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1 Introduction

In [6], Y.Minsky showed that any marked punctured torus group can be
characterized completely by its pair of end invariants, where a punctured
torus group is a rank two free Kleinian group whose commutator of genera-
tors is parabolic. To prove this result, called the ending lamination theorem,
he proved another important result, called the pivot theorem, which controls
thin parts of the corresponding hyperbolic manifold from the data of end
invariants. One of the applications of these theorems, he showed that the
Bers slice and the Maskit slice are Jordan domains.

In this paper we apply his results to the Earle slice which is a holomorphic
slice of quasi-fuchsian space representing the Teichm\"uller space of once-
punctured tori. This slice was considered by C.Earle in [1], and its geometric
coordinates, named pleating coordinates was studied by C.Series and the
author in [3]. By using rational pleating rays, the figure of the Earle slice
$\mathcal{E}$ realized in the complex plane $\mathrm{C}$ was drown by P.Liepa (see figure 1). We
will show that

1. The boundary of the Earle slice $\mathcal{E}$ is a Jordan curve.

2. There is a right half region which is contained in $\mathcal{E}$ .

3. Every pleating ray in $\mathcal{E}$ lands at a unique boundary point.

This paper is organized as follows. Section 1 is dedicated to background
material, especially the space of punctured torus groups. We review Min-
sky’s ending lamination theorem and pivot theorem in section 3 and 4. After
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introducing the Earle slice in section 5, we show the previous claims in sec-
tion 6, 7 and 8.

The author thank Professor S.Kamiya for his good organization of this
conference at RIMS, Kyoto University.

2 Punctured torus groups

Let $S$ be an oriented once-punctured torus and $\pi_{1}(S)$ be its fundamental
group. An ordered pair $\alpha,$

$\beta$ of generators of $\pi_{1}(S)$ is called canonical if the
oriented intersection number $i(\alpha, \beta)$ in $S$ with respect to the given orienta-
tion of $S$ is equal $\mathrm{t}\mathrm{o}+1$ . The commutator $[\alpha, \beta]=\alpha\beta\alpha^{-1}\beta^{-1}$ represents a
loop around the puncture.

Define $\mathcal{R}(\pi_{1}(S))$ to be the set of $PSL_{2}(\mathrm{C})$ -conjugacy classes of represen-
tations from $\pi_{1}(S)$ to $PSL_{2}(\mathrm{C})$ which take the commutator of generators to
a parabolic element. Let $D(\pi_{1}(S))$ denote the subset of $\mathcal{R}(\pi_{1}(S))$ consisting
of conjugacy classes of discrete and faithful representations. Any represen-
tative of an element of $D(\pi_{1}(S))$ is called a marked punctured torus group.
Let $Q\mathcal{F}$ denote the subset of $D(\pi_{1}(S))$ consisting of conjugacy classes of
representations $\rho$ such that for the action of $\Gamma=\rho(\pi_{1}(S))$ on the Riemann
sphere $\hat{\mathrm{C}}$ the region of discontinuity $\Omega$ has exactly two simply connected
invariant components $\Omega^{\pm}$ . The quotients $\Omega^{\pm}/\Gamma$ are both homeomorphic to
$S$ and inherit an orientation induced from the orientation of $\hat{\mathrm{C}}$ . We choose
the labelling so that $\Omega^{+}$ is the component such that the homotopy basis
of $\Omega^{+}/\Gamma$ induced by the ordered pair of marked generators $\rho(\alpha),$ $\rho(\beta)$ of $\Gamma$

is canonical. Any representative of an element of $Q\mathcal{F}$ is called a marked
quasifuchsian punctured torus group. Considering the algebraic topology
$D(\pi_{1}(S))$ is closed in $\mathcal{R}(\pi_{1}(S))$ , and $Q\mathcal{F}$ is open in $D(\pi_{1}(S))$ (see [4]). A
quasifuchsian group $\Gamma$ is called Fuchsian if the components $\Omega^{\pm}$ are round
discs.

