Teichm\"uller space of the unpunctured torus, which we
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shall always denote by $\mathcal{T}$. We denote a more general holomorphic family by
$\mathrm{D}\mathrm{e}\mathrm{f}(G)$ .
Exercise Do a dimension count on $G=\langle$ $A,$ $B|[A,$ $B]$ is parabolic $\rangle$ to
“verify” $n=2$ is correct.

The Problem In these notes, $QF$ always refers to the space of once punc-
tured $\mathrm{t}\varphi$ rus groups. Our aim iri these lectures is to solve the following prob-
lem:

Given some specific set of holomorphic parameters $\xi\in \mathbb{C}^{2}$ for groups

$G=G(\xi)=\langle$ $A,$ $B|[A,$ $B]$ is $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{c}\rangle$ ,

describe exactly how to compute quasifuchsian space

$QF=$ { $\xi\in \mathbb{C}^{2}|G(\xi)$ is a quasifuchsian once punctured torus $\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ } $\subset \mathbb{C}^{2}$

In $particular_{r}$ find $\partial QF\subset \mathbb{C}^{2}$

By Bers’ theorem, we know that $Q\mathcal{F}^{\cdot}$ is biholomorphically equivalent to
$\mathbb{H}\cross \mathbb{H}$ . However this gives no information about the shape of $QF$ in $\mathbb{C}^{2}$ .
We have two further useful pieces of information, namely the position of
Fuchsian space $F$ for which $\omega^{+}=\overline{\omega^{-}}$ (the complex conjugate of $\omega^{-}$ ), $\Omega^{\pm}$

are round discs and $\Lambda$ is a round circle; and the nature of a dense set of
boundary points of $QF$ called cusps. Before discussing these further, let us
look at some specific examples of the kinds of holomorphic parameters we
have in mind.
$\mathrm{J}\emptyset \mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{n}$ Parameters for $Q\mathcal{F}$. One can normalize so that

$\mathrm{A}=(^{u-v/w}u$ $v/w^{2}v/w$) $B=$ $[A, B]=$

where $u,$ $v,$ $w\in \mathbb{C}$ with $u^{2}+v^{2}+w^{2}=uvw$ . This relation is called the
Markoff equation and follows from the trace identities in $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ . In this
case $G=\langle A, B\rangle$ is Fuchsian (and hence in particular discrete) if and only if
$u,$ $v,$ $w\in \mathbb{R}$ . Note $u=\mathrm{T}\mathrm{r}A,$ $v=\mathrm{T}\mathrm{r}B,$ $w=\mathrm{T}\mathrm{r}$ AB.
Button Parameters. A variant on the above is the following parameter-
ization (J.Button, Warwick Ph.D.thesis 1995).
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$A=(^{(1+z^{2})/w}z$ $wz)$ $B=(^{(1+w^{2})/z}-w$ $-wz)$ $[A, B]=(_{0}^{-1}$ $-u-1)$

Here $u=2(1+z^{2}+w^{2})/zw,$ $z,$ $w\in \mathbb{C}$ and once again, $G$ is Fuchsian if and
only if $z,$ $w\in \mathbb{R}$.

The Earle slice of $QF$. $([\mathrm{K}\mathrm{o}\mathrm{S}98\mathrm{a}])$ This is a one-complex dimensional
slice of $Q\mathcal{F}$ in which $\Omega^{+},$ $\Omega^{-}$ are required to be conformally isomorphic under
the rhombic symmetry $$ which sends $\mathrm{A}arrow B,$ $Barrow A$ . It extends the rhom-
bus line $|\tau|=1$ in the classical upper half plane picture of the Teichm\"uller

space of a torus holomorphically into $QF\subset \mathbb{C}^{2}$ . The parameterisation is:

$A=$ ( $\frac{d^{3}}{2d^{2}+1,d}$) $B=(_{-}^{\frac{d^{2}+1}{\frac{2d^{2}+1d}{d}}}$ $- \frac{d^{3}}{2d^{2}+1,d})$

Here $d\in \mathbb{C}$ . The conformal involution $$ is normalised so that $(z)=-Z$ .
We have $A^{-1}=B$ and once again, $G\in F$ if and only if $d\in \mathbb{R}$ . We shall
come back to this example in lecture 4.

The Maskit embedding of $\mathcal{T}$ . This is a 1-dimensional holomorphic slice
on $\partial Q\mathcal{F}$ consisting of groups for which the generator $A$ is pinched to a
parabolic (a so called cusp group). This is the slice whose study led to
the first results on pleating coordinates in [KS93]. It was first introduced by
David Wright in [Wr88].

$A=$ $B=-$ $\xi\in \mathbb{C}$

Here $\Omega^{+}/G$ is a once punctured torus while $\Omega^{-}/G$ is a 3-times punctured
sphere. Since the Teichm\"uller space of a 3-times punctured sphere is a single
point, we have $\mathrm{D}\mathrm{e}\mathrm{f}(G)=\mathcal{T}=\mathbb{H}$. The parameters were chosen so that the
map $(\mathbb{H}, \tau)arrow(\mathrm{D}\mathrm{e}\mathrm{f}(G), \xi)$ should take the simplest possible form. This is
discussed further in 1.3 below.

5

34



1.1 Exploration of $Q\mathcal{F}$ and the Mumford-Wright Pro-
gramme.

In the early $1980’ \mathrm{s}$ , David Mumford, David Wright and Curt $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ em-
barked on computer explorations of $QF$. In particular, they plotted many
limit sets and looked for cusp groups on $\partial Q\mathcal{F}$. A cusp is a group in which
an element representing a simple (non-self intersecting) curve on the torus
becomes parabolic. One can think as moving towards a cusp on $\partial QF$ as
the process of shrinking a simple closed loop on one or other of the surfaces
$\Omega^{\pm}/G$ . (This usage is not to be confused with a cusp in the sense of a punc-
ture on a hyperbolic surface; in the one case it is a missing point and in the
other, by extension, it refers to the whole group.) Later, $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ proved
that cusps are dense on the boundary of every Bers slice in $QF,$ $[\mathrm{M}\mathrm{c}\mathrm{M}91]$ .
David Wright made a more systematic study of the Maskit embedding $\mathcal{M}$

described above. His plan was:

$\bullet$ Enumerate homotopy classes of simple closed curves on the once punc-
tured torus.

$\bullet$ Find representatives of these curves as elements in $G$ and compute their
traces as functions of $\xi$ .

$\bullet$ Find points where the traces $\mathrm{a}\mathrm{r}\mathrm{e}\pm 2$ (parabolics).

Note the problem with the last point: there may be many places where
an element is parabolic, but we cannot conclude that the group is necessarily
on $\partial Q\mathcal{F}$ or $\partial \mathcal{M}$ . In general, such a group may not even be discrete.

Since Wright’s enumeration of curves underpins much of what we are
about to do, we explain it briefly here. Let $S$ denote a (topological) unpunc-
tured torus and $\Sigma$ a torus with a puncture. Both have marked generators
$A,$ $B$ . The fundamental group $\pi_{1}(S)$ is the free abelian group $\mathbb{Z}^{2}$ while $\pi_{1}(\Sigma)$

is $F_{2}$ , the free group on two generators. For each $p/q\in\hat{\mathbb{Q}}=\mathbb{Q}\cup\{\infty\}$ (we
allow $q=0\Leftrightarrow\infty\in\hat{\mathbb{Q}}$), the homotopy class $A^{-p}B^{q}$ represents a simple
closed loop on $S$ . This loop is also simple on $\Sigma$ and hence corresponds to
some element (conjugacy class) $W_{p/q}$ in $\pi_{1}(\Sigma)$ . By considering the action of
the mapping class group on $S$ and $\Sigma$ , one can show that all simple homotopy
classes on $\Sigma$ arise in this way. The arrangement of these loops is shown in
figure 1, in which $\hat{\mathbb{Q}}$ is represented as $S^{1}$ . The point $p/q$ represents the curve
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Figure 1:

$A^{-p}B^{q}$ on $S$ , which we can think of as a line of rational slope in the plane
projected onto $S$ .
Exercise Find the slope on $\mathbb{R}^{2}$ of line which projects to $A^{-P}B^{q}$ .

Remark It is well known that on a hyperbolic surface, each free homotopy
class contains a unique geodesic. Therefore, given a hyperbolic metric on $\Sigma$ ,
these classes represent exactly the simple closed geodesics of $\Sigma$ .

Notice that successive $p,$ $q$ curves can be enumerated by Farey addition

$\frac{p}{q}\oplus_{F}\frac{r}{s}=\frac{p+r}{q+s}$ , whenever ps–rq $=\pm 1$ .

Wright showed that cyclically reduced words in $F_{2}$ corresponding to $A^{-p}B^{q}$

could be found inductively by the following process, see also [KS93] $)$ .

$W_{0/1}=B,$ $W_{1/1}=A^{-1}B,$ $\mathrm{T}/V_{1/0}=|/V_{\infty}=A^{-1}$

$W_{(p+r)/(q+s)}=W_{r/s}\nu V_{p/q}$ if ps-rq $=-1$ .

Note the unexpected order in the d.efinition of $\nu V_{(p+r)/(q+s)}$ .
Using the trace identity Tr $XY=\mathrm{T}\mathrm{r}X$ Tr $Y-\mathrm{T}\mathrm{r}XY^{-1}$ (which holds for

any three matrices in $\mathrm{S}\mathrm{L}(2, \mathbb{C}))$ , one can show that:
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$\bullet$ Tr $\nu V_{p/q}$ is a polynomial of degree $q$ in $\xi$ .
$\bullet$ Tr $W_{p/q}=(-i)^{q}(\xi-2p/q)^{q}+O(\xi^{q-2})$ , where $O(\xi^{q-2})$ denotes terms of

order $\leq q-2$ .

Exercise Do this. (See [KS93, \S 3.2].)
Thus in general, the equation for the cusp group in which $\nu V_{p/q}$ is pinched

is Tr $W_{p/q}(\xi)=\pm 2$ . This has $2q$ roots, of which, however, only one is a
discrete group on $\partial M$ [KMS93]. (Actually two, since to get a unique copy of
$\partial \mathcal{M}$ we should normalize with ${\rm Im}\xi>0$ , see 1.3 below.) In the special case
$q=1$ , however, there is a unique root with ${\rm Im}\xi>0$ ; these are the points
$\xi=2n+2i,$ $n\in \mathbb{Z}$ and correspond to cusps in which both $A$ and $A^{-n}B$ are
parabolic (so $\Omega^{+}/G$ and $\Omega^{-}/G$ are both 3-times punctured spheres). At the
point $\xi=2n+2i$ , notice that Tr $W_{n/1}(\xi)=2$ .

Wright plotted these points and then proceeded to find roots of Tr $\nu V_{p/q}(\xi)=$

$2$ by Newton’s method and interpolation, using the recursion described above.
The result is shown in Figure I: it looks very like a boundary $\partial \mathcal{M}$ !

He also made pictures of the limit sets of these special groups, see Figure
II. Notice the two families of black and white circles, which correspond to
the two thrice punctured sphere subgroups in $\Omega^{+}/G$ and $\Omega^{-}/G$ . These pic-
tures were the starting point of [KS93]. After much computation and explo-
ration, Keen and the author proposed plotting the branches of Tr $\nu V_{p/q}>2$ ,
Tr $W_{p/q}\in \mathbb{R}$ moving away from the cusp. The result is shown in Figure III.
Corresponding limit sets are shown in Figures IV and V in which you can see
that the tange,nt $\mathrm{c}\mathrm{i}‘ \mathrm{r}\mathrm{c}\mathrm{l}\mathrm{e}\mathrm{s}$ in Figure II have opened so they now overlap. No-
tice that the real trace lines of Figure III have remarkable properties, which
would certainly not be expected of the real loci of an arbitrary family of
polynomials (or even this family if the lines through other solutions to Trace
$=\pm 2$ were chosen.) In particular:

1. they are $\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\backslash$ disjoint;

2. they end in “cusps”;

3. they contain no critical points;

4. they are asymptotic to a fixed direction at $\infty$ ;

5. they appear to be dense in the presume.d parameter space $\mathcal{M}$ .
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At this stage none of these properties could be either explained or proven.
The key turned out to be to study the action of $G$ on hyperbolic 3-space $\mathbb{H}^{3}$ ,
in particular, on the boundary of the convex hull. This also eventually led
to our method of drawing the parameter space $Q\mathcal{F}$ .

For the rest of this lecture we shall discuss this convex hull.

1.2 The Boundary of the Hyperbolic Convex $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$

Recall that a Kleinian group $G$ acts not only on the Riemann sphere $\hat{\mathbb{C}}$ but
also on on hyperbolic 3-space $\mathbb{H}^{3}$ , which can be regarded as the interior $\mathrm{B}^{3}$

of the Riemann sphere $\hat{\mathbb{C}}$ . The quotient $\mathbb{H}^{3}/G$ is a hyperbolic 3-manifold; in
the case of a quasifuchsian once punctured torus group, it is homeomorphic
to $\Sigma\cross(0,1)$ . The surfaces $\Omega^{\pm}/G$ compactify the 2-ends of $\mathbb{H}^{3}/G$ so that
$(\Omega\cup \mathbb{H}^{3})/G\simeq\Sigma\cross[0,1]$ .

The convex hull or convex core $C$ (Nielsen region) of $\mathbb{H}^{3}/G$ is the smallest
hyperbolic closed set containing all closed geodesics of $\mathbb{H}^{3}/G$ . If $G$ is Fuch-
sian, $\mathrm{a}_{\iota}^{1}1$ of these are contained in a single flat plane, otherwise we get the
picture shown in figure 2.

$\mathrm{G}$ quasituchsian
(Note $\Omega^{+}/\mathrm{G}\neq\Omega^{-}/\mathrm{G}$ as conformal tori)

Figure 2:

An alternative description is that $C$ is the hyperbolic convex hull of the
limit set $\Lambda$ , shown in figure 3.

We see from either picture that $\partial C$ has two components $\partial C^{\pm}$ which “face”
the components $\Omega^{\pm}$ of $\Omega$ ; one proves that $\partial C^{\pm}/G$ are each homeomorphic to
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$\mathrm{G}$ Fuchsian $\mathrm{G}$ quasifuchsian

Figure 3:

punctured tori, [KS95].
Since $C$ is convex, $\partial C$ is made up of convex pieces of flat hyperbolic planes

which meet along geodesics called pleating or bending lines. Since $C$ is the
convex hull of $\Lambda\subset\hat{\mathbb{C}}$ , the flat faces are ideal polygons and the bending lines
continue out to $\hat{\mathbb{C}}$ . The bending lines are mutually disjoint. For more details
about all this, see [EM87] and also lecture 3. As described in more detail in
lecture 3, the bending lines project to a geodesic lamination on $\partial C^{\pm}/G$ which
carries a transverse measure, called the bending measure, denoted $pP^{\pm}(G)$ .
We shall be especially interested in the case in which the bending lines all
project to one simple closed curve on the torus; by the discussion in 1.1 this
must be the projection of the axis of $W_{p/q}$ for some $p/q\in\hat{\mathbb{Q}}$ . In this case the
bending measure is given by the bending angle $\theta$ between the planes which
meet along $\mathrm{A}\mathrm{x}(W_{p/q})$ :

$p\ell^{\pm}(G)(T)=i(\gamma_{p/q}, T)\theta$

where $\gamma_{p/q}$ is the closed geodesic in question, $T$ is a transversal and $i(\gamma_{p/q}, T)$

its intersection number with $\gamma_{p/q}$ . This is the case to keep in mind.

Key Lemma 1.1. ( $[\mathrm{K}\mathrm{S}93$ , lemma 4.6]) Suppose that the axis of $g\in G$ is a
bending line of $\partial C^{\pm}(G)$ . Then $\mathrm{T}\mathrm{r}(g)\in(-\infty, -2)\cup(2, \infty)_{i}$

.
in other words; $g$

$is$ purely hyperbolic.

Proof. Use the fact that the two planes in $\partial C^{\pm}$ which meet along $\mathrm{A}\mathrm{x}(g)$ are
invariant under translation by $g$ . See also lecture 2 for another picture. $\square$
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Figure 4:

Key Definition 1.2. The $(p/q, r/s)$ -pleating ray or pleating variety $P_{p/q,r/s}$

$is$

$\prime P_{p/q,r/s}=\{\xi\in QF||pl^{+}(\xi)|=p/q, |pP^{-}(\xi)|=r/s\}$ .

Thus $\prime p_{p/q,r/s}$ is the set of groups in $QF$ for which the support $|p\ell^{\pm}(\xi)|$

of the bending measures (i.e. the bending lines) are the geodesics $\gamma_{p/q}$ and
$\gamma_{r/S}$ which correspond to the special words $W_{p/q},$ $W_{r/s}$ . (Notice here $p/q$ and
$r/s$ are arbitrary points in $\hat{\mathbb{Q}}$ ; we are not assuming ps–rq $=\pm 1.$ ) The
terminology “plane” will be justified by the picture of $Q\mathcal{F}$ we establish in
these lectures: $P_{p/q,r/s}$ is indeed a 2-real dimensional submanifold in $\mathbb{C}^{2}\simeq \mathbb{R}^{4}$

In the special case of the Maskit embedding, the accidental parabolic $A$

acts as the bending line on $\Omega^{-}/G$ , so that $|p\ell^{-}(\xi)|\equiv\infty$ . In this case we
define

$P_{p/q}=$ { $\xi\in \mathcal{M}|\partial C^{+}/G$ is pleated (bent) along $p/q$ },
Clearly, since $\xi\in P_{p/q}\Rightarrow \mathrm{T}\mathrm{r}W_{p/q}\in(-\infty, -2)\cup(2, \infty)$ , we have $p_{\infty}=\emptyset$ . In
general, from the above discussion we have learned:
$\bullet$ Tr $W_{p/q}(\xi)$ is a polynomial of degree $q$ in $\xi(q\neq 0)$ .

$\bullet$ $P_{p/q}$ is contained in the real locus of Tr $W_{p/q}$ .

Theorem 1.3. ( $[\mathrm{K}\mathrm{S}93$ , theorems 5.1 and 7.1]) The qreal trace $f$’ lines de-
scribed in the Wright picture of $\mathcal{M}$ above, are exactly the pleating rays $P_{p/q}$

for $q\neq 0$ . These lines have all the properties described $above_{f}$. in particular,
they contain no critical points of Tr $W_{p/q}$ and they are dense in 1. They
terminate in the (unique) cusp groups at which Tr $W_{p/q}=\pm 2$ .
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This fully justifies Wright’s construction of the boundary of $\mathcal{M}$ described
above. Furthermore, if the space of simple closed curves is completed to the
Thurston space of projective measured laminations $S^{1}$ (see lecture 3), then
the above results extended to the irrational pleating varieties $P_{\nu},$ $\nu\in S^{1}$ .

The proof of all these claims will be given in lecture 4.

1.3 Appendix
The reason for David Wright’s choice of parameterization for the Maskit slice
$\mathcal{M}$ , and the explanation of our statement that the map $(\mathbb{H}, \tau)arrow(\mathcal{M}, \xi)$ is
“nice”, can be understood with the help of Maskit combination theorems.
With Wright’s normalization, the matrices:

$A=$ $B^{-1}AB=$
generate a Fuchsian group representing 2 thrice punctured spheres, one the
quotient of the upper half plane $\mathbb{H}$ and the other of the lower half plane L.
Adjoining the element $B$ : $z\vdash+\xi+1/z$ makes a “handle” on one side (this
is Kra’s plumbing construction, see section 6.3 of [Kr90] $)$ . If ${\rm Im}\xi>>0$ , we
get the following picture:

Figure 5:

One verifies that $B$ carries the horocycle of Euclidian radius $1/2t$ to the
horizontal horocycle of ${\rm Im}\xi=t$ . We get an obvious fundamental domain for
$G$ if ${\rm Im}\xi>2$ . Moreover, if ${\rm Im}\xi<1$ , one can show that $G$ is not discrete
[Wr88]. Thus the boundary of $\mathcal{M}$ is contained in the strip $1\leq{\rm Im}\xi\leq 2$ .
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Figure I. The original Mumford-Wright picture of $\partial \mathcal{M}$ .

Figure II. Limit sets $0\dot{\mathrm{f}}$ cusp groups. The $\mathrm{t}\backslash \mathrm{v}\mathrm{o}$ different circle packings
correspond to pinching different pairs of curves.
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Figure III. The real trace lines.

Figures IV and V. Opening up cusps along the 3/10 ray.
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Lecture 2: Convex $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$ Boundaries with
Rational Pleating Locus

In this lecture we look at the convex hull boundary in the special case in which the
bending lines are simple closed geodesics. We review Fenchel Nielsen coordinates
for the once punctured torus and their extension to complex Fenchel Nielsen coor-
dinates for $Q\mathcal{F}$ . We discuss the important bending away theorem which allows one
to determine the bending or pleating locus for groups obtained by small quakebends
away from Fuchsian space $\mathcal{F}^{\cdot}$ .

Suppose $G$ is a quasifuchsian group and $\Sigma$ is a hyperbolic surface such
that $\mathbb{H}^{3}/G\sim\Sigma\cross(0,1)$ . Fix $\Omega_{0}$ a component of the regular set $\Omega$ and $\partial C_{0}$ the
component of the convex hull boundary facing $\Omega_{0}$ . Then $\Omega_{0}/G$ and $\partial C_{0}/G$

are both homeomorphic to the surface $\Sigma$ .
Let $S(\Sigma)$ denote the set of (free homotopty classes of) simple closed non-

boundary parallel curves on $\Sigma$ . Assume that the pleating locus of $\partial C_{0}$ consists
entirely of curves (geodesics) in $S(\Sigma)$ . We call this a rational pleating lami-
nation. Generically such a lamination decomposes $\partial C_{0}/G$ into pairs of pants
$\Pi_{i}$ . Each $\Pi_{i}$ is flat and so lifts to a piece of hyperbolic plane $\tilde{\Pi}_{i}$ whose exten-
sion meets $\hat{\mathbb{C}}=\partial \mathbb{H}^{3}$ in a circle $C(\tilde{\Pi}_{i})$ . If a geodesic $\gamma$ is in the boundary of
$\Pi_{i}$ then $\mathrm{A}\mathrm{x}(\tilde{\gamma})$ is in the boundary of (a conjugate of) $C(\tilde{\Pi}_{i})$ and hence fixes
this circle and is purely hyperbolic, i.e. Tr $\tilde{\gamma}\in(-\infty, -2)\cup(2, \infty)$ . $\mathrm{c}.\mathrm{f}$. the
key lemma 1.1 in lecture 1.

Lemma 2.1. 1. In the above $situation_{f}$ one or other of the two open discs
bounded by $C(\tilde{\Pi}_{i})$ has empty intersection with the limit set $\Lambda=\Lambda(G)$ .

2. Let $\Gamma_{i}=\pi_{1}(\Pi_{i})$ . Then $\Lambda(G)\cap C(\tilde{\Pi}_{i})=\Lambda(\Gamma_{i})$ . In fact, $\tilde{\Pi}_{i}$ is just the
Nielsen region of $\Gamma_{i}$ .

Figure 6:
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Proof. Exercise, see [KS98, \S 4.3] and [KS94, \S 3]. The second part is illus-
trated in figure 6. $\square$

What about the converse? The following is an easy exercise, see [KS98,
lemma 4.1] and [KS94, lemma 3.2].

Lemma 2.2. If Tr $\gamma_{1}$ , Tr $\gamma_{2}$ and Tr $\gamma_{1}\gamma_{2}$ are all real, then $\Gamma=\langle\gamma_{1}, \gamma_{2}\rangle$ is
Fuchsian.

Lemma 2.3. Suppose that $\Gamma\subset G$ is Fuchsian with the limit set $\Lambda(\Gamma)$ con-
tained in a round circle $C(\Gamma)$ . Then $\partial C(\Lambda(\Gamma))$ , the boundary of the convex
hull of $\Lambda(\Gamma)$ , is a component of $\partial C(\Lambda(G))$ iff one of the two discs bounded by
$C(\Gamma)$ has empty intersection with $\Lambda(\Gamma)$ .

Proof. Exercise, same references as above.

Definition 2.4. We call a Fuchsian subgroup as in lemma 2.3 F-peripheral.

An example of a non-peripheral Fuchsian subgroup is shown in Figure
VI.

Question How can one tell when a given Fuchsian subgroup is F-peripheral?
This is not so easy to answer; a large part of these lectures will involve in-
vestigating exactly this point.

2.1 Special Case Example
Besides illustrating what is going on, the following example will come up
repreatedly and is essential to the proof of some of our main results.

Let $G=\langle AB\rangle\rangle$ be a once punctured torus group. The complex distance
$\delta(A, B)$ between $\mathrm{A}\mathrm{x}(A)$ and $\mathrm{A}\mathrm{x}(B)$ is given by;

$\sinh^{2}(\lambda_{A}/2)\sinh^{2}(\lambda_{B}/2)\sinh^{2}(\delta(A, B))=-1$ .

Here $\lambda_{A}$ is the complex translation length of $A$ and Tr A $=2\cosh(\lambda_{A}/2)$ .
The proof is an exercise with trace identities, see [PS95, \S 2].

1
Thus

Tr $\mathrm{A}$ , Tr $B\in \mathbb{R}\Rightarrow-\sinh^{2}(\delta(A, B))>0$

which imples
${\rm Re}\delta(A, B)=0$ or ${\rm Im}\delta(A, B)=\pi/2$ .
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In the first case Tr $A$ , Tr $B$ are coplanar and $G$ is Fuchsian (Why?); in the
second the axes do not meet but are perpendicular. In this case $G$ is a
degenerate Schottky group obtained by identifying opposite circles as shown;
the four points of tangency lie on a rectangle. This is shown in Figure VII,
which shows a fundamental domain and how the limit set is formed in this
case.

Figure 7:

If $\partial C^{+}$ is pleated along $\mathrm{A}\mathrm{x}(A)$ , then cutting $\partial C^{+}/G$ along the projection
of $\mathrm{A}\mathrm{x}(A)$ , we obtain a punctured annulus. Lifting to $\mathbb{H}^{3}$ we get a piece
of plane with boundary curves Ax(A), some conjugate of $\mathrm{A}\mathrm{x}(A)$ , and the
puncture; and similarly for $\partial C^{-}$ and $\mathrm{A}\mathrm{x}(B)$ . In fact one can show directly,
by studying fundamental domains for $G$ and how they cover $\Omega$ , that in this
case $\Gamma^{+}=\langle A, B^{-1}AB\rangle$ and $\Gamma^{-}=\langle B, A^{-1}BA\rangle$ are $F$-peripheral. The details
are in [PS95, prop. 6.2]; Figure VII shows the idea.
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Figure VI. A non-peripheral Fuchsian subgroup. Graphics by $Ian$ Redfern
This limit set corresponds to a surface group of genus 2.

Figure VII. Limit $\mathrm{s}\mathrm{e}_{1}\mathrm{t}$ for the special case example.
Both generators have real $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ .
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2.2 Real and Complex Fenchel Nielsen coordinates.
For the rest of this lecture, we shall discuss a more general way to ensure that
a given Fuchsian subgroup is $F$-peripheral. First we need to recall Fenchel-
Nielsen and complex Fenchel-Nielsen coordinates for a once punctured torus.
These coordinates (for Teichm\"uller space and quasifuchsian space respec-
tively) are defined relative to a fixed generator pair $(U, V)$ corresponding to
geodesics $(\gamma, \delta)$ on the torus $\Sigma$ . For more detail see [KS97, \S 4].

Figure 8:

The right side of figure 8 shows a punctured cylinder whose two boundary
curves have equal lengths. This cylinder is shown lifted to $\mathbb{H}$ in figure 9. The
conjugate axes of $U$ and $V^{-1}UV$ project to the two boundary curves of the
cylinder and are identified by the transformation $V$ , whose axis projects to
the curve $\delta$ on $\Sigma$ . Cutting the cylinder along the perpendiculars from the
cusp to the two boundary curves gives two pentagons with four right angles
and one cusp, which can be thought of as two right angled hexagons with one
degenerate side. From hyperbolic trigonometry, the length of the boundary
curve $l_{\gamma}$ determines such a pentagon up to isometry. The two boundary
curves are glued with a twist $t_{\gamma}\in \mathbb{R}$ . To understand the twist better we lift
to $\mathbb{H}$; by definition $t_{\gamma}$ is the signed distance $d(Y, V(X))$ as shown in figure 9.

Theorem 2.5. The Fenchel Nielsen coordinates $(l_{\gamma}, t_{\gamma})$ determine $\Sigma$ uniquely
up to conjugation in $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{R})$ .

Complex F-N coordinates for quasifuchsian once punctured tori [Ta94], [Ko94],
[KS97], are made by exactly the same construction but with $\lambda_{\gamma}\in \mathbb{C}^{+}=$

$\{x+iy|x>0\}$ and $\tau_{\gamma}\in$ C. (Remember that Tr $g_{\gamma}=2\cosh(\lambda_{\gamma}/2).$) The
transformation $V$ glues $\mathrm{A}\mathrm{x}(V^{-1}UV)$ to $\mathrm{A}\mathrm{x}(U)$ with a shear of distance ${\rm Re}\tau_{\gamma}$

and a twist (bend) through angle ${\rm Im}\tau_{\gamma}$ . Notice that the four endpoints of
the axes are in general not concyclic.
Exercise Prove that the endpoints of $\mathrm{A}\mathrm{x}(U),$ $\mathrm{A}\mathrm{x}(V^{-1}UV)$ are concyclic iff
$\lambda_{\gamma}\in \mathbb{R}$.
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Figure 9:

Remark 2.6. Theorem 2.5 shows that for any $(\lambda_{\gamma}, \tau_{\gamma})\in \mathbb{R}^{+}\cross \mathbb{R}$ , we can
write down generators $A,$ $B$ (or $U,$ $V$) for a group $G$ in which $[A, B]$ is
parabolic. Part of the content of theorem 2.5 is that this group is auto-
matically Fuchsian and represents a hyperbolic once punctured torus. In the
case $(\lambda_{\gamma}, \tau_{\gamma})\in \mathbb{C}^{+}\cross \mathbb{C}$ , we can still write down generators $A,$ $B$ (or $U,$ $V$) for
the group $G$ . However for general complex parameters, this group may be
neither free, discrete, nor quasifuchsian.

Complex Fenchel Nielsen Twists or Quakebends $([\mathrm{K}\mathrm{S}97, \S 5])$ For
$t\in \mathbb{R}$ , the time $t$ F-N twist or earthquake $\mathcal{E}_{\gamma}(t)$ along $\gamma$ is described in F-N
coordinates by $(l_{\gamma}, t_{\gamma})rightarrow(l_{\gamma}, t_{\gamma}+t)$ . Likewise the time $\tau$ complex F-N twist
or quakebend $Q_{\gamma}(\tau)$ is described in complex F-N coordinates as $(\lambda_{\gamma}, \tau_{\gamma})rightarrow$

$(\lambda_{\gamma}, \tau_{\gamma}+\tau),$ $\tau\in \mathbb{C}$ . If ${\rm Re}\tau=0$ , it is called a pure bend. In what follows, we
shall be exploring exactly what happens to the convex hull when we perform
quakebends.

2.3 Developed Surfaces and the Bending Away Theo-
rem Part 1

In this section we are going to discuss the following $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r},\mathrm{e}\mathrm{m}$, which is a slight
variant on [KS97, prop. 7.2].

Theorem 2.7 (Bending away theorem Part 1). Let $(l_{\gamma}, t_{\gamma})$ be the F-N
coordinates of a Fuchsian once punctured torus group $G_{0}$ . Then for small

$\theta$ , the groups with complex F-N coordinates $(l_{\gamma}, t_{\gamma}+i\theta)$ are in $P_{\gamma}(i.e$ . have
pleating locus $\gamma$ on one or other side of $\partial C.$)
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To prove this theorem, we need to study the developed surface associated
to a complex F-N twist.

The Developed Surface Say $\lambda_{\gamma}\in \mathbb{R}$ so the endpoints of $\mathrm{A}\mathrm{x}(U)$ and
$\mathrm{A}\mathrm{x}(V^{-1}UV)$ are concyclic. The Nielsen region $N$ of $\Gamma=\langle U, V^{-1}UV\rangle$ maps
to a convex part of a hyperbolic plane in $\mathbb{H}^{3}$ . The image $V(N)$ lies in another
hyperbolic plane which meets $N$ along $\mathrm{A}\mathrm{x}(U)$ at an angle $\theta={\rm Im}\tau$ . (This is
the “Micky Mouse example” of $[\mathrm{T}\mathrm{h}79,8.7.3].)$ The shaded region above the
hemisphere is $C$ .

Figure 10:

Continuing in this way, we get a map $\phi_{\tau}^{\gamma}=\phi_{\tau}$ : $(\mathrm{D}, G_{0})arrow(\mathbb{H}^{3}, G_{\tau})$

which conjugates the actions of $G_{0}=G(\lambda_{\gamma}, t_{\gamma})$ on $\mathrm{D}$ with $G_{\tau}=G(\lambda_{\gamma}, t_{\gamma}+\tau)$

on $\phi_{\tau}^{\gamma}(\mathrm{D})\subset \mathbb{H}^{3}$ We call $\phi_{\tau}^{\gamma}$ the developed image of $\mathrm{D}$ under the quakebend
$Q_{\gamma}(\tau)$ . Of course, for large $\theta={\rm Im}\tau$ , we do not expect $\phi_{\tau}(\mathrm{D})$ to be embedded
in $\mathbb{H}^{3}$ .
Theorem 2.8. ( $[\mathrm{K}\mathrm{S}97$ , prop. 6.5]) In the situation of theorem 2.7, with
${\rm Re}\tau=0,$ ${\rm Im}\tau$ small, then $\phi_{\tau}^{\gamma}$ is an embedding which extends continuously to
a map $\partial \mathrm{D}arrow\partial \mathbb{H}^{3}$ .

The bending away theorem 2.7 is a corollary of 2.8 as follows:

(a) Show that $\phi_{\tau}(\mathrm{D})$ separates $\mathbb{H}^{3}\cup\hat{\mathbb{C}}$ into two half spaces.

(b) Show that one of these half spaces is convex. (Note that this uses that
$\Sigma$ is a torus so that all bending is in the same direction.)

(c) Show that $\phi_{\tau}(\partial \mathrm{D})=\Lambda(G(\lambda_{\gamma}, t_{\gamma}+\tau))$ and that $\phi_{\tau}$ conjugates the actions
of $G_{0}$ and $G_{\tau}$ on $\partial \mathrm{D},$ $\Lambda(G_{\tau})$ respectively.

(d) Conclude that $\phi_{\tau}(\mathrm{D})$ is a component of $\partial C_{0}(G_{\tau})$ .