Recall that the set of measured geodesic laminations on a hyperbolic
surface is independent of the hyperbolic structure. Denote by $PML(S)$

the set of projective measured laminations on $S$ . Let $C(S)$ denote the set
of free homotopy classes of unoriented simple non-peripheral curves on $S$ .
There are in $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence with $\hat{\mathrm{Q}}\equiv \mathrm{Q}\mathrm{U}\{\infty\}$ , after choosing
an canonical basis $(\alpha, \beta)$ for $\pi_{1}(S)$ as follows, Any element of $H_{1}(S)$ can
be written as $(p, q)=p[\alpha]+q[\beta]$ in the basis $([\alpha], [\beta])$ for $H_{1}(S)$ , and we
associate to this the slope $-p/q\in\hat{\mathrm{Q}}$ which describes an element of $C(S)$ .
Cosidering projective classes of weighted counting measures, we can identify
$C(S)$ with the set of projective rational raminations. Recall that $PML(S)$
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may be identified with $\hat{\mathrm{R}}$ , in such a way that rational laminations correspond
to $\hat{\mathrm{Q}}$ .

3 Minsky’s ending lamination theorem

We associate to a punctured torus group an ordered pair of “end invariants”
$(\nu_{-}, \nu_{+})$ , each lying in $\overline{\mathrm{H}}^{2}\equiv \mathrm{H}^{2}\cup\hat{\mathrm{R}}$ . Let $\rho$ : $\pi_{1}(S)arrow PSL_{2}(\mathrm{C})$ denote a
marked punctured torus group and $N=\mathrm{H}^{3}/\rho(\pi_{1}(S))$ its associated man-
ifold. Then by Bonahon’s theorem of geometric tameness (see [4]), $N$ is
homeomorphic to $S\cross \mathrm{R}$ . Let us name the ends $e_{+}$ and $e_{-}$ . We choose the
labelling as follows; Let the orietation $S\cross\{1\}$ agree with the orientation of
$S$ . Orient $S\cross(-1,1)$ by the orientation of $S\cross\{1\}$ and its inward-pointing
vector. The orientation of $\mathrm{H}^{3}$ induces the orientation of $N$ . Then up to
homotopy there exists uniquely an orientation preserving homeomorphism
between $N$ and $S\cross(-1,1)$ which induces the representation $\rho$ . Let $e_{+}$ be
the end of $N$ whose neighborhoods are neighborhoods of $S\cross\{1\}$ under this
identification. Let $\Omega$ denote the (possibly empty) domain of discontinuity
of $\Gamma=\rho(\pi_{1}(S))$ and $\overline{N}$ denote the quotient $\mathrm{H}^{3}\cup\Omega/\Gamma$. Any component of
the boundary $\Omega/\Gamma$ is reached by going to one of the ends $e_{+}$ or $e_{-)}$ and
this divides it into two disjoint pieces $\Omega_{+}/\Gamma$ and $\Omega_{-}/\Gamma$ . There are three
possibilities for each of these boundaries, corresponding to three types of
end invariants (here let $s$ denote $\mathrm{e}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}+\mathrm{o}\mathrm{r}$ -):

1. $\Omega_{s}$ is a topological disc; In this case $\Omega_{s}/\Gamma$ is a marked punctured
torus. Then there are $\nu_{+},$

$\nu_{-}\in \mathrm{H}^{2}$ uniquely such that marked flat tori
$\mathrm{C}/\mathrm{Z}\cdot 1+\mathrm{z}\cdot\nu_{+}$ and $\mathrm{C}/\mathrm{Z}\cdot\overline{\nu}_{-}+\mathrm{Z}\cdot 1$ are equivalent to the compactifi-
cations of $\Omega_{+}/\Gamma$ and $\Omega_{-}/\Gamma$ respectively as marked Riemann surfaces.
In particular, $\nu_{+}=\nu_{-}$ if and only if $\Gamma$ is a Fuchsian group.

2. $\Omega_{s}$ is an infinite union of round discs; In this case $\Omega_{s}/\Gamma$ is a thrice-
punctured sphere, obtained from the corresponding boundary of $S\cross \mathrm{R}$

by deleting a simple closed curve $\gamma_{s}$ . In this case $\nu_{s}\in\hat{\mathrm{Q}}$ denotes the
slope of $\gamma_{s}$ . The conjugacy class of $\gamma_{s}$ in $\Gamma$ is parabolic.