None of these points is very hard: all are explained in [KS97, \S .6 and 7].
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Proof of theorem 2.8. The idea is to use nested cones in $\mathbb{H}^{3}$ . We write
$C_{\delta}(\alpha, x)$ for the cone with vertex $x$ , angle $\alpha$ , and central axis $\delta$ , see figure 11.
The key point in the proof is what we call the cone lemma [KS97, lemma
6.3].

Figure 11:

Suppose that $s\vdasharrow\eta(s)$ is a geodesic on $\Sigma$ . As shown in figure 12 its
image under the developing map $\phi_{\tau}$ is a “bent” geodesic in $\mathbb{H}^{3}$ . For a point
$\eta(s)$ on $\eta$ , let $v(s)$ denote the $\mathbb{P}$ -geodesic based at the point $\phi_{\tau}(\eta(s))$ and
pointing in the forward direction along $\phi_{\tau}(\eta)$ . If $\eta(s)$ is a bending point of
$\phi_{\tau}(\eta)$ , this doesn’t quite make sense since there are two forward directions of
$\phi_{\tau}(\eta)$ corresponding to the directions immediately before and immediately
after the bend. For simplicity, we allow $v(s)$ to denote either. In all cases,
$C_{v(s)}(\alpha, \phi_{\tau}(\eta(s)))$ is a cone of angle $\alpha$ based at a point on $\phi_{\tau}(\eta)$ and pointing
in one or other of the forward directions along $\phi_{\tau}(\eta)$ . The content of the cone
lemma is that, provided we consider reasonably well spaced points along $\eta$ ,
these cones are nested. At bending points, we have two cones and the lemma
applies to them both.

Figure 12:

Theorem 2.9 (Cone Lemma). ( $[\mathrm{K}\mathrm{S}97$ , lemma 6.3])
Let $s\vdash\Rightarrow\eta(s)$ be a geodesic on $\Sigma_{f}$ and let $\alpha\in(0, \pi/2)$ . Then there exist

$\epsilon=\epsilon(\ell_{\gamma}, \alpha)>0$ and $d=d(\ell_{\gamma}, \alpha)>0$ such that if $Q_{\gamma}(i\theta)$ is a pure bend along
$\gamma$ with $|\theta|<\epsilon_{f}$ then
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$C_{v(s)}(\alpha, \phi_{\tau}(\eta(s)))\supset c_{v(s+s’)(\alpha,\phi_{\tau}(\eta(s+s’)))}$

whenever $s’>d$ .

We require the spacing condition $s’>d$ to take account of the two cones
at the bending points. A cone obviously contains cones further out along
its own axis; the point is that hyperbolic geometry allows us the freedom to
make small bends.

Proof. The full proof is to be found in [KS97]. Here is simpler exercise, which
contains the basic idea: Show that there exists $d>0$ such that $C_{\delta_{1}}(\alpha, x)\supset$

$C_{\delta_{2}}(\alpha, y)$ provided dist $(x, y)>d$ , but that this fails as $darrow \mathrm{O}$ . (Here $\delta_{2}$

is a geodesic making an angle $\theta$ with $\delta_{1}$ at $y.$ ) The set up is illustrated in
figure 13. $\square$

Figure 13:

Theorem 2.8 can now be proved by using nesting of cones to show that
for any geodesic $\eta\in \mathrm{D}$, its developed image is embedded and $\phi_{\tau}^{\gamma}(\eta)$ has two
limit points on $\partial \mathbb{H}^{3}$ .

Figure 14:

Remarks
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(a) The proof of theorem 2.7 has been done for a pure bend $({\rm Re}\tau=0)$ but
we can extend to general $\tau$ by first doing an earthquake (F-N twist) by
${\rm Re}\tau$ in $\mathrm{D}$ along $\gamma$ . It would also be possible to give a direct proof.

(b) The same proof will clearly work more generally starting at some group
$G\in P_{\gamma}$ and bending a small amount on $\gamma$ .

(c) Another proof of (b) can be given more elementary means, by showing
that peripheral circles persist under small deformations. This was done
in [KS93] and [KS94]. We need the ideas in the above proof later.

(d) Note the difficulty of extending to genus greater than 1. If we want to
bend away from $F$ along two disjoint simple closed curves simultane-
ously, we must ensure the bending angle is in the same direction along
both, otherwise we loose convexity.

2.4 Controlling the pleating locus on both sides.
The bending away theorem 2.7 controls the pleating locus of one side, say
$p\ell^{+}$ on $\partial C^{+}$ . (Which side is which depends on which way we bend.) Now
we want to simultaneously control $p\ell^{-}$ Suppose $\gamma’\in S(\Sigma)$ and we want
$p\ell^{-}=\gamma’$ . A necessary condition is that Tr $\gamma’\in \mathbb{R}$. How can this be achieved
near Fuchsian space $F$?

To answer this question, we make use of the fact that Tr $\gamma’$ is holomor-
phic on $QF$ and real valued on $F$. In particular, it is holomorphic on the
quakebend plane

$Q_{\gamma}(\tau)=$ { $G(\lambda_{\gamma},$ $\tau)|\lambda_{\gamma}$ fixed, $\tau\in \mathbb{C}$}.

Notice that $Q_{\gamma}(\tau)\cap F=\mathcal{E}_{\gamma}(t)$ is exactly the earthquake line $\tau=t,$ $t\in \mathbb{R}$. Now
the real locus of a holomorphic function has a very special form: figure 15
illustrates the real locus of a holomorphic function $f$ which is real on the real
axis in the $\tau$-plane. The only branching can be at a critical point of $f$ .

Now we use a famous result due to Kerckhoff and Wolpert, see [Ke83]
and [Wo82].

Theorem 2.10. On $\mathcal{E}_{\gamma}(t)f\lambda_{\gamma’}=\lambda_{\gamma’}(t_{\gamma})$ has $a$ unique critical point $t_{\gamma}^{0}$ which
is a minimum; in addition $\lambda_{\gamma}’’,(t_{\gamma}^{0})>0$ .
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Figure 15:

This allows us to deduce exactly how the pleating variety $P_{\gamma,\gamma’}$ meets
Fuchsian space $F$ . On a fixed quakebend plane, $l_{\gamma}$ has a fixed length which
we denote by $c$ . We denote this by writing $Q_{\gamma}^{c}(\tau)$ , and we denote by $p(\gamma, \gamma’, c)$

the critical point $t_{\gamma}^{0}$ . Here $l_{\gamma’}$ is minimal on the $\gamma$-earthquake path $\mathcal{E}_{\gamma}=$

$\mathcal{E}_{\gamma}^{\mathrm{c}}$ . It follows from the antisymmetry of the derivative $dl_{\mu}/d\tau_{\nu}=-dl_{\nu}/d\tau_{\mu}$

that $p(\gamma, \gamma’, c)$ is also the minimum of $l_{\gamma}$ on the $\gamma’$-earthquake path through
$p(\gamma, \gamma’, c)$ . (We are disguising in this some facts which are fairly easy to
deduce from Kerckhoff’s theorem 2.10, in particular that for a given $\gamma,$ $c$

there is a unique earthquake path on which $l_{\gamma}=c$ . We shall come back to
this in more detail in lecture 6, see also [KS98, \S 6].)

Theorem 2.11 (Bending Away Theorem Part 2). ( $[\mathrm{K}\mathrm{S}98$ , theorem 8.9])
In $Q_{\gamma}^{c}(\tau),$ $P_{\gamma,\gamma’}$ meets $F$ exactly in the Kerckhoff critical point $p(\gamma, \gamma^{l}, c)$ .

Proof. Let $\delta’$ be a complementary generator to $\gamma’$ . Since Tr $\gamma’\in \mathbb{R}$ we can
make the complex F-N construction relative to $(\gamma’, \delta’)$ and obtain a developed
surface $\phi_{\tau}^{\gamma’},(\mathrm{D})$ bent along $\gamma’$ by an angle ${\rm Im}\tau’$ . Since ${\rm Im}\tau’=0$ on $F$, and
since $\tau’$ is a continuous function of $\tau=\tau_{\gamma}$ , we see that near $F,$ ${\rm Im}\tau’$ is small
and the same proof as before shows that $\phi_{\tau}^{\gamma’},(\mathrm{D})$ is a $\mathrm{c}\mathrm{o}$,mponent of $\partial C$ . $\square$

Corollary 2.12. ( $[\mathrm{K}\mathrm{S}97$ , theorem 3.2]) Suppose that $\gamma,$
$\gamma’\in S(\Sigma),$ $\gamma\neq\gamma^{J}$ .

Then $P_{\gamma,\gamma’}\neq\emptyset$ .

Exercise What is wrong with the above argument when $\gamma=\gamma’$ ?

Example 2.13. Suppose that $A,$ $B$ are generators of $G$ (a quasifuchsian once
punctured torus group) and we want to find groups such that $|p\ell^{+}|=\mathrm{A}\mathrm{x}(A)$ ,
$|p\ell^{-}|=\mathrm{A}\mathrm{x}(B)$ . In this special case there is an explicit formula which relates
the traces and the twists:

$\cosh(\tau_{A}/2)=\cosh(\lambda_{B}/2)\tanh(\lambda_{A}/2)$ .
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(This is proved in [PS95]; it can be checked by differentiating using Kerck-
hoff’s formula $\frac{d}{d}\lambda\ovalbox{\tt\small REJECT}\lambda_{A}=-\cosh(\delta(A, B)).)$ So $\lambda_{A},$ $\tau_{B}\in \mathbb{R}$ implies that either
${\rm Im}\tau_{A}=0$ , in which case $G$ is Fuchsian, or that ${\rm Re}\tau_{A}=0$ in which case we
have a pure bend. This is our special case example 2.1.

Lecture 3: Irrational measured laminations
and Complex Length. Statements of the
main technical results.

Irrational laminations can be viewed as a completion of the space $S(\Sigma)$ of simple
closed curves on a hyperbolic surface $\Sigma$ . When $\Sigma$ is a punctured torus, they can
be thought of as families of lines of irrational slopes in the plane. In this lecture,
we discuss how some key concepts extend to this case and then introduce the main
technical results we shall need. Sections 3.1 to 3.6 apply to general hyperbolic
surfaces $\Sigma$ unless otherwise stated.

3.1 Geodesic Laminations
Good references for this section are [EM87] and [CEG87].

Definitions A geodesic lamination on a hyperbolic surface $\Sigma$ is a closed set
which is a union of pairwise disjoint simple (not necessarily closed) geodesics.
A geodesic lamination is measured if it carries a transverse measure $\nu$ . This
means there is a measure $\nu_{T}$ on each transversal $T$ to $\nu$ which is invariant
under the push-forward maps along leaves, as illustrated in figure 16.

$v(\mathrm{T}_{1})=v(\mathrm{T}_{2})$

$v(\mathrm{T}_{5})=v(\mathrm{T}_{3})+v(\mathrm{T}_{4})$

Figure 16:

$\underline{\mathrm{E}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}$ Let $\gamma\in S(\Sigma)$ be a simple closed loop. Then $\gamma$ is a geodesic
lamination which always carries the transverse measure $\nu=c\delta_{\gamma},$ $c>0$ where
$c\delta_{\gamma}(T)=ci(T, \gamma)$ , the number of times $\gamma$ intersects the transversal $T$ .
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Notation Here is some notation which we shall use:

$\mathcal{G}\mathcal{L}(\Sigma)$ $=$ {geodesic laminations on $\Sigma$ }
$\lambda 4\mathcal{L}(\Sigma)$ $=$ {measured geodesic laminations on $\Sigma$ }

At $\mathcal{L}_{\mathbb{Q}}(\Sigma)$ $=$ $\{c\delta_{\gamma}|\gamma\in S(\Sigma)\}$

Thus $\mathcal{M}\mathcal{L}_{\mathbb{Q}}(\Sigma)$ is the set of rational measured laminations on $\Sigma$ . Notice that
$\mathbb{R}^{+}$ acts on $\mathcal{M}\mathcal{L}(\Sigma)$ by $t,$ $\nurightarrow t\nu$ where $(t\nu)(T)=t\nu(T),$ $T$ a transversal. We
define

$P\mathcal{M}\mathcal{L}(\Sigma)=$ {projective measured laminations on $\Sigma$ } $=\mathcal{M}\mathcal{L}(\Sigma)/\mathbb{R}^{+}$

For $\nu\in \mathcal{M}\mathcal{L}(\Sigma)$ , we write $[\nu]$ for its projective class in $P\mathcal{M}\mathcal{L}$ , and $|\nu|$ for its
support in $\mathcal{G}\mathcal{L}$ .

WARNING Not all geodesic laminations are measured! A geodesic
spiralling into a closed geodesic cannot support a transverse measure- the
measure of transversal near the limit geodesic would be infinite. This is
shown in figure 17.

Figure 17:

3.2 Topologies on $\mathcal{G}\mathcal{L}$ and a$\mathcal{L}$ .
There are two topologies which are commonly used:
Geometric topology on $\mathcal{G}\mathcal{L}$ . In this topology, laminations $L_{1},$ $L_{2}\in \mathcal{G}\mathcal{L}$

are close if every point in $L_{1}$ is close to a point in $L_{2}$ and vice versa.
Since geodesics diverge, this means tangent directions are close.

Measure topology
$\mathcal{M}\mathcal{L}\mathrm{o}\mathrm{n}\mathcal{M}\mathcal{L}$

. This is the weak topology of measures on
transversals: $\nu_{n}arrow\nu$ if $\nu_{n}(T)arrow\nu(T)$ for all transversals $T$ .
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Figure 18:

WARNING These topologies are not the same!! For example, $\delta_{\gamma}$ and
$100\delta_{\gamma}$ are close in $\mathcal{G}\mathcal{L}$ but not in $\mathcal{M}\mathcal{L}$ .

A more subtle example is shown in figure 18. Take a sequence of closed
geodesics $(\gamma_{n})$ of which some parts are far from $\gamma$ , but which also spiral $n$

times around $\gamma$ . Then $\frac{1}{n}\delta_{\gamma_{n}}\mathcal{M}\mathcal{L}\prec\delta_{\gamma}$ but $| \frac{1}{n}\delta_{\gamma_{n}}|=\gamma_{n}$ is far from $\gamma$ in $\mathcal{G}\mathcal{L}$ .
A lamination $L$ may carry several different projective measure classes,

so we can have laminations equal in $\mathcal{G}\mathcal{L}$ and but different in $P\mathcal{M}\mathcal{L}$ . This
does not happen on the punctured torus because of the property of unique
ergodicity: a (measurable) lamination $L$ is uniquely ergodic if it carries a
unique projective measure class. In this case, up to a constant multiple,
$\nu(T)=\lim_{narrow\infty}i(l_{n}, T))/n$ where $l$ is any leaf of $L$ and $l_{n}$ is an arc of $l$ of
length $n$ from some fixed initial point. On a general surface, the property
of unique ergodicity is generic. However, it is special to the punctured torus
(and four holed sphere) that it holds for every $L\in \mathcal{M}\mathcal{L}$ .

On the torus, the following lemma restricts the bad examples which occur.
Lemma 3.1 (Convergence Lemma). ( $[\mathrm{K}\mathrm{S}98$ , lemma 2.1]) Let $\Sigma$ be a
once punctured torus and let $\nu_{0}\in \mathcal{M}\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ . If $\nu$ is close to $\nu_{0}$ in $\mathcal{M}\mathcal{L}$ ,
then $|\nu|$ is close to $|\nu_{0}|$ in $\mathcal{G}\mathcal{L}$ .
Remark We need the condition $\nu_{0}\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ because of the situation shown
in figure 19, in which $\frac{1}{n}\delta_{A^{n}B}arrow\delta_{A}\mathcal{M}\mathcal{L}$ but $|\delta_{A^{n}B}|\underline{\mathcal{G}}\mathcal{L}\neq+|\delta_{A}|$ .

Figure 19:

In the case of a surface of higher genus the geodesic $A$ of the above
example can be replaced by an irrational lamination. This explains why in
general the result of lemma 3.1 is false.
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Proof. First, suppose that $\nu$ is close to $\nu_{0}$ in $\mathcal{M}\mathcal{L}$ . The lamination $|\nu_{0}|$ can
be covered by “flow boxes” as shown in figure 20. The “horizontal” sides are
short and the “vertical” sides are long. Notice $|\nu_{0}|$ has no “horizontal” arcs.
We claim that if $\nu$ is close enough to $\nu_{0}$ , the same is also true of $|\nu|$ .

Figure 20:

The proof is by considering the measures of transversals: clearly, as shown
in figure 21, $x+y\sim t,$ $x+z+w\sim 0,$ $w+v\sim t,$ $y+z+v\sim \mathrm{O},$ $x,$ $y,$ $z,$ $w,$ $t\geq 0$

$\Rightarrow z=0$ . So $|\nu|$ has a “vertical leaf’ close to $|\nu_{0}|$ .
This part of the proof works in any genus.

Figure 21:

Now for the converse. We need to show that there are leaves of $|\nu_{0}|$ near
any long arc of $|\nu|$ . If not, we can

$\mathrm{t}\mathrm{a}_{\mathcal{M}L}\mathrm{k}\mathrm{e}\mathrm{a}$

limit and find a leaf $l\not\in|\nu_{0}|$ which
is a limit of leaves of $|\nu_{n}|$ where $\nu_{n}arrow\nu_{0}$ . If $l\cap|\nu_{0}|=\emptyset$ , then we get the
pictures shown in figure 22. The picture on the left shows the punctured
bigon obtained by cutting $\Sigma$ along the two boundary leaves of $|\nu_{0}|$ . (This is
where we use the hypothesis $\nu_{0}\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}.$ ) The leaf $l$ has no choice but to run
from one ideal vertex of this bigon to itself.