3. $\Omega_{\mathit{8}}$ is empty; In this case we can find a sequence of simple closed curves
$\{\gamma_{n}\}$ in $S$ whose geodesic representative $\gamma_{n}^{*}$ eventually contained in any
neighborhood of $e_{s}$ (“$\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}_{\mathrm{S}}$ the end”), and the slopes of $\gamma_{n}$ converge in
$\mathrm{R}$ to a unique irrational number. We denote $\nu_{s}$ to be this limitting
irrational slope which is called an ending lamination.
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To a marked punctured torus group $\rho$ : $\pi_{1}(S)arrow PSL_{2}(\mathrm{C})$ one may
associate an ordered pair of end invariants $(\nu_{-}, \nu_{+})$ lying in $\overline{\mathrm{H}}^{2}\cross\overline{\mathrm{H}}^{2}\backslash \Delta$,
where $\Delta$ denote the diagonal of $\hat{\mathrm{R}}\cross\hat{\mathrm{R}}$ . Minsky’s ending lamination theorem
is

Theorem 3.1. The map

$\nu:D(\pi_{1(}S))arrow\overline{\mathrm{H}}^{2}\cross\overline{\mathrm{H}}^{2}\backslash \triangle$

defined by $\rhorightarrow(\nu_{-}, \nu_{+})$ is bijective. $\nu$ is not continuous but its inverse $\nu^{-1}$

is continuous.

Proof: See theorems A and $\mathrm{B}$ in [6].

4 Minsky’s pivot theorem

Next we review Minsky’s pivot theorem which is a key idea to prove the
ending lamination theorem 3.1, and is also a main idea to prove our results
in this paper.

First we define the Farey triangulation of the upper half plane $\mathrm{H}^{2}$ as fol-
lows. For any two rational numbers written in lowest terms as $p/q$ and $r/s$ ,
say they are neighbors if $|ps-qr|=1$ . Allow also the case $\infty=1/0$ . Join-
ing any two neighbors by a hyperbolic geodesic, we obtain a triangulation
invariant under the natural action of $PSL_{2}(\mathrm{Z})$ .

Next we recall the notion of pivots for marked punctured torus groups.
Let $(\nu_{-}, \nu_{+})$ be the end-invariant pair of a marked punctured torus group
$\rho$ : $\pi_{1}(S)arrow PSL_{2}(\mathrm{C})$ . Letting $s\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}+\mathrm{o}\mathrm{r}-$

) define a point $\alpha_{s}\in\hat{\mathrm{R}}$ to
be closest to $\nu_{s}$ in the following sense: If $\nu_{s}\in\hat{\mathrm{R}}$ let $\alpha_{s}=\nu_{s}$ . If $\nu_{s}\in \mathrm{H}^{2}$ , let
$\alpha_{s}\in C(S)$ represent a geodesic of shortest length in the hyperbolic structure
corresponding to $\nu_{s}$ . More pricisely, if $\nu_{s}$ is contained in a Farey triangle $\Delta$ ,
we divide up $\Delta$ into six regions by the axes of its reflection symmetries, and
then each vertex $u\in C(S)$ has minimal hyperbolic length in the hyperbolic
structure corresponding to $\nu_{\mathit{8}}$ when $\nu_{s}$ is in the pair of regions that meet $u$ .
Now define $E=E(\alpha_{-}, \alpha_{+})$ to be the set of edges of the Farey graph which
separate $\alpha_{-}$ from $\alpha_{+^{\mathrm{i}}}\mathrm{n}\mathrm{H}^{2}$ . Let $P_{0}$ denote the set of vertices of $C(S)$ which
belong to at least 2 edges in $E$ . We call thse vertices internal pivots of $\rho$ .
The edges of $E\mathrm{a}\mathrm{d}\mathrm{m}’.\mathrm{i}\mathrm{t}$ a natural order where $e<f$ if $e$ separates the interior
of $f$ from $\alpha_{-}$ , and this induces an ordering on $P_{0}$ . The full pivot sequence
$P$ of $p$ is obtained by appending to the beginning of $P_{0}$ the vertex $\alpha_{-}$ if
$\alpha_{-}\in C(S)$ , and appending to the end of $P_{0}$ the vertex $\alpha_{+}$ if $\alpha_{+}\in C(S)$ .
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Finally we review the complex translation length for a loxiodromic el-
ement $\gamma$ of $SL_{2}(\mathrm{C})$ . Let $\lambda(\gamma)=l+i\theta$ denote its complex translation
length, geometrically, $l>0$ gives the translation length of $\gamma$ along its
axis, and $\theta$ (mod $2\pi$ ) gives the rotation. It is determined by the identity
Tr $\gamma=2\cosh\frac{\lambda}{2}$ . Thus, fixing a marked punctured torus group $p:\pi_{1}(S)arrow$