Now cut the torus along any simple closed curve which meets $l$ . The
result is shown in on the right hand side of figure 22. Any lamination in $\mathrm{A}4\mathcal{L}$

would give equal weight to the inner and outer boundaries of the resulting
punctured annulus $A$ . On the other hand, one sees from the figure that the
intersection numbers of $l$ with the two components of $\partial A$ differ by 2. Thus it
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Figure 22:

is impossible to approximate any possible non zero weight on $l$ by laminations
in $\mathcal{M}\mathcal{L}$ . For more details, see [Th79, 9.5.2].

We may therefore assume that $l\cap|\nu_{0}|-\neq\emptyset$ , which means we can find a
flow box for $|\nu_{0}|$ in which $l$ is a $‘(\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}$

” arc. This is also impossible by
the first part of the proof. $\square$

3.3 The Thurston Picture of $P\mathcal{M}\mathcal{L}$

In general, $P\mathcal{M}\mathcal{L}(\Sigma)$ is a sphere (of dimension $6g-7$ for a closed surface
$\Sigma$ of genus $g$ ). This sphere compactifies the Teichm\"uller space $\mathcal{T}(\Sigma)$ , which
is a ball of dimension $6g-6$ . Roughly, (this is not the actual definition),
$\xi_{n}\in \mathcal{T}(\Sigma)arrow[\delta_{\gamma}]\in P\mathcal{M}\mathcal{L}$ if $\xi_{n}arrow\partial \mathcal{T}$ and $l_{\gamma}(\xi_{n})$ is bounded. In the
torus case the picture was shown in figure 1. The set of irrational projective
measured laminations is identified with $\mathbb{R}\cup\{\infty\}-\mathbb{Q}$, so that $P\mathcal{M}\mathcal{L}=S^{1}$ .
This fits with Wright’s enumeration of $S(\Sigma)$ as explained in lecture 1.

3.4 The Bending Measure on $\partial C$ and the Continuity
Theorems

Definition 3.2. ([EM87], [CEG87]) Let $\Sigma$ be a hyperbolic surface, $\Gamma$ a
Fuchsian group with $\Sigma=\mathbb{H}/\Gamma,$ $G$ a Kleinian group. A pleaied surface is a
map $\sigma$ : $\mathbb{H}^{2}arrow \mathbb{H}^{3}$ (or $\Sigmaarrow \mathbb{H}^{3}/G$ ) such that:

(a)
$\mathbb{H}^{3}\sigma \mathrm{i}\mathrm{s}$

.
an isometry from $\mathbb{H}$ to its image with the path metric induced from

(b) $\sigma_{*}:$ $\pi_{1}(\Sigma)=\Gammaarrow G$ is an injection.

(c) For each $x\in\Sigma$ , there exists at least one geodesic $\gamma$ containing $x$ such
that $\sigma|_{\gamma}$ is an isometry.

The bending locus is the set of geodesics in $\mathbb{H}$ through which there is
only one direction as in (c). The bending locus is a geodesic lamination
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on $\Sigma$ , denoted by $B(\sigma)$ . In general, the image $\sigma(\mathbb{H})$ is neither convex nor
embedded in $\mathbb{H}^{3}$ .
Definition 3.3. A lamination $L\in \mathcal{G}\mathcal{L}(\Sigma)$ is realized in $\mathbb{H}^{3}/G$ if there is a
pleated surface $\sigma$ : $\Sigmaarrow \mathbb{H}^{3}/G$ with $L\subset B(\sigma)$ .

In this definition, the hyperbolic structure on $\Sigma$ is left unspecified, to be
determined by the map and the structure on $\mathbb{H}^{3}$ .

Theorem 3.4. ([Th79], [CEG87]) Let $G$ be quasifuchsian and $L\in \mathcal{G}\mathcal{L}(\Sigma)$ .
Then $L$ is realized in $\mathbb{H}^{3}/G$ .

Proof. The idea is to make a direct (quite easy) construction if $L$ has only
finitely many leaves and then use “compactness of pleated surfaces” to take
limits. It is explained in detail in [CEG87, chapter 5]. $\square$

3.5 The Convex $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$ Boundary

Theorem 3.5. (Thurston, [EM87] Chapter 1) Let $G$ be a finitely generated
Kleinian group and let $\partial C_{0}$ be a component of $\partial C$ , the convex hull boundary
of $\mathbb{H}^{3}/G$ . Then $\partial C_{0}$ carries an intrinsic hyperbolic metric induced from the
metric $\mathbb{H}^{3}$ , making it a pleated surface. The bending $lam\dot{\iota}nation$ carries a
natural transverse measure, the bending measure $pl(\partial C_{0})\in \mathcal{M}\mathcal{L}(\partial C_{0}/G)$ .

Remark It is clear that in addition, $\partial C_{0}$ is convex (i.e. cuts off a convex
half space) and embedded.

The idea for constructing the bending measure is illustrated in figure 23
A support plane is a half space touching $\partial C$ with $C$ entirely on one side. The

Figure 23:

figure 23 shows a collection of support planes forming a “roof” over $C$ ; adja-
cent planes meet at angles denoted in the figure by $\theta_{i}$ . The bending measure
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of a transversal $T$ is defined by $pP(T)= \inf\sum\theta_{i},\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ the infimum is taken
over all possible families of support planes sitting “over’) the transversal $\mathrm{T}$ ,
which joins $x$ to $y$ in the figure. Distance on $\partial C$ can be defined in a similar
way. We call the induced hyperbolic metric on $\partial C_{0}$ , the flat structure $F(\partial C_{0})$

of $\partial C_{0}$ .

Theorem 3.6 (The continuity theorem). [KS95] Let $\xirightarrow G_{\xi}$ be a holo-
morphic family of Kleinian groups. Then for a fixed component $\partial C_{0}$ , the
maps $\xi-*p\ell(\xi)\in \mathcal{M}\mathcal{L}$ and $\xirightarrow F(\partial C_{0}(\xi))\in \mathcal{T}(\Sigma)$ are continuous.

Proof. There is a retraction map $r$ : $\Omegaarrow\partial C$ which maps $z\in\Omega$ to the nearest
point on $\partial C$ , seen by drawing expanding horoballs at $z$ as in figure 24.

Figure 24:

This also defines a support plane at $r(z)$ . We study the continuity of
the map $\hat{r}$ : $\Omega\cross \mathrm{D}\mathrm{e}\mathrm{f}arrow Z(\partial C)$ where $Z(\partial C)$ is the set of support planes to
$\partial C$ with the obvious topology. One shows that $\hat{r}$ is uniformly continuous on
compact subsets of $\Omega\cross \mathrm{D}\mathrm{e}\mathrm{f}$ so that any approximating roof for one group is
close to a roof for a nearby group. It follows that the bending measure and
flat metrics are also close. $\square$

3.6 Length and Complex Length

Length of a measured lamination on a hyperbolic surface $\Sigma$ If
$\gamma\in S(\Sigma)$ , then its hyperbolic length $l(\gamma)$ is given by Tr $\gamma=2\cosh(l(\gamma)/2)$ . If
$c\delta_{\gamma}\in \mathrm{A}4\mathcal{L}_{\mathbb{Q}}(\Sigma)$ , set 1 $(c\delta_{\gamma})=cl(\gamma)$ . We want to extend this to $l:\mathcal{M}\mathcal{L}(\Sigma)arrow$

$\mathbb{R}^{+}$ . One way is to cover $|\nu|,$ $\nu\in \mathrm{A}4\mathcal{L}$ , by flow boxes $B_{i}$ and integrate:
$l( \nu)=\sum_{i}\int_{T_{i}}t(L_{x}\cap B_{i})d\nu_{T_{\mathfrak{i}}}(x)$ , where $L_{x}$ is the leaf of $|\nu|$ through $x$ in the
transversal $T_{i}$ .

Another way, following Kerckhoff, is to take limits:
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Theorem 3.7. ([Ke83], [Ke85]) If $\nu_{n}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}\mathrm{z}}\nu_{n}\mathcal{M}\mathcal{L}arrow\nu,$ $\xi\in \mathcal{T}(\Sigma)$ , then
$(l_{\nu_{n}}(\xi))$ has a unique limit $l_{\nu}(\xi)$ . The convergence is uniform on compact
subsets of $\mathcal{T}(\Sigma)$ .

Complex length of a loxodromic. If $g\in \mathrm{S}\mathrm{L}(2, \mathbb{C})$ then its complex
length $\lambda_{g}$ is given by Tr $g=2\cosh(\lambda_{g}/2)$ . Here $\lambda_{g}=l_{g}+i\theta_{g}$ where $l_{\mathit{9}}$ is the
translation length along the axis and $\theta_{g}$ is the twist.
Note There is a major difficulty in extending this definition to $\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ since
$\theta_{g}$ is only defined mod $2\pi$ . One possible solution is explained next.

Complex length of a measured lamination. We want to extend the
length function $l_{\nu}$ from $\mathcal{T}(\Sigma)$ to $QF(\Sigma)$ . We have $F(\Sigma)=\mathcal{T}(\Sigma)\mapsto QF(\Sigma)$ .
For $\gamma\in S(\Sigma)$ , choose the branch of $\lambda_{g}=\lambda_{g}(\xi),$ $g=g(\gamma)$ , which is real valued
on $F$ . Then define $\lambda_{c\delta_{\gamma}}=c\lambda_{g(\gamma)}$ . Notice that this choice of a specific branch
gets us round the difficulty of defining $c\theta_{g}$ mod $2\pi$

Consider the family of functions $\lambda_{\mathrm{c}\delta_{\gamma}}$ : $QFarrow \mathbb{C}$ . These are holomorphic
and avoid the negative half plane $\mathbb{C}^{-}=\{z\in \mathbb{C}|{\rm Re} z<0\}$ . Hence they are
a normal family, see for example [Be91, theorem 3.3.5]. So if $\nu_{n}\prec\nu \mathcal{M}\mathcal{L},$

$\nu_{n}\in$

$\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ , then $(\lambda_{\nu_{n}})$ has a convergent subsequence. By Kerckhoff’s theorem,
$(\lambda_{\nu_{n}})$ has a unique limit on $F$ and hence (holomorphic functions!) on $QF$ .
Moreover $\lambda_{\nu}$ is non-constant since it is non-constant on $F$ by Kerckhoff. This
defines complex length.

Note
$\mathrm{A}t\mathcal{L}\mathrm{E}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{y}$

means we can take diagonal limits: $\xi_{n}arrow\xi\in QF$

and $\nu_{n}arrow\nu$ implies $\lambda_{\nu_{n}}(\xi_{n})arrow\lambda_{\nu}(\xi)$ .

3.7 Statement of Main Technical Results
We can now state the main technical results we shall need. From now on,
$G$ is a quasifuchsian once punctured torus group, $p^{p+}$ and $pP^{-}$ the bending
measures on $\partial C^{+}/G$ and $\partial C^{-}/G$ . For $\mu,$

$\nu\in A4\mathcal{L}$ , set

$P_{[\mu],[\nu]}:=\{\xi\in QF|[p\ell^{+}]=[\mu], [p\ell^{-}]=[\nu]\}$ .

(Often we shall be sloppy and write $P_{\mu,\nu}$ for $P_{[\mu],[\nu]}.$ ) Also we write

$P_{\mu}=P_{[\mu]}=$ { $\xi\in QF|[p^{p+}]=[\mu]$ or $[p\ell^{-}]=[\mu]$ }.

The following result generalizes the key lemma 1.1.
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Theorem 3.8 (Real Length Lemma). ( $[\mathrm{K}\mathrm{S}98\mathrm{a}$ , theorem 6.5]) Suppose
that $\xi\in QF,$ $\xi\in P_{\mu}$ . Then $\lambda_{\mu}(\xi)\in \mathbb{R}$.

The idea of the proof is obviously to take limits, but we need care to
ensure that $\lambda_{\mu}(\xi)\in \mathbb{R}$ is impossible on open sets in $QF$. The proof is given
in lecture 5.

Theorem 3.9 (Local Pleating Theorem, Version 1). ([$\mathrm{K}\mathrm{S}98$ , theorem
8.6]) Suppose $\nu_{0}\in \mathcal{M}\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}_{J}}\xi_{0}\in P_{\nu_{0}}\cup F$ . Then there are neighbourhoods
$U$ of $\xi_{0}$ in $QF$ and $W$ of $[\nu_{0}]\in P\mathrm{A}4\mathcal{L}$ such that $[\delta_{\gamma}]\in W\cap P\mathcal{M}\mathcal{L}_{\mathbb{Q}\mathrm{z}}\xi\in U$ ,
$\lambda_{\gamma}(\xi)\in \mathbb{R}$ implies $\xi\in P_{\gamma}\cup F$ .

Theorem 3.10 (Local Pleating $\mathrm{T}\mathrm{h}‘ \mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}$, Version 2). ([$\mathrm{K}\mathrm{S}98$ , theorem
8.1])

Suppose $\nu_{0}\in \mathcal{M}\mathcal{L}_{f}\xi_{0}\in P_{\nu_{0}}\cup F$ . Then there is a neighbourhood $U$ of $\xi_{0}$

in $QF$ such that $\xi\in U,$ $\lambda_{\nu_{0}}(\xi)\in \mathbb{R}$ implies $\xi\in P_{\nu_{0}}\cup F$.

Remarks on theorems 3.9 and 3.10. One should compare theorem 3.9
to the theory of local deformations for cone manifolds. (But notice it applies
equally to irrational laminations and also that we do not need to assume there
is a continuous path of deformations from $\xi_{0}$ to $\xi.$ ) It would be tempting to
combine 3.9 and 3.10 and allow $\nu$ to vary in a neighbourhood of $\nu_{0}$ in 3.10.
However this result would be false in higher genus: take a surface of genus
two and disjoint loops $\gamma$ and $\gamma’$ . Bending away from $F$ in opposite directions
along the two curves, we find $\frac{1}{n}\delta_{\gamma’}+\delta_{\gamma}arrow\delta_{\gamma},$

$\lambda_{\gamma’}(\xi)\mathcal{M}\mathcal{L}\in \mathbb{R}$ but $\xi\not\in P_{\gamma’}$ .

Figure 25:

For the special case of a torus, the result is true since there is a maximum
of one bending angle $($uniquely $\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y})^{\backslash }$. The proof is more complicated
and not needed so omitted here.

Theorem 3.11 (Limit Pleating Theorem). ( $[\mathrm{K}\mathrm{S}98\mathrm{a}$ , theorem 5.1]) Sup-
pose $\mu,$ $\nu\in \mathcal{M}\mathcal{L},$ $[\mu]\neq[\nu]$ . (Equivalently, on the punctured torus, using
unique ergodicity, $|\mu|\neq|\nu|.$) Suppose $\xi_{n}\in QF_{f}\xi_{n}\in P_{\mu,\nu}$ and suppose that
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$l_{\mu}(\xi_{n})arrow c\geq 0,$ $l_{\nu}(\xi_{n})arrow d\geq 0$ . Then $(\xi_{n})$ has a subsequence which con-
verges algebraically to a group $\xi_{\infty}=\langle$$A,$ $B|[A,$ $B]$ is $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{c}\rangle$ . $Moreover_{f}$

$\xi_{\infty}\in QF\Leftrightarrow c>0$ and $d>0$ .

Remarks on 3.11 It follows from the continuity theorem 3.6 that if $\xi_{\infty}\in$

$QF$, then $c>0$ and $d>0$ . If either $c=0$ or $d=0$ then $\xi_{\infty}$ is either a
cusp group ( $\mu$ or $\nu$ rational) or a degenerate group with ending lamination
$|\mu|$ or $|\nu|$ (or both). Notice that it is implicit in this statement that the
convergence to a boundary group along a pleating variety is strong; that
is, the geometric and algebraic limits agree. The gap in the original proof
in [KS98] (see preface) revolved around the fact that differing limits had not
been ruled out.

The proof in the case $\mu,$ $\nu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ can be done by relatively elementary
means by studying the limit behaviour of $F$-peripheral circles in $\Lambda$ . This
is done in [KS93] and [KS94]. The proof for $\mu,$ $\nu\not\in \mathrm{A}4\mathcal{L}_{\mathbb{Q}}$ is much harder;
it is rather similar to the first part of the proof of Thurston’s double limit
theorem (which states that if the complex structures $\omega^{\pm}(\xi_{n})$ of $\Omega^{\pm}/G(\xi_{n})$

converges to distinct points, then an algebraic limit exists). This theorem is
crucial in allowing us to make analytic continuation along the subset of the
real locus of $\lambda_{\mu}\cross\lambda_{\nu}$ on which we know the groups is in $QF$. The proof will
be sketched at the end of next lecture.

Lecture 4: Pleating Coordinates in One Di-
mensional Examples

In this lecture we explain how the results stated at the end of the last lecture allow
us to deduce a complete picture of the pleating varieties when the deformation space
has one complex dimension. We concentrate on the Maskit embedding of the once
punctured torus and also mention the Earle slice. We end the lecture with a proof
of the limit pleating theorem 3.11.

Here is a list of our main technical tools. Theorem 3.11 is proved at the
end of this lecture and the rest will be proved in lecture 5.

Complex length 3.6 Local pleating theorems 3.9, 3.10
Continuity theorems 3.6 Limit pleating theorem 3.11
Real length lemma 3.8 Bending away theorems 2.7 and 2.11.