$PSL_{2}(\mathrm{C})$ , we obtain a function on $C(S)$ which we write $\lambda_{\rho}(\alpha)\equiv\lambda(p(\alpha))$ .
Now we can state the pivot theorem. For each $\beta\in C(S)$ fix an element

of $PSL_{2}(\mathrm{Z})$ such that $\beta$ is taken to $\infty$ . Then the set of neighbors of $\beta$ go
to Z. Such a transformation is unique up to integer translation. Let $\nu_{+}(\beta)$

and $\nu_{-}(\beta)$ denote the points of $\overline{\mathrm{H}}^{2}$ to which $\nu\pm\in\overline{\mathrm{H}}^{2}$ are taken by this
transformation. Minsky’s pivot theorem is

Theorem 4.1. There exist positive constants $\epsilon,$ $c_{1}$ such $that_{J}if\rho$ is a marked
punctured torus group,

1. If $l_{\rho}(\beta)\leq\epsilon$ then $\beta$ is a pivot of $\rho$ .
2. Let $\alpha$ be a pivot $of\rho$ . If we take a branch of $\lambda_{\rho}(\alpha)_{S}ati_{S}fying|Im\lambda_{\rho}(\alpha)|<$

$\pi$ , then
$d_{\mathrm{H}^{2}}( \frac{2\pi i}{\lambda_{\rho}(\alpha)}, \nu_{+}(\alpha)-\overline{\nu_{-}(\alpha)}+i)<c_{1}$ .

where $d_{\mathrm{H}^{2}}(\cdot, \cdot)$ denotes the hyperbolic metric on $\mathrm{H}^{2}$ .

Proof: See theorem 4.1 in [6].

5 The Eale slice of punctured torus groups

The following theoren defines a holomophic embedding of the Teichm\"uller
space $\mathrm{T}\mathrm{e}\mathrm{i}_{\mathrm{C}}\mathrm{h}(S)$ of once-punctured tori into $Q\mathcal{F}$.

Theorem 5.1. Let $(\alpha, \beta)$ be a canonical homotopy basis of $\pi_{1}(T_{1})$ where
$\mathcal{T}_{1}$ is an analytically finite Riemann surface homeomorphic to S. Let $\theta$ be
an involution of $\pi_{1}(\mathcal{T}_{1})$ defined by $\theta(\alpha)=\beta$ . Then, up to conjugation in
$PSL_{2}(\mathrm{C})_{\lambda}$ there exists a unique marked quasifuchsian group $\rho:\pi_{1}(\mathcal{T}_{1})arrow\Gamma$ ,
such that:

1. There is a conformal map $\mathcal{T}_{1}arrow\Omega^{+}/\Gamma$ inducing the representation $\rho$ .

2. There is a M\"obius transformation $\Theta\in PSL_{2}(\mathrm{C})$ of order two which
induces a conformal homeomorphism $\Omega^{+}arrow\Omega^{-}$ such that $\Theta(\gamma z)=$

$\theta(\gamma)\Theta(z)$ for all $\gamma\in\Gamma$ and $z\in\Omega^{+}$ .
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Proof: See [1] and theorem 2.1 in [3].