35

64



From now on, we assume $\mathrm{D}\mathrm{e}\mathrm{f}(G)\subset$ C. For the moment, we don’t need
to restrict to any particular slice. Here are some immediate consequences of
the above results.

Corollary 4.1. Let $\mu\in \mathcal{M}L(\Sigma)$ . Then $P_{\mu}=\{\xi\in \mathrm{D}\mathrm{e}\mathrm{f}(G)|[p^{p}(\partial C)]=[\mu]\}$

is a union of connected components of the real locus $\lambda_{\mu}^{-1}(\mathbb{R})-F$ .

Remarks

$\bullet$ If $\mu\in \mathcal{M}L_{\mathbb{Q}}$ , then the length or trace function $\lambda_{\gamma}$ is defined on all of $\mathbb{C}$

and so $\lambda_{\mu}^{-1}(\mathbb{R})$ is a subset of C. (Of course, $|\mathrm{T}\mathrm{r}\gamma|>2$ inside $\mathrm{D}\mathrm{e}\mathrm{f}(G).$ )
If $\mu\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ then $\lambda_{\mu}$ is only defined on $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ . This is important for
computation.

$\bullet$ In the Maskit slice we need a bit more work to define $\lambda_{\mu}$ , see [KS93].

Corollary 4.2 (Density Theorem). ([KS98, theorem 4]) The pleating
varieties $P_{\mu}$ for $\mu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ are dense in $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ .

Proof. The length function $\lambda_{\mu}$ is non-constant on $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ for any $\mu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ ,
for otherwise by the local and limit pleating theorems 3.10, 3.11, if $P_{\mu}\neq\emptyset$ ,
then $P_{\mu}=\mathrm{D}\mathrm{e}\mathrm{f}(G)$ which is impossible (Why?). Pick $\xi\in P_{\mu}$ , and pick
$\mu_{n}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ with $\mu_{n}\mathcal{M}\mathcal{L}arrow\mu$ . By the real length lemma 3.8, $\lambda_{\mu}(\xi)\in \mathbb{R}$ .
Use Hurwitz’s theorem (properties of normal families) to find $\xi_{n}arrow\xi$ with
$\lambda_{\mu_{n}}(\xi_{n})=\lambda_{\mu}(\xi)\in \mathbb{R}$. By the local pleating theorem 3.9, $\xi_{n}\in P_{\mu_{n}}$ . $\square$

Range of the length function and analytic continuation of pleating
rays We now study the range of the length function $\lambda_{\mu}|_{P_{\mu}}$ . Clearly,
$\lambda_{\mu}(P_{\mu})\subset \mathbb{R}^{+}$ . By theorem 3.10, $\lambda_{\mu}(P_{\mu})$ is open. Hence by 3.11, we can
continue along a pleating ray until either $\lambda_{\mu}arrow 0$ (cusp or ending lamination),
or $\lambda_{\mu}arrow\infty$ , or we reach a Fuchsian group where the bending measure is zero.
In the Maskit embedding, the last case cannot occur.

Corollary 4.3 (Range of length function). [KS98, lemma 9.3] Let $K_{\mu}$

be a connected component of a pleating variety $P_{\mu}$ . Then $\lambda_{\mu}(K_{\mu})=(0, \infty)$

or $(0, d)$ , where $d$ is a critical value of $\lambda_{\mu}$ on F. Furthermore (since the
Kerckhoff critical point is $unique)_{f}$ the degree of the map to $(0, d)$ is one.

Corollary 4.4. If $K_{\mu}$ contains a critical point, then $\lambda_{\mu}(K_{\mu})=(0, \infty)$ .

Proof. Exercise.
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In order to get the full picture of pleating rays in $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ , it remains to:

(a) Prove that $P_{\mu}\neq\emptyset$ .

(b) Determine the number of connected components of $P_{\mu}$ .

(c) Prove “non-singularity”, that is, no component $K_{\mu}$ contains a critical
point of $\lambda_{\mu}$ not on $\mathcal{F}$ .

This will justify the assertions about pleating rays made in lecture 1.

4.1 The Maskit embedding

Now we specialise to the Maskit embedding as in lecture 1. Recall the special
case example 2.1 in lecture 2, in which $[p\ell^{+}]=[\delta_{B}],$ $[p^{p-}]=[\delta_{A}]$ , where $(A, B)$

are the generators of $G\in QF$ . We can extend the analysis to the case in
which $A$ is parabolic. Since such an. element is always on the boundary of the
convex core, $[p\ell^{-}]=[\delta_{A}]$ . Thus all groups in $P_{[B]}=P_{[0/1]}=\{\xi\in \mathrm{D}\mathrm{e}\mathrm{f}(G)|$

$[p\ell^{+}]=[\delta_{B}]$ , Tr $A=\pm 2$ } are a limiting case of the special case examples
Tr $A$ , Tr $B\in \mathbb{R}$ . Recall that in this case the axes of $A$ and $B$ are orthogonal
and the complex F-N twist is a pure bend. (The parabolic $A$ does not have
an axis but it does have a translation direction, so the above makes sense.)
The generator $A$ is called an accidental parabolic since it does not represent
a cusp in $\mathbb{H}^{3}/G$ .

We can compute explicitly: from Appendix 1.3 in lecture 1 we have
Tr $B=-i\xi$ . Hence $\lambda_{B}\in \mathbb{R}$ and $|\mathrm{T}\mathrm{r}B|>2$ iff $\xi\in it,$ $t\in \mathbb{R}$ and $|t|>2$ . In
fact in this normalization we can take ${\rm Im}\xi>0$ , so $\xi=it,$ $t\in(2, \infty)$ gives
the pleating ray $\mathcal{P}_{[0/1]}$ . The point $2i$ is the cusp group at which the loop
corresponding to $B$ is pinched.

More generally, $(A, \mathrm{A}^{-n}B)$ form a generator pair and the same reasoning
applies to $\delta_{[A^{-n}B]}=\delta_{[n/1]}$ . We compute $\mathrm{T}\mathrm{r}(A^{-n}B)=-i(\xi-2n)$ . Thus $P_{n}$ is
the line ${\rm Re}\xi=2n,$ ${\rm Im}\xi>2$ , and $\xi=2n+2i$ is the cusp. We call these lines
integral pleating rays; they are shown in figure 26.

Now we turn to non-integral $p/q$ . We know from Appendix 1.3 that the
region ${\rm Im}\xi>2$ is contained in $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ . It follows from easily from, the
Continuity theorem 3.6 and the above discussion about integral rays, that
$P_{\mu}\neq\emptyset$ for $\mu\in \mathbb{R}=P\mathcal{M}\mathcal{L}-\{\infty\}$ . (Since $\infty=1/0$ corresponds to the
lamination $\delta_{[A]}$ , this cannot be the pleating locus $[p^{p+}]$ . Why?)

Exercise Show $P_{\mu}\neq\emptyset$ for $\mu\in \mathbb{R}$ .
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Figure 26:

We also have the formula Tr $W_{p/q}=(-i)^{q}(\xi-2p/q)^{q}+O(\xi^{q-2})$ , from
which it follows there is a unique branch of $\lambda_{p/q}^{-1}(\mathbb{R})$ on which $\lambda_{p/q}(\xi)arrow\infty$

and which does not intersect $P_{n}$ for any $n\in \mathbb{Z}$ . (Here $q>1$ ). It is now an easy
exercise to conclude from corollary 4.3 that $P_{p/q}$ has no critical points and
only one connected component which is asymptotic to the line ${\rm Re}\xi=2p/q$

as $|\xi|arrow\infty$ .
Challenge Make a limiting argument to show the same is true of the ir-

$\overline{\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}}$rays $P_{\mu},$ $\mu\not\in \mathbb{Q}$. (The argument in [KS93] is wrong; see lecture
6.)

4.2 The Earle slice
This example is investigated in $[\mathrm{K}\mathrm{o}\mathrm{S}98]$ . Recall from lecture 1 that it is
the slice of $QF$ for which $\Omega^{+}$ and $\Omega^{-}$ are conformally isomorphic under the
involution induced by $Aarrow B,$ $Barrow A$ . An argurnent using symmetry shows
that, if $\mu,$

$\nu\in \mathcal{M}\mathcal{L}$ , then $P_{\mu,\nu}=\emptyset$ unless $\nu=1/\mu$ . In particular, by a variant
of 2.11, we find that $P_{\mu,1/\mu}\neq\emptyset$ unless $\mu=1/\mu$ , i.e. $\mu\neq\pm 1$ , in which case
clearly $P_{\mu,1/\mu}=\emptyset$ . In fact, one needs to show that the length function $\lambda_{\mu}$ has
a unique critical point on the Earle line $\mathrm{D}\mathrm{e}\mathrm{f}(G)\cap F$; i.e. the set of Fuchsian
groups which have rhombic symmetry. Existence is easy; uniqueness follows
from an argument about boundaries of Riemann maps. We know we have a
biholomorphic map $\psi$ : $\mathrm{D}=\mathcal{T}(\Sigma)arrow \mathrm{D}\mathrm{e}\mathrm{f}(G)$ , the Earle slice. We consider
different branches of $P_{p/q}$ going to the same cusp in $\mathrm{D}\mathrm{e}\mathrm{f}(G)$ and show they
define distinct prime ends of $\psi$ . Thus the inverse images limit on distinct
points on $\partial \mathrm{D}$, see figure 27. But on both branches the trace, and hence the
extremal length, of the $p/q$-curve on $\Sigma$ goes to zero. From what we know
about extremal length in $\mathrm{D}$, this is impossible. This allows us to rule out
critical points and multiple components in $P_{p/q,q/p}$ . Figure VIII is a drawing
of the Earle slice.

Variants of the same methods apply to the Riley slice [KS94] and Koebe
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Figure VIII. The Earle Slice. Graphics by Peter Liepa

Figure 27:

slice [Pa99]. These examples differ from the cases we have studied, since
$\mathbb{H}^{3}/G$ is a handlebody and $\pi_{1}(\partial C)$ is not injective. Further details appear in
$[\mathrm{K}\mathrm{o}\mathrm{S}98\mathrm{a}]$

4.3 The Limit Pleating Theorem
For the remainder of this lecture, we discuss the proof of the limit pleating
theorem, [$\mathrm{K}\mathrm{S}98\mathrm{a}$ , theorem 5.1].

As usual, $\Sigma$ is a once punctured torus. Suppose $\mu,$
$\nu\in \mathcal{M}\mathcal{L}(\Sigma)$ with

$[\mu]\neq[\nu]$ . Suppose also $\xi_{n}\in P_{\mu,\nu}$ and that $\lambda_{\mu}(\xi_{n})arrow c\geq 0,$ $\lambda_{\nu}(\xi_{n})arrow d\geq 0$ .
We want to show that (up to a subsequence of $\xi_{n}$ ) the groups $G_{n}=G(\xi_{n})$

have an algebraic limit $G_{\infty}$ .
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We use a fundamental estimate of Thurston about lengths of curves on
pleated surfaces. This estimate is also crucial in the proof of the double limit
theorem [Th86]. We state it in our special case only.

Theorem 4.5 (Efficiency of Pleated surfaces). ( $[\mathrm{T}\mathrm{h}86$ , theorem 3.2])
Let $L$ be the ideal triangulation of $\Sigma$ whose leaves are the three geodesics from
the cusp of $\Sigma$ to itself in the homotopy classes of $A,$ $B_{f}$ and AB respectively.
Let $\sigma$ : $\mathrm{D}arrow \mathbb{P}$ be a pleated surface map realizing $L$ and let $S=\sigma(\mathrm{D})/G$ .
Then there exists $C>0$ , depending only on $L_{f}$ such that $l_{\mu}(S)\leq l_{\mu}(M)..+$

$Ci(\mu, L)$ for all $\mu\in \mathcal{M}\mathcal{L}$ and all 3-manifolds $M=\mathbb{H}^{3}/G$ with $G\in Q\mathcal{F}$ .
Here $i(\mu, L)$ is the intersection number of $\mu$ with $L$ and $l_{\mu}(S)$ is the length

of $\mu$ on the pleated surface $S$ . By definition, $l_{\mu}(M)$ is the length of $\mu$ in the
3-manifold $M$ . If $\mu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ the meaning is clear; for general $\mu$ , Thurston
and Bonahon show how to extend this definition by continuity to $\mathcal{M}L$ . In
our case, we can take $l_{\mu}(M)={\rm Re}\lambda_{\mu}(M)$ , where $\lambda_{\mu}$ is the complex length
of $\mu$ in $M$ . The proof of this theorem is in [Th86] $)$ a version for Schottky
groups is given in [Ca93].

We deduce the existence of an algebraic limit as follows. We have a
sequence of manifolds $M_{n}=M_{n}(\xi_{n})=\mathbb{P}/G(\xi_{n})$ with $\xi_{n}\in P_{\mu,\nu}$ . Let $S_{n}$ be
the pleated surface realizing $L$ in $M_{n}$ . We find

$l_{\mu}(S_{n})\leq l_{\mu}(M_{n})+Ci(\mu, L)$ and $l_{\nu}(S_{n})\leq l_{\nu}(M_{n})+Ci(\nu, L)$ .

Now, since $\mu,$ $\nu$ are in $\partial C$ , we have $l_{\mu}(M_{n})=\lambda_{\mu}(M_{n})arrow c$ and $l_{\nu}(M_{n})=$

$\lambda_{\nu}(M_{n})arrow d$ . Thus $(l_{\mu}(S_{n}))$ and $(l_{\nu}(S_{n}))$ are bounded sequences. By [Th86,
corollary 2.3] we conclude that the surfaces $S_{n}$ lie in a bounded region of
$\mathcal{T}(\Sigma)$ , and hence have a convergent subsequence. Along this subsequence,
the curves $\alpha,\beta$ representing the generators $A,$ $B$ of $\Sigma$ have definite bounded
lengths $l_{\alpha}(S),$ $l_{\beta}(S)$ . Now $l_{\alpha}(S)\geq l_{A}(M)$ and $l_{\beta}(S)\geq l_{B}(M)$ for any $M=$
$\mathbb{P}/G$ ; hence ${\rm Re}\lambda_{A}(\xi_{n})$ and ${\rm Re}\lambda_{B}(\xi_{n})$ are bounded and so also $|\mathrm{T}\mathrm{r}A(\xi_{n})|$

and $|\mathrm{T}\mathrm{r}B(\xi_{n})|$ . (Use Tr $A=2\cosh(\lambda_{A}/2)!$ ) Thus Tr $A(\xi_{n})$ and Tr $B(\xi_{n})$ have
convergent subsequences. In a once punctured torus group these determine
Tr AB $(\xi_{n})$ and hence $\xi_{n_{\Gamma}}$ has an algebraic limit as required.

It remains only to prove the last statement of the theorem:

$\xi_{\infty}\in QF\Leftrightarrow c>0$ and $d>0$ .

This is where the proof differs from that given in [KS98]. We need to use
a strong result of Thurston’s about joint continuity of the length function
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$l_{\mu}(\mathrm{A}/f)$ . Let $AH(\Sigma)$ denote the set of Kleinian once punctured torus groups.
If $\mu$ is not realised in a 3-manifold $M$ , then set $l_{\mu}(M)=0$ .

Theorem 4.6 (Continuity of the Length Function). The function $L$ :
$AH(\Sigma)\cross \mathcal{M}\mathcal{L}arrow \mathbb{R},$ $L(H, \mu)=l_{\mu}(\mathbb{H}^{3}/H)$ is continuous.

This result was asserted by Thurston in [Th86]; proofs have recently
appeared in [$\mathrm{O}\mathrm{h}98$ , lemma 4.2] and [Br98, theorem 5.1].

It follows immediately from this theorem that the limits $\{l_{\mu}(\xi_{n})\},$ $\{l_{\nu}(\xi_{n})\}$

exist and converge to $\{l_{\mu}(G_{\infty})\},$ $\{l_{\nu}(G_{\infty})\}$ . Clearly, if the limit group $\xi_{\infty}$ is
in $QF$, then $c>0$ and $d>0$ . By definition, if $\mu$ is not realised in $M$ , then
$l_{\mu}(M)=0$ . Thus it is enough to show that if $\mu$ and $\nu$ are both realised in
$M_{\infty}$ , and if $c>0$ and $d>0$ , then $\xi_{\infty}\in QF$ .

The main point is to show that if $c,$ $d>0$ , then the pleated surfaces
$\partial C_{n}^{\pm}$ converge geometrically to pleated surfaces $\Pi^{\pm}$ , each of whose quotients
$\Pi^{\pm}/G_{\infty}$ is homeomorphic to $\Sigma$ . Once we prove this, the remainder of the
proof is as follows. From the geometric convergence, $\Pi^{\pm}$ are embedded and
each bounds a convex half space. We deduce that $\Pi^{\pm}$ are components of
$\partial C(G_{\infty})$ and therefore face simply connected $G_{\infty}$ invariant components of
$\Omega(G_{\infty})$ . It is well known that there can be at most two such components and
we conclude that $G_{\infty}\in QF$ .

Geometric convergence is proved using compactness of pleated surfaces
following [CEG87, \S 5.2]. There are two essential points to check: first, that
the surfaces $\partial C_{n}^{\pm}=\partial C^{\pm}(\xi_{n})$ all meet a.fixed compact neighbourhood in
$\mathbb{P}$ and second, that away from a neighbourhood of the cusp, the surfaces
$\partial C_{n}^{\pm}/G_{n}$ have bounded diameter. (The latter implies that $G_{\infty}$ doesn’t contain
any accidental parabolics which is important for strong convergence.)

First let’s show that the surfaces $\partial C_{n}^{\pm}$ all meet a fixed compact neigh-
bourhood in $\mathbb{H}^{3}$ . With $S_{n}$ as above, let $D_{n}^{+}= \inf_{x\in\partial C_{n}^{+}}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x, S_{n})$ . We shall
show that if $\{D_{n}^{+}\}$ is unbounded, then $l_{\mu}(\xi_{n})=l_{\mu}(M_{n})arrow 0$ .

If
$(D_{n}^{+})\mathrm{i}\mathrm{s}\mathrm{u}\mathrm{n}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}\mathcal{M}L$ ’ then pick $\gamma_{k}\in S$ with $[\gamma_{k}]^{P\mathcal{M}\mathcal{L}}arrow[\mu]$ and normalize

so that $c_{k}\gamma_{k}arrow\mu$ . Without loss of generality, assume $\mu\in \mathcal{M}\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ . (The
case $\mu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ is easier.) Let $\gamma_{k}^{+}(n)$ be the representative of $\gamma_{k}$ on $\partial C_{n}^{+}$ . By

the convergence lemma 3.1, for fixed $n,$
$\gamma_{k}^{+}(n)arrow \mathcal{G}\mathcal{L}|\mu^{+}(n)|$ on $\partial C_{n}^{+}$ and hence

$\gamma_{k}^{*}(n)arrow|\mu^{*}(n)|$ where $\gamma_{k}^{*}$ and $|\mu^{*}|$ are the geodesics in $\mathbb{P}$ corresponding
to $\gamma_{k}(n)$ and $|\mu(n)|$ . Note $|\mu^{*}|=|\mu|$ since $\xi_{n}\in P_{\mu}$ . Now $l_{\gamma_{k}^{+}(n)}(\partial C_{n}^{+})\leq$

$e^{-D_{n}^{+}}l_{\gamma_{k}}(S_{n})$ . By the above, $\gamma_{k}^{*}$ and $\gamma_{k}^{+}$ are geometrically close for large $n$ .
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Figure 28:

Since orthogonal projection in $\mathbb{H}^{3}$ exponentially shrinks length, we deduce
$l_{\mu}(\partial C_{n}^{+})\leq e^{-D_{n}^{+}}l_{\mu}(S_{n})$ which forces $l_{\mu}(\partial C_{n}^{+})=l_{\mu}(NI_{n})arrow 0$.

To prove the second point, let $\epsilon$ be the Margulis constant and let $\Sigma_{n}^{\epsilon}$ de-
note the surface $\partial C_{n}^{+}/G_{n}$ with an $\epsilon$-thin neighbourhood of the cusp removed.
We shall show that the surfaces $\Sigma_{n}^{\epsilon}$ have uniformly bounded diameter by
showing there is a uniform lower bound to the lengths of all curves on $\Sigma_{n}^{\epsilon}$ .
This involves two applications of the fundamental length estimate which
can be taken as the defining property of the Thurston

$\mathcal{M}\mathcal{L}\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$

[Th86]: if
$f_{n}\in Farrow[\lambda]\in P\mathcal{M}\mathcal{L}$ , then there are laminations $\lambda_{n}arrow\lambda$ and constants
$c_{n}arrow\infty$ such that

$\frac{i(\eta,c_{n}\lambda_{n})}{l_{\eta}(f_{n})}arrow 1$ ,

for any lamination $\eta$ with $i(\eta, \lambda)\neq 0$ .
Let $F_{n}^{+}$ be the flat structure of $\partial C_{n}^{+}/G_{n}$ . If the $F_{n}^{+}$ lie in a compact set

in Teichm\"uller space then they lie in a compact set in moduli space and the
result follows from Mumford’s lemma [CEG87]. If not, $F_{n}^{+}arrow[\lambda]$ in the
Thurston boundary $P\mathcal{M}\mathcal{L}$ . If $\lambda\neq\mu$ then by the fundamental estimate there
are laminations $\lambda_{n}arrow\lambda$ and constants $c_{n}arrow\infty$ such that

$\frac{i(\mu,c_{n}\lambda_{n})}{l_{\mu}(\partial C^{+}(\xi_{n})/G_{n})}arrow 1$ ,

forcing $l_{\mu}(\partial C_{n}^{+}/G_{n})=l_{\mu}(M_{n})arrow\infty$ . Likewise if there is no uniform lower
bound on the lengths of closed geodesics on $\Sigma_{n}^{\epsilon}$ , we find a sequence $\gamma_{n}\in S$

with $l_{\gamma_{\mathfrak{n}}}(\Sigma_{n}^{\epsilon})arrow 0$ and $\gamma_{n}arrow\eta$ in $P\mathcal{M}\mathcal{L}$ . As before, we conclude $\eta=\mu$ .
Now there is always a sequence $d_{n}arrow 0$ such that $d_{n}\delta_{\gamma_{n}}arrow\mu$ in $\mathcal{M}\mathcal{L}$ .

(Why?) Using $l_{\gamma_{n}}(\xi_{n})\leq l_{\gamma_{n}}(\Sigma_{n}^{\epsilon})$ , we have $l_{d_{n},\gamma_{n}}(\xi_{n})arrow 0$ which, together with
continuity of the length function would force $c=0$ .
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This shows that the non-cuspidal parts of the pleated surfaces $\partial C_{n}^{+}/G_{n}$

meet a uniformly bounded neighbourhood of $S_{n}$ and have uniformly bounded
diameter. To apply compactness of pleated surfaces, we also need to know
that there is a uniform lower bound on the injectivity radius of $\mathbb{H}^{3}/G_{n}$ in
some compact neighbourhood of the non-cuspidal part of $S_{n}$ . If not, there
is a short geodesic in $\mathbb{H}^{3}/G_{n}$ meeting this neighbourhood. This geodesic is
contained in a very large Margulis tube, which therefore entirely contains $\Sigma_{n}^{\epsilon}$ .
In particular, loops corresponding to two distinct non-commuting elements
of $G_{n}$ lie inside this Margulis tube, which is impossible.

Since $S_{n}arrow S_{\infty}$ in the geometric topology, we can now apply the com-
pactness of pleated surfaces as in [CEG87, 5.2.2, 5.2.11].

Lecture 5: The Local Pleating Theorem
We shall prove the real length lemma 3.8 and the local pleating theorems 3.9, 3.10.
From now $on_{f}\Sigma$ and $Q\mathcal{F}$ always refer to $a$ once punctured torus.

We begin with the real length lemma.

Proof of3.8.

Proof. 1 The idea of the proof is the following. Suppose that we could show
that arbitrarily near $\xi_{0}$ there are points $\xi^{l}\in$ QF with $\xi’\not\in P_{\mu}^{\pm}$ . Let $t-t\sigma(t)$

be a path in $QF$ from $\xi’$ to $\xi_{0}$ . Using continuity of $\xi-*[p\ell^{+}(\xi)]$ , and the fact
that $P\mathcal{M}\mathcal{L}$ is one dimensional, we conclude there are points $\xi_{n}\in Q\mathcal{F}$ with
$\xi_{n}arrow\xi_{0}$ and $\xi_{n}\in P_{\mu_{n}}^{\pm},$ $\mu_{n}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ . Thus by the key lemma 1.1, $\lambda_{\mu_{n}}(\xi_{n})\in \mathbb{R}$

and by continuity of $pl$ again and equicontinuity of $\lambda_{\mu_{n}},$ $\lambda_{\mu_{\hslash}}(\xi_{n})arrow\lambda_{\mu}(\xi_{0})$ .
Thus we need only show that there are points $\xi’$ arbitrarily near $\xi_{0}$ with

$\xi’\not\in P_{\mu}^{+}$ . Now the map $QF-\mathcal{F}arrow \mathcal{M}\mathcal{L}\cross F$ that takes $q\in QF-\mathcal{F}$

to $(p\ell^{+}, F^{+})$ , where $F^{+}$ is the flat structure of $\partial C^{+}/G$ , is continuous by
theorem 3.6. The map is also injective because the hyperbolic structure
$F^{+}$ together with the bending data $p\ell^{+}$ completely determine the group $G$ .
(See the discussion about irrational quakebends in lecture 6 below.) If $[p\ell^{+}]$

were constant on an open neighbourhood of $\xi_{0}$ , then a four dimensional

1The original version of these notes contained a more complicated proof. The original
proof, which may well still be of interest, may be found at the end of this lecture. The
same longer proof appears in the original preprint [KS98, theorem 6.9].
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neighbourhood would have a three dimensional image, violating invariance
of domain. $\square$

Most of the rest of this lecture is about the proof of the local pleating
theorem version 1, 3.9. Recall:

Local Pleating Theorem Version 1 Suppose $\nu_{0}\in \mathcal{M}\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}\mathrm{z}}\xi_{0}\in$

$P_{\nu_{0}}\cup F$ . Then there are neighbourhoods $U\ni\xi_{0}$ and $\nu V\ni[\nu_{0}]$ such that
$[\delta_{\gamma}]\in W\cap P\mathcal{M}\mathcal{L}_{\mathbb{Q}},$ $\xi\in U$, and $\lambda_{\gamma}(\xi)\in \mathbb{R}$ implies $\xi\in P_{\nu_{0}}\cup F$ .

We begin by showing that version 2, 3.10, is an easy corollary.

Proof of 3.10 from 3.9 Suppose $\nu_{0}\in \mathcal{M}\mathcal{L},$ $\xi_{0}\in P_{\nu_{0}}\cup F$. We have to
show that near $\xi_{0}$ in $QF$, the condition $\lambda_{\nu_{0}}(\xi)\in \mathbb{R}$ implies $\xi\in P_{\nu_{0}}\cup F$. We
may as well assume that $\nu_{0}\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ , otherwise this can be proved like the
bending away theorem 2.7, see especially Remark (b) following that proof.

Pick $\nu_{n}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}},$ $\nu_{n}arrow\nu_{0}$ . Then $\lambda_{\nu_{n}}arrow\lambda_{\nu_{0}}$ (uniformly on compact sets
in $Q\mathcal{F}$), so by Hurwitz’s theorem, we can find $\xi_{n}\in QF$ with $\xi_{n}arrow\xi$ and
$\lambda_{\nu_{n}}(\xi_{n})\in \mathbb{R}$ (in fact with $\lambda_{\nu_{n}}(\xi_{n})=\lambda_{\nu_{0}}(\xi)$). Since $\xi_{0}\in P_{\nu_{0}}$ , we have $\xi_{n}\in P_{\nu_{n}}$

by the local pleating theorem 3.9, and hence
$p \ell(\xi)=\mathrm{l}\mathrm{i}\mathrm{m}p\ell(\xi_{n})=\lim(\nu_{n})=\square$

$\nu_{0}$ as required.

5.1 The condition $\lambda_{\mu}(\xi)\in \mathbb{R}$ .
Before we begin the proof of theorem 3.9, it is worth taking some time to get
a better understanding of the significance of the condition $\lambda_{\gamma}(\xi)\in \mathbb{R}$. We
begin with rational laminations.

Recall from lecture 2 the construction of a developed surface $\phi_{\tau}^{\gamma}(\mathrm{D})$ from
the complex Fenchel-Nielsen coordinates $(\lambda_{\gamma}, \tau_{\gamma})$ . Clearly, $\phi_{\tau}^{\gamma}$ : $\mathrm{D}arrow \mathbb{P}$ is
a pleated surface as explained in 3.4. It is also clear that its bending locus
$B(\phi_{\tau}^{\gamma})$ contains $\gamma$ , so that $\phi_{\tau}^{\gamma}$ realizes $\gamma$ ( $\mathrm{c}.\mathrm{f}$. theorem 3.4). In fact, it is easy
to see that in this case, $B(\phi_{\tau}^{\gamma})=\gamma$ , that is, the bending lamination of the
pleated surface realizing $\gamma$ is exactly $\gamma$ . This is very special situation, and is
equivalent to the condition $\lambda_{\gamma}(\xi).\in \mathbb{R}$. To understand this, let us consider
$\hat{\gamma}\in \mathcal{G}L$ , a general geometric lamination containing $\gamma$ . It is not hard to see
that $\hat{\gamma}$ can contain:

(a) two leaves from the cusp spiralling into $\gamma$ from opposite sides; these
two leaves may each spiral in either direction.
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(b) a leaf from the cusp to itself in the homotopy class (on the torus with
puncture filled in) of $\gamma$ .

It is not possible to add any further leaves. Figure 29 (i) shows the geodesic

Figure 29:

$\gamma$ and the two leaves spiralling into $\gamma$ from each side. Figure 29 (ii) and (iii)
shows the lifts of (i) to $\mathbb{H}^{3}$ , after $\Sigma$ is cut along $\gamma$ and these two leaves. In
these pictures, $g=g(\gamma)$ is the covering transformation whose axis projects to
$\gamma$ and $g^{\pm}$ are its fixed points. The points $C$ and $g(C)$ project to the cusp on $\Sigma$

and the element $h\in G$ corresponds to a curve which cuts $\gamma$ once. The shaded
areas in (ii) and (iii) project to $\Sigma-\gamma$ and the fan of ideal quadrilaterals with
one vertex at $g^{-}$ , respectively $g^{+}$

} are its images under $g$ . One can see the
geodesics joining $g(C)$ to $g^{-}$ and $C$ to $g^{+}$ spiralling into $\mathrm{A}\mathrm{x}(g)$ .

Now notice ( $\mathrm{c}.\mathrm{f}$. lecture 2, complex F-N coordinates):
$B(\phi_{\tau}^{\gamma})=\gamma$ iff all of the triangles in (ii) and (iii) are $coplanar_{f}$ which happens
iff the points $C,$ $g^{-},$ $h^{-1}(g^{-}),$ $g(C)$ are concyctic, which happens in turn iff
$\lambda_{\mathit{9}}=\lambda_{\gamma}\in \mathbb{R}$ .

The difference between the two cases is shown in figure 30: if $\lambda_{\gamma}\in \mathbb{R}$ then
the developed surface in $\mathbb{H}^{3}/G$ is flat near $\gamma$ while if $\lambda_{\gamma}\not\in \mathbb{R}$, then along the
lines of the spiral we see a bend.

In figure 31 we see the spiralling from both sides. It is clear from this
picture that unless $\lambda_{\gamma}\in \mathbb{R}$, the surface $\phi_{\tau}^{\gamma}(\mathrm{D})$ is never convex and probably
not embedded either, so cannot possibly be a component of $\partial C$ .
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Figure 30:

Not convex Not embedded

Figure 31:
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The last part of figure 31 shows that in general, there is also a bend along
the geodesics which run from the cusp to itself (from $C$ to $g(C)$ in figure 29).
(But note the total bend round the cusp is $0$ , so the bending must be in
opposit.e directions along the two lines.)

5.2 Ensuring $\phi_{\tau}^{\gamma}(\mathrm{D})$ is embedded and convex
The main point in proving the local pleating theorem 3.9 is to show that
the surface $\phi_{\tau}^{\gamma}(\mathrm{D})$ is embedded and convex. (Convexity here means that it
cuts off a convex half space in $\mathbb{H}^{3}.$ ) In this situation, it is not hard to show
that $\phi_{\tau}^{\gamma}$ extends to a continous map $\partial \mathrm{D}arrow\partial \mathbb{H}^{3}$ whose image is exactly the
limit set $\Lambda(G)$ , and to deduce that $\phi_{\tau}^{\gamma}(\mathrm{D})$ is a component of $\partial C$ . For details,
see [ $\mathrm{K}\mathrm{S}98$ , props. 6.2 and 7.5].

From the bad pictures in figure 31, it should be clear that a necessary
condition is $\lambda_{\gamma}(\xi)\in \mathbb{R}$. In the torus case, this condition ensures that there
are no other bending lines besides the axis of $\gamma$ itself. Convexity of the
half space it cuts off follows automatically. (In general one needs the added
condition of convexity: this is one of the difficulties in extending to higher
genus.)

Thus $\phi_{\tau}^{\gamma}(\mathrm{D})$ will be a component of $\partial C$ exactly when it is embedded. It
will fail to be embedded if the bending angle is too large compared to the
distance between bending lines. (A bent Euclidian surface of infinite extent
can never be embedded.) The possibility of having an embedded pleated
surface exists only because of the property of hyperbolic space expressed in
the cone lemma 2.9.

The remaining idea in proving theorem 3.9, is that being embedded is
obviously a local property; if $\phi_{\tau}^{\gamma}(\mathrm{D})$ is embedded, so is $\phi_{\tau}^{\gamma’},(\mathrm{D})$ for nearby $\tau’$

and $\gamma’$ , see 2.8 and especially remark (b). Our strategy is to show that under
the hypotheses of the theorem, the developed surface $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ is, in a suitable
sense, near to the convex hull boundary $\partial C^{+}(\xi_{0})$ .

In general, a component, say $\partial C^{+}$ , of $\partial C$ is determined by:

$\bullet$ its intrinsic hyperbolic structure, the flat structure $F^{+}(\xi)$ and

$\bullet$ the bending measure $p\ell^{+}(\xi)$ .

(In the general case the quakebend construction, see lecture 6, defines a
pleated surface map from $(\mathrm{D}, F^{+}(\xi))arrow \mathbb{P}$ with image $\partial C^{+}(\xi)$ . This is
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done by quakebending the flat structure $F^{+}(\xi)$ along the lamination $|p^{p+}(\xi)|$

by an amount $ip\ell^{+}(\xi).)$

The developed surface $\phi_{\tau}^{\gamma}(\mathrm{D})$ also carries naturally

$\bullet$ an intrinsic hyperbolic measure
$\bullet$ a “bending measure” $b=b_{\tau}^{\gamma}$ .

To define the bending measure, let $T$ be a transversal to $\gamma$ and let $b(T)=$
$i(\gamma, T)\theta$ , where $i(\gamma, T)$ is the intersection number of $T$ with $\gamma$ and $\theta$ is the
bending angle ${\rm Im}\tau$ along $\gamma$ . The flat pieces in $\phi_{\tau}^{\gamma}(\mathrm{D})-\gamma$ define “pseudo-
support planes” to $\phi_{\tau}^{\gamma}(\mathrm{D})$ in an obvious way. The developed surface $\phi_{\tau}^{\gamma}(\mathrm{D})(\xi)$

will be near $\partial C^{+}(\xi’),$ $\xi,$ $\xi’\in QF$ , iff the support planes of $\partial C^{+}(\xi’)$ and the
“pseudo-support planes” of $\phi_{\tau}^{\gamma}(\mathrm{D})(\xi)$ are close in the geometric topology.
This will be enough to ensure $\phi_{\tau}^{\gamma}(\mathrm{D})(\xi)$ is embedded and hence equal to
$\partial C^{+}(\xi)$ . More precisely:

Theorem 5.1 (Local Variation 1). ([KS98] prop. 8.3) Suppose that $\nu_{0}\in$

$\mathrm{A}4\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ and $\xi_{0}\in P_{\nu_{0}}^{+}\cup F$ . Let $\nu\in \mathcal{M}\mathcal{L}_{\mathbb{Q}},$ $\nu$ near $\nu_{0}$ in $\mathcal{M}\mathcal{L}$ and suppose
$\lambda_{\nu}(\xi)\in \mathbb{R},$ $\xi$ near $\xi_{0}$ in $Q\mathcal{F}$ . Then $\phi_{\tau(\xi)}^{|\nu|}(\mathrm{D})$ has intrinsic hyperbolic structure
and ibending $measure^{f}$’ near those of $\partial C^{+}(\xi_{0})$ .

Here $\phi_{\tau(\xi)}^{|\nu|}(\mathrm{D})$ denotes the developed surface obtained from the complex F-
$\mathrm{N}$ construction made for the group $(\lambda_{|\nu|}(\xi), \tau_{|\nu|}(\xi))$ where $\lambda_{|\nu|}(\xi)$ is the length
of $|\nu|$ at $\xi$ and $T_{|\nu|(\xi)}$ the twist along $|\nu|$ .

Proof. By the convergence lemma 3.1, $|\nu|$ is close to $|\nu_{0}|$ in the geometric
topology on $\mathcal{G}\mathcal{L}$ . (This is where we use $\nu_{0}\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}.$ ) This forces the support’
planes of $\partial C^{+}(\xi_{0})$ and the pseudo-support planes of $\phi_{\tau}^{|\nu|}(\xi)$ to be close. The
result now follows by a construction similar to the proof of the continuity
theorem 3.6, see [KS98, appendix 12.2]. $\square$

Theorem 5.2 (Local Variation 2). ([KS98] theorem 8.6) Suppose that
$\nu\in \mathcal{M}\mathcal{L}-\mathcal{M}\mathcal{L}_{\mathbb{Q}}$ and $\xi_{0}\in P_{\nu}^{+}$ . Suppose that $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ is a developed surface
such that

(i) $\gamma$ is close to $|\nu|$ in $\mathcal{G}\mathcal{L}$

(ii) the flat structures of $\partial C^{+}(\xi_{0})$ and $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ are close in $F$

(iii) the bending measures of $\partial C^{+}(\xi_{0})$ and $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ are close in $\mathcal{M}\mathcal{L}$ .
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Then $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ is convex and embedded and hence equal to $\partial C^{+}(\xi)$ .

Proof. If $\gamma$ is close to $|\nu|$ in $\mathcal{G}\mathcal{L}$ then the bending lines and hence the support
planes of $\phi_{\tau(\xi)}^{\gamma}(\mathrm{D})$ and $\partial C^{+}(\xi_{0})$ are close. This requires two points: first, $|\gamma|$

is close to $|\nu|$ in $\mathcal{G}\mathcal{L}$ , and second, the end points of geodesics in $\Lambda(\xi)$ are
close to those in $\Lambda(\xi_{0})$ . The second assertion follows from the $\lambda$-lemma from
holomorphic dynamics, see 5.3 below. Now a surface cut out by “pseudo-
support planes” which are geometrically close to one which is embedded is
still embedded, which completes the proof. Notice that in the torus case
convexity of the half space cut out is automatic; in higher genus this would
follow from the above proof. $\square$

The proof of theorem 3.9 is now an easy corollary of 5.1 and 5.2.

5.3 Appendix: Alternative proof of 3.8.

The original proof of the real length lemma involved introducing another
function $\chi_{\mu}$ : $QFarrow \mathbb{C}$. This function was the cross-ratio of a certain four
points in $\Lambda(G(\xi))$ , chosen so as to be concyclic whenever $\xi\in P_{\mu}^{+}$ . Thus
$\chi_{\mu}(\xi’)\not\in \mathbb{R}\Rightarrow\xi’\not\in P_{\mu}^{+}$ . The function $\chi_{\mu}$ is holomorphic and non-constant
on $QF$ , which, together with the first paragraph of the proof given above,
proves theorem 3.8.

The four points are chosen as follows. Let $\Sigma$ be a hyperbolic once punc-
tured torus, and suppose $\mu\in \mathcal{M}\mathcal{L}-\mathrm{A}4\mathcal{L}_{\mathbb{Q}}$ . (If $\mu\in \mathbb{Q}$ we have nothing
to prove.) Such a lamination $|\mu|$ has two boundary leaves which together
bound a punctured bigon ([Th79]; recall that no leaf of measured geodesic
lamination can approach the cusp).

Cutting the bigon along a geodesic which runs from the cusp into one
vertex of the bigon, we obtain an ideal quadrilateral. The point is, that in
the special case in which $\xi\in P_{\mu}^{+}$ and $\Sigma=\partial C^{+}/G(\xi)$ , the punctured bigon
lies in one hyperbolic plane so that the vertices of the ideal quadrilateral
are concyclic. Using the $\lambda$-lemma, it is possible to choose the limit points
$z_{1},$ $\ldots$ , $z_{4}$ as shown in the diagram so as to vary holomorphically with $\xi$ . (Let
$F(\xi)\subset\Lambda(\xi)$ denote the fixed points of hyperbolic elements of $G(\xi),$ $\xi\in QF$ .
Let $\xi_{0}$ be a fixed group. We have a map

$F(\xi_{0})\cross Q\mathcal{F}arrow \mathbb{C}$ , $(f, \xi)arrow \mathrm{t}\mathrm{h}\mathrm{e}$ fixed point of $f$ at $\xi$
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Figure 32:

which is holomorphic in $\xi$ for fixed $f$ and injective for fixed $\xi$ . It there-
fore extends to a holomorphic map $\Lambda(\xi_{0})\cross QFarrow \mathbb{C}.)$ We set $\chi_{\mu}(\xi)=$

$[z_{1}(\xi), \ldots, z_{4}(\xi)].)$

It remains only to show that $\chi_{\mu}$ is non-constant. One way to do this is to
use a shearing deformation as defined in [Bo96]. To do this, join $C$ to $B$ in
figure 32 by a geodesic and shear the right hand triangle $CA_{2}B$ relative to
the left one $CA_{1}B$ which is held fixed. This is exactly equivalent to moving
the point $A_{2}$ while fixing $C,$ $A_{1},$ $B$ . Such a deformation exists as long as we
make sure the holonomy round the puncture remains parabolic. This can be
done by making a compensating shear along $CA_{2}$ .

Lecture 6: Quasimchsian space for Once
Punctured Tori

In this final lecture we discuss the complete description of $QF$ .

Recall our notation: $G\subset \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ is a quasifuchsian punctured torus
group, $\mathbb{P}/G=\Sigma\cross(0,1))$ where $\Sigma$ is a once punctured torus, and $\partial C^{\pm}$ are
the two components of the convex hull boundary facing the two components
$\Omega^{\pm}$ of the regular set $\Omega(G)$ . We denote by $pP^{\pm}(G)\in \mathcal{M}\mathcal{L}(\Sigma)$ the bending
measures of $\partial C^{\pm}(G)$ and set $\mathcal{P}_{\mu)\nu}=\{\xi\in QF|[pl^{+}]=[\mu], [p^{p-}]=[\nu]\}$ ,
$\mu,$

$\nu\in \mathcal{M}\mathcal{L}$ .
Recall also the Kerckhoff-Thurston picture of $\mathcal{T}(\Sigma)$ , naturally identified

with Fuchsian space $F=\mathbb{H}$, [KS98, \S 3]. As in figure 33, $F$ is a disc with
boundary $S^{1}$ which should be thought of as the Thurston compactification
$P\mathcal{M}\mathcal{L}(\Sigma)$ , see lecture 3. We also denote the compactification by $\partial_{Th}(\mathcal{F})$ . For
each $c>0$ , there is a unique path $\mathcal{E}_{\mu}^{\mathrm{c}}(t)$ of earthquakes along the lamination
$\mu$ whose length is fixed, $l_{\mu}\equiv c$ , on $\mathcal{E}_{\mu}^{c}$ . This path converges as $tarrow\pm\infty$ to
$[\mu]\in\partial_{Th}(F)$ . If $[\mu]\neq[\nu]$ , then paths $\mathcal{E}_{\mu}^{c}(t_{\mu})$ and $\mathcal{E}_{\nu}^{d}(t_{\nu})$ are tangent at the
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Figure 33:

point $p(\mu, \nu, c)=p(\nu,\mu, d)$ where $\frac{dl_{\nu}}{d\tau_{\mu}}=\frac{dl_{\mu}}{d\tau_{\nu}}=0$ . (Recall the antisymmetry

of the derivative: $\frac{dl_{\nu}}{d\tau_{\mu}}=-\frac{dl_{\mu}}{d\tau_{\nu}}$ . This point is the unique minimum of $\mathit{1}_{\nu}$ on
$\mathcal{E}_{\mu}^{\mathrm{c}}$ , and of $l_{\mu}$ on $\mathcal{E}_{\nu}^{d}.$ ) We set $f(\mu, \nu, c)=l_{\nu}(p(\mu, \nu, c)$ , the length of $l_{\nu}$ at
the minimum point on $\mathcal{E}_{\mu}^{c}$ . These critical points all lie on the critical line
$F_{\mu,\nu}$ which is a real analytic curve from $[\mu]$ to $[\nu]$ . The lengths $l_{\mu},$ $l_{\nu}$ are
monotonic on $F_{\mu,\nu}$ , with $l_{\mu}arrow\infty$ as $\xiarrow[\nu]$ and $l_{\mu}arrow \mathrm{O}$ as $\xiarrow[\mu]$ . The
functions $p(\mu, \nu, c)$ and $f(\mu, \nu, c)$ are continu$o\mathrm{u}\mathrm{s}$ in all their variables. All
these facts are easily deduced from [Ke85] and [Ke83], see [KS98, \S 3]. (The
critical lines are what Kerckhoff has called lines of minima, for a discussion
see the revised version $[\mathrm{K}\mathrm{S}98\mathrm{a}, \S 3]$ .)

By corollary 2.11 to the bending away theorem 2.7, and its extension to
irrational laminations (see the discussion in 6.1 below), we know that the
pleating variety $P_{\mu_{)}\nu}$ meets $F$ along $F_{\mu,\nu}$ . In fact we have

Theorem 6.1 (Non-Singularity Theorem). ([KS98, theorem 2]) Let $\mu,$ $\nu\in$

$\mathcal{M}\mathcal{L},$ $[\mu]\neq[\nu]$ . Then the map $\lambda_{\mu}\cross\lambda_{\nu}$ : $P_{\mu,\nu}arrow \mathbb{R}^{+}\cross \mathbb{R}^{+_{f}}\lambda_{\mu}\cross\lambda_{\nu}(\xi)=$

$(\lambda_{\mu}(\xi), \lambda_{\nu}(\xi))$ , is a diffeomorphism onto the region bounded by the two posi-
tive axes in $\mathbb{R}^{+}\cross \mathbb{R}^{+}$ and the graph of the function $t\vdash+f(\mu, \nu, t)$ .

Figure 34:
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Figure 34 shows the image of $P_{\mu,\nu}$ under this map. Notice:

(a) $\lambda_{\mu},$ $\lambda_{\nu}|_{P_{\mu.\nu}}$ are real valued by the real length lemma 3.8.

(b) $f(\mu, \nu, t)$ is the length of $\nu$ when $l_{\mu}=t$ . Thus the graph of this function
represents the critical line $F_{\mu,\nu}$ .

(c) The pleating variety $\mathcal{P}_{\nu,\mu}$ , in $\mathrm{w}\mathrm{h}$.ich $[p^{p+}]=[\nu],$ $\cdot[p\ell^{-}]=[\mu]$ , has an
identical description. With $\mathcal{P}_{\mu,\nu}$ , it forms a continuous sheet which
meets $F$ orthogonally along $F_{\mu,\nu}$ .

(d) Non-singularity implies immediately:

Theorem 6.2 (Pleating Invariant Theorem). ([$\mathrm{K}\mathrm{S}98$ , theorem
1]) Fix a choice of $\mu\in[p^{p+}]$ and $\nu\in[pl^{-}]$ . Then $\xi\in Q\mathcal{F}$ is uniquely
determined by $[p\ell^{+}],$ $[p\ell^{-}]_{f}$ and the values of $\lambda_{\mu}$ and $\lambda_{\nu}$ .

(e) The above shows that not only is $P_{\mu,\nu}$ diffeomorphic to a real 2-dimensional
submanifold in $\mathbb{C}^{2}\sim \mathbb{R}^{4}$ , but that it is totally real, i.e. holomorphically
equivalent to $\mathbb{R}^{2}\mathrm{c}arrow \mathbb{C}^{2}$

(f) The boundary of $P_{\mu,\nu}$ consists of the Fuchsian line $F_{\mu,\nu}$ and groups
for which either $\lambda_{\mu}$ or $\lambda_{\nu}$ vanish. These groups either represent cusps
$(\mu, \nu\in\lambda 4\mathcal{L}_{\mathbb{Q}})$ or degenerate groups with ending laminations $|\mu|$ or $|\nu|$

( $\mu$ or $\nu\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ ).

Exercise In the special case in which $[\mu]=[\delta_{A}],$ $[\nu]=[\delta_{B}]$ , i.e. $|p\ell^{+}|$ and
$|p\ell^{-}|$ are the generators of $G=G(\xi)$ , find $P_{A,B}$ explicitly from the formulae
of lecture 2 (special case example 2.1 and 2.13) and verify directly it has the
correct shape.

Harder Exercise Do the same thing for $\mathcal{P}_{AB,AB^{-1}}$ . (See [KS98, \S 11.1])

VERY IMPORTANT REMARK It is theorem 6.1, together with the
density of rational pleating planes 6.8 below, which enables us to compute
arbitrarily accurate pictures of $QF$ with respect to any given holomorphic
parameters. This works as follows. For $\mu,$ $\nu\in \mathcal{M}L_{\mathbb{Q}}$ , then we have only
to find $P_{\gamma,\gamma’}$ where $\gamma=|\mu|,$ $\gamma’=|\nu|$ . (We remark that, in general, $P_{\mu,\nu}$

only depends on the projective classes $[\mu],$ $[\nu]$ ; the graph $f(\mu, \nu, t)$ is scaled
by an affine map: $f(c\mu, \nu, t)=f(\mu, \nu, t/c)$ while $f(\mu, c\nu, t)=cf(\mu, \nu, t)$ ,
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$c>0.)$ Now $\lambda_{\gamma},$ $\lambda_{\gamma’}$ are essentially the (computable) trace functions Tr $g(\gamma)$ ,
Tr $g(\gamma’)$ . Thus we can find the critical line $F_{\gamma,\gamma’}$ and follow the branch of
Tr $g(\gamma)\cross$ Tr $g(\gamma’)\in \mathbb{R}\cross \mathbb{R}$ out of $F$ (where all traces are real). Theorem 6.1
asserts that there will be no other critical points and that we can follow the
branch to the boundary Tr $g(\gamma)=\pm 2$ or Tr $g(\gamma’)=\pm 2$ . All of this branch
automatically lies in $QF$: nothing else bad can happen.

Such branches are dense in $QF$ (and obviously pairwise disjoint). The
enumeration of pairs $\gamma,$

$\gamma’$ can be carried out by a recursive scheme as ex-
plained in lecture 1-they are { $(p/q,$ $r/s)\in\hat{\mathbb{Q}}\cross\hat{\mathbb{Q}}$ –diagonal}.

It would be very nice to have a computer programme to implement this
in practice!

The idea of the proof of the Non-singularity theorem 6.1 is to work in
quakebend planes which extend the earthquake lines $\mathcal{E}_{\mu}^{c}$ holomorphically into
$QF\subset \mathbb{C}^{2}$ . This gives us a family of one complex dimensional holomorphic
slices of $Q\mathcal{F}$ in which we can apply one dimensional techniques similar to

$\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{d}\mathcal{M}\mathcal{L}_{\mathbb{Q}}$

.
in lecture 4. First, we briefly discuss quakebends when $\mu\not\in$

6.1 Irrational Quakebends

References for this section are $[\mathrm{E}\mathrm{M}87],[\mathrm{K}\mathrm{S}97]$ .
A quakebend on a rational lamination $c\delta_{\gamma},$ $c>0,$ $\gamma\in S(\Sigma)$ is just a

complex Fenchel Nielsen twist in the case in which the length $\lambda_{\gamma}$ is real:
$Q_{c\delta_{\gamma}}(\tau)$ : $(\lambda_{\gamma}, \tau_{\gamma})rightarrow(\lambda_{\gamma}, \tau_{\gamma}+c\tau)$ . Here $(\lambda_{\gamma}, \tau_{\gamma})$ are the complex Fenchel
Nielsen coordinates of the starting group. Notice that if the rational lami-
nation is $c\delta_{\gamma}$ then we twist by $\sigma r$ . Thus quakebends depend on $\mu\in \mathcal{M}\mathcal{L}$ not
just $[\mu]\in P\mathcal{M}\mathcal{L}$ .

Now the generalization of the (real) Fenchel-Nielsen twist to irrational
laminations $\mu$ is an earthquake, see for example $[\mathrm{K}\mathrm{e}83])[\mathrm{K}\mathrm{e}85]$ . A time $t$

earthquake shifts complementary components of the lamination $|\mu|$ on the
surface $\Sigma$ a distance $t_{\mu}(\tau)$ relative to one another, where $\mu(T)$ is the $\mu-$

measure of a transversal $T$ joining the two components. (This is independent
of the choice of transversal: Why?) A quakebend by $\tau\in \mathbb{C}$ along $\mu$ is defined
in exactly the same way, where now we shifl by $({\rm Re}\tau)\mu(T)$ and bend by
$({\rm Im}\tau)\mu(T)$ .

Theorem 6.3. ([EM87, chapter 3]) Starting from a Fuchsian group $\xi_{0}\in$

$\mathcal{F}$, a quakebend induces a well-defined deformation of G. One obtains a
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Figure 35:

representation $\rho_{\tau}$ : $\pi_{1}(\Sigma)arrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathbb{C})$ for which the matrix coefficients of
$\rho_{\tau}(A)$ and $\rho_{\tau}(B)$ are holomorphic in $\tau$ .

The idea of the construction in [EM87] is to approximate the required
quakebend by a sequence of finite quakebends, that is, deformations which
are products of shifts and twists about a finite number of disjoint lines. This
defines a bent surface in $\mathbb{H}^{3}$ which converges to a developed surface associated
to $Q_{\mu}(\tau)$ .

Figure 36:

We replace the (in general infinitely many) lines of $|\mu|$ intersecting a
transversal $T$ by lines $L_{i},$ $1=1\ldots$ , $k$ ; note that these lines do not have to
be in the lamination $|\mu|$ . The measure of $T$ is divided equally amoung these
lines by setting $a=\mu(T)/k$ . We then approximate $Q_{\mu}(\tau)$ by a product of
twists $E_{1}(\tau a)\ldots E_{k}(\tau a)$ , where $E_{i}(z)$ is a shift by ${\rm Re} z$ and a twist by ${\rm Im} z$

along the axis $L_{i}$ . This product should be viewed as a kind of approximating
Riemann sum.
Remark One can

$\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}Q_{\mu}(\tau)\mathrm{A}\mathrm{t}\mathcal{L}$
as a limit of complex Fenchel-Nielsen

twists $Q_{\mu_{\mathfrak{n}}}(\tau)$ for $\mu_{n}arrow\mu,$ $\mu_{n}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ , but this seems to be technically
tricky to handle. (As $c_{n}\delta_{\gamma_{n}}arrow\mu$ then $c_{n}arrow 0$ and $Q_{\delta_{\mathrm{c}_{n}\gamma n}}(\tau)--Q_{\delta_{\gamma_{n}}}(\tau/c_{n})$ so
$\tau_{\gamma_{n}}/c_{n}arrow\tau_{\mu}.)$

As in lecture 2, this construction can also be made starting from a point
$\xi\in P_{\mu}$ . The quakebend plane $Q_{\mu}^{\xi}$ through $\xi\in P_{\mu}\mathrm{U}F$ is the set of groups
$Q_{\mu}^{\xi}(\tau),$ $\tau\in$ C. (Note that unlike the rational case, it is not immediately
obvious whether or not $Q_{\mu}^{\xi}(\tau)=Q_{\mu}^{\xi’}(\tau)$ for $\xi\neq\xi’,$ $\xi,$ $\xi’\in P_{\mu}\cup F.$ ) We need
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the bending away theorem 2.7 for $\mu\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ . This depended on the cone
lemma 2.9. Recall this required a definite distance $d=d(\theta)$ between bending
lines, depending on the bending angle $\theta$ , (and the cone angle $\alpha$ ).

Figure 37:

This now fails, as the distance between bending lines $|\mu|$ is arbitrarily
small. However the bending angle along very short transversals is also very
small (equal ${\rm Im}\tau\cdot\mu(T)$ where $\mu(T)arrow \mathrm{O}$). Thus it is possible to prove a
suitable variant of the cone lemma by approximation. The details are very
technical and are given in [KS97, \S 8].

6.2 Quakebend Planes
We now study quakebend planes $Q_{\mu}^{\xi}(\tau)$ , for $\xi\in P_{\mu}\cup F$. Our plan is first to
consider rational planes for which $\mu=c\delta_{\gamma}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ and then to extend our
results to general $\mu$ . We shall use the same methods as in lecture 4 to study
pleating rays $P_{\mu_{)}\nu}$ in $Q_{\mu}$ . Before we begin, we collect some useful results
which apply to general $Q_{\mu}$ .

Lemma 6.4 (Bound on Bend). ( $[\mathrm{K}\mathrm{S}98$ , prop.8.10]) Suppose that $\mu\in$

$\mathcal{M}\mathcal{L},$ $\xi\in P_{\mu}\cup F$ . Then given $K>0$ , there exists $B>0$ such $that|{\rm Re}\tau|<K$

$and|{\rm Im}\tau|>B$ implies $Q_{\mu}^{\xi}(\tau)\not\in P_{\mu}$ . (Here $G_{\mu}^{\xi}(\tau)$ denotes the group obtained
from $G(\xi)$ by quakebending by $\tau$ along the lamination $\mu.$)

Proof. The idea is similar to that in the discussion of the generalized cone
lemma and bending away theorem above. As long as we know that a definite
amount of $\mu$-measure is concentrated in some transversal $T$ to $|\mu|$ of bounded
length $l(T)$ , then by increasing ${\rm Im}\tau$ sufficiently we can cause the developed
surface in $\mathbb{P}$ not to be embedded.

We need the condition $|{\rm Re}\tau|<K$ to make the conclusion because other-
wise we may have $l(T)arrow\infty$ . The condition $|{\rm Re}\tau|<K$ ensures that the flat
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structure (obtained by earthquaking $G_{\mu}^{\xi}$ by ${\rm Re}\mu$ along $\mu$) stays in a bounded
set in F. $\square$

Lemma 6.5 (Bound on Twist). ( $[\mathrm{K}\mathrm{S}98$ , lemma 9.4]) Suppose that $\xi\in$

$P_{\mu,\nu}$ and let $Q_{\mu}^{\xi}$ be the quakebend plane through $\xi$ with parameter $\tau$ . Then
$\tau_{n}\in Q_{\mu}^{\xi}\cap P_{\mu,\nu_{f}}|\lambda_{\nu}(\tau_{n})|arrow\infty$ implies $|{\rm Re}\tau_{n}|arrow\infty$ .

Proof. Since $q_{n}\in P_{\mu,\nu}$ we know $\lambda_{\nu}(q)$ is real. $\mathrm{M}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\lambda_{\nu}(q)$ is bounded
above by the length of $\nu$ on the flat structure of $\partial C^{+}/G(q_{n})$ . This flat struc-
ture is determined by the length of $\mu$ , which is fixed, and the earthquake
parameter ${\rm Re}(\tau_{n})$ . Thus if $|{\rm Re}(\tau_{n})|$ is bounded, so is $\lambda_{\nu}(q_{n})$ . $\square$

Corollary 6.6. Suppose that $\xi\in P_{\mu,\nu}$ and let $Q_{\mu}^{\xi}$ be the quakebend plane
through $\xi$ . Then the length function $\lambda_{\nu}$ is non-constant on $Q_{\mu}^{\xi}\cap QF$ .

Proof. If not, then by the local and limit pleating theorems, then
$P_{\mu,\nu}=Q_{\mu,\square }^{\xi}$

,
which is impossible by lemma 6.4.

Corollary 6.7. Let $\xi\in P_{\mu,\nu}\cup F$ . In $Q_{\mu}^{\xi},$ $P_{\mu,\nu}\cap Q_{\mu}^{\xi}$ is a union of connected
components of $\lambda_{\nu}^{-1}(\mathbb{R}^{+})$ and the range of $\lambda_{\nu}|_{K}$ , where $K\subset P_{\mu,\nu}\cap Q_{\mu}^{\xi}$ is
any connected component of $P_{\mu,\nu}\cap Q_{\mu}^{\xi}$ , is either $(0, \infty)$ or $(0, d)$ where $d=$

$f(\mu, \nu, l_{\mu}(\xi))$ . Moreover there is only one component whose image is $(0, d)$

and the degree of the map on this component is one.

Proof. Same as 4.1 and 4.3 in lecture 4. $\square$

Corollary 6.8 (Density Theorems). ( $[\mathrm{K}\mathrm{S}98$ , theorems 4 and 10.1])

(a) The pleating varieties $P_{\mu,\gamma’}$ for $\gamma’\in\lambda 4L_{\mathbb{Q}}$ are dense in $Q_{\mu}^{\xi}$ , for $\xi\in P_{\mu}$ .

(b) The rational pleating varieties $P_{\gamma,\gamma’},$ $\gamma,$
$\gamma’\in \mathrm{A}\not\in \mathcal{L}_{\mathbb{Q}}$ are dense in $QF$ .

Proof. Exercise, see 4.2 in lecture 4, The proof of (b) is an elaboration of
the same argument. $\square$

6.3 Rational Quakebend Planes
Now we proceed to study rational quakebend planes $Q_{\gamma}^{\xi}(\tau)$ . Notice that, in
terms of complex Fenchel-Nielsen coordinates, $Q_{\gamma}^{\xi}(\tau)=\{(c, \tau)\in \mathbb{R}\cross \mathbb{C}|$

$c=\lambda_{\gamma}(\xi)\}$ . Thus $Q_{\gamma}^{\xi}(\tau)$ is just the set on which the length $\lambda_{\gamma}$ is fixed at its
value $\lambda_{\gamma}(\xi)$ at $\xi$ . Clearly, $Q_{\gamma}^{\xi}$ meets Fuchsian space $F$ along the earthquake
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line $\mathcal{E}_{\gamma}^{c}(t)$ , where $c=\lambda_{\gamma}(\xi)$ . In this case, the bending away theorem (or its
improved version for irrational $\mu$) gives that $P_{\gamma,\mu}\cap Q_{\gamma}^{c}\neq\emptyset$ for all $\mu\not\in[\delta_{\gamma}]$ .

We proceed much as in the case of the $\mathrm{M}\mathrm{a}s$kit embedding as in lecture 4.
Let $\delta$ be a complementary generator to $\gamma$ , i.e., $i(\gamma, \delta)=1$ . We study first the
integral rays $P_{\gamma,\gamma^{n}\delta}$ . Recall the formula from 2.13:

$\cosh(\tau_{\gamma})=\cosh(\lambda_{\gamma}/2)\tanh(\lambda_{\gamma}/2)\backslash$

or more generally (exercise!)

$\cosh(\tau_{\gamma}-n\lambda_{\gamma})=\cosh(\lambda_{\gamma^{n}\delta}/2)\tanh(\lambda_{\gamma}/2)$

Using this, it is easy to show that $P_{\gamma,\gamma^{n}\delta}\cap Q_{\gamma}^{c}$ is exactly the line segment
${\rm Re}\tau_{\gamma}=nc,$ $0<{\rm Im}\tau_{\gamma}<2\mathrm{a}\mathrm{r}\mathrm{c}\cosh(\tanh(c/2))$ .

We also prove directly that if $|{\rm Im}\tau_{\gamma}|$ is outside this range, then $G(\tau_{\gamma})\not\in$

$QF$. (Exercise, see $[\mathrm{P}\mathrm{S}95$ , theorem 6.3].) (If ${\rm Im}\tau_{\gamma}<0$ this just means we
have bent in the “opposite” direction, so we are in $P_{\gamma}.$, instead of $P_{\gamma},\cdot.$ )

We can now argue on the same lines as in lecture 4 to show that $P_{\gamma,\nu}$ for
arbitrary $\nu$ has a unique connected component with no critical points which
meets $Q_{\gamma}^{c}\cap \mathcal{F}=\mathcal{E}_{\gamma}^{c}$ in the critical point $p(\gamma, \nu, c)$ . We need to use the bound
on twist, lemma 6.5, to control the behaviour of $\lambda_{\nu}$ as $|\tau|arrow\infty$ .

6.4 Irrational Quakebend Planes
Finally we pass to the case of a general quakebend plane $Q_{\mu}^{\xi}$ with $\mu\not\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$.
Notice that we can no longer assume that $Q_{\mu}^{\xi}$ contains $\mathcal{E}_{\mu^{\mu}}^{\lambda(\xi)}$ ; this is a con-
sequence of our proof. The problem is that there are no integral rays to get
us started}. these were used in the rational case to rule out $\lambda_{\nu}(\tau)arrow\infty$ . This
is the only problem in extending the proof explained above.

We can rule out components $K\subset P_{\mu,\nu}\cap Q_{\mu}^{\xi}$ with $\lambda_{\nu}(K)=(0, \infty)$ by a
limiting argument as follows. In the case $\nu=\delta_{\gamma}\in \mathcal{M}\mathcal{L}_{\mathbb{Q}}$ , we have already
shown that $\lambda_{\gamma}(P_{\mu,\gamma})=(0, l_{\gamma}(p(\mu, \delta_{\gamma}, c)))$ , where $c=\mu(\xi)$ and $p(\mu, \delta_{\gamma}, c)$ is the
Kerckhoff critical point of $l_{\gamma}$ on $\mathcal{E}_{\mu}^{\xi}$ . More generally, $\lambda_{\nu}(P_{\mu,\nu})=(0, f(\mu, \nu, c))$

for $\nu\in \mathrm{A}4\mathcal{L}_{\mathbb{Q}}$ where $f(\mu, \nu, c)=\lambda_{\nu}(p(\mu, \nu, c))$ . Now let $\nu\in A4\mathcal{L}$ and $\nu_{n}\prec\nu \mathcal{M}L$ ,
$\nu_{n}\in \mathrm{A}(\mathcal{L}_{\mathbb{Q}}$ . Let $\xi^{*}\in P_{\mu,\nu}\cap Q_{\mu}^{\xi}$ . By Hurwitz theorem in $Q_{\mu}^{\xi}$ , we can find $\xi_{n}arrow$

$\xi^{*}$ with $\lambda_{\nu_{n}}(\xi_{n})=\lambda_{\nu}(\xi^{*})\in \mathbb{R}$ . By the local pleating theorem, $\xi_{n}\in P_{\mu,\nu_{n}}$ so
$\lambda_{\nu_{n}}(\xi_{n})\leq f(\mu, \nu_{n}, c)$ . Now use continuity of $f$ to conclude $\lambda_{\nu}(\xi^{*})\leq f(\mu, \nu, c)$ .
(Actually this needs a bit of work; we need to prove the bound on $\lambda_{\nu}(\xi^{*})$
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with the roles of $\mu,$ $\nu$ reversed, see $[\mathrm{K}\mathrm{S}98\mathrm{a}]$ theorem 6.) By corollary 4.3 we
conclude that $\lambda_{\nu}|_{P_{\mu.\nu}}$ has degree 1 and hence $P_{\mu,\nu}$ has a unique connected
component with no critical points (except at $\overline{P_{\mu,\nu}}\cap F=\{p(\mu,$

$\nu,$ $c)\}.$ )

Proof of the non-singularity theorem 6.1. This is now an easy exercise:
the quakebend planes intersect $P_{\mu,\nu}$ in horizontal and vertical segments and
we use the local and limit pleating theorems.

We can also prove the following result about the structure of quakebend
planes.

Theorem 6.9. $([\mathrm{K}\mathrm{S}98, \S 10])$ For any $\mu\in \mathcal{M}\mathcal{L}$ and $c>0_{f}$ there is a
unique quakebend plane $Q_{\mu}=Q_{\mu}^{c}$ which meets $\mathcal{F}$ in $\mathcal{E}_{\mu}^{c}$ . ($i.e_{y}.Q_{\mu}^{\xi}=Q_{\mu}^{\xi’}$ for
any $\xi,$ $\xi’\in \mathcal{E}_{\mu}^{c}$ , see the discussion above.) This plane is simply connected and
retracts onto $\mathcal{E}_{\mu}^{c}$ .

Our final picture of $QF$ is shown in figure 38. We have shown only half

Figure 38:

of each of the quakebend planes $Q_{\mu},Q_{\nu}$ . Remember: $Q\mathcal{F}\subset \mathbb{C}^{2}$ and $F$ is
embedded as $\mathbb{R}^{2}=\neq \mathbb{C}^{2}$ not $\mathbb{C}\subset \mathbb{C}^{2}$ , since the Bers map is $\omegarightarrow(\omega,\overline{\omega})$ .

Further Directions Here are some further directions for study.

(a) Higher genus: analytic (the non-singularity theorem) and combina-
tional (how best to do the Farey recursion).
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(b) Relationship between lengths and bending angle; connections with de-
formations of cone manifolds.

(c) Precise shape of boundaries of 1-dimensional slices.
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