Theorem 5.1 implies that for any marked Riemann surface $(\mathcal{T}_{1;\alpha}, \beta)$

which is analytically finite and homeomorphic to $S$ , there is a marked quasi-
fuchsian group $\Gamma=\langle A, B\rangle$ such that as a marked Riemann surface, $(\tau_{1;\alpha}, \beta)$

is equivalent to $(\Omega_{+}/\Gamma;A, B)$ and $(\Omega_{-}/\Gamma;B, A)$ . The embedding of $\mathrm{T}\mathrm{e}\mathrm{i}_{\mathrm{C}}\mathrm{h}(S)$

depends only on the choice of the involution $\theta$ of $\pi_{1}(\mathcal{T}_{1})$ ; in fact we can take
any involution of $\pi_{1}(\mathcal{T}_{1})$ which is induced from an orientation reversing dif-
feomorphism of $\mathcal{T}_{1}$ (see [1]). We call the image of $\mathrm{T}\mathrm{e}\mathrm{i}\mathrm{C}\mathrm{h}(s)$ in $Q\mathcal{F}$, the Earle
slice of $Q\mathcal{F}$ . This slice can be thought of as a holomorphic extension of the
rhombus line in the Fuchsian locus $\mathcal{F}$ into $Q\mathcal{F}$ (see [3]).

Next we show how to realise the Earle slice in C.

Theorem 5.2. Let $\rho:\pi_{1}(\mathcal{T}_{1})arrow PSL_{2}(\mathrm{C})$ be a marked quasifuchsian punc-
tured torus group in the Earle slice. Then, afler conjugation by $PSL_{2}(\mathrm{C})$ if
necessary, we can take representatives of $A=\rho(\alpha),$ $B=\rho(\beta)$ in $SL(2, \mathrm{c})$

of the form $A=A_{d},$ $B=B_{d},$ $d\in \mathrm{C}-\{0\}$ , where

$A_{d}=($ $\frac{2d\frac{d^{2}+1}{2d+1}}{d}$
$\frac{d^{3}}{2d^{2}+1,d}$ ), $B_{d}=(- \frac{2d\frac{d^{2}+1}{2d+1}}{d}$ $- \frac{d^{3}}{2d^{2}+1,d})$ .

The parameter $d^{2}$ is uniquely determined by the conjugacy class of $\rho$ .

Proof: See theorem 3.1 in [3].

Let $\mathrm{C}^{+}$ denote the right half $d$-plane $\{d\in \mathrm{C}|Red>0\}$ . Then the map

$\varphi:\mathrm{C}^{+}arrow \mathcal{R}(\pi_{1}(S))$

defined by $d\vdasharrow(A_{d}, B_{d})$ is a holomorphic injection and we can realize the
Earle slice in $\mathrm{C}^{+}$ . Define $\mathcal{E}$ to be the corresponding region in $\mathrm{C}^{+}$ . Then the
positive real line $\mathrm{R}^{+}$ corresponds to the Fuchsian locus of $\mathcal{E}$ , the rhombus
line. Moreover there exist two involutions of $\mathcal{E}$ : a holomorphic involution
$\sigma(d)=1/2d$ and an anti-holomorphic involution $\iota(d)=\overline{d}$ where $\overline{d}$ denotes
the complex cojugation of $d$ .

Next we consider the relation between the closure of the Earle slice in
$Q\mathcal{F}$ and the closure of $\mathcal{E}$ in the d-plane.

Lemma 5.3. If non-zero $d\in \mathrm{C}$ is on the imaginary axis of the d-plane,
$A_{d}B_{d}$ or $A_{d}B_{d}^{-1}$ is elliptic.

Proof: From the trace equations Tr $A_{d}B_{d}=2+ \frac{1}{d}\mathrm{z}$ and Tr $A_{d}B_{d}^{-1}=2(2d^{2}+$

1), we can check the claim.
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Proposition 5.4. 1. The closure $\overline{\mathcal{E}}$ of $\mathcal{E}$ in $\mathrm{C}^{+}$ is homeomorphic to the
$cl_{oSu}re\overline{\varphi(\mathcal{E})}$ of $\varphi(\mathcal{E})$ in $D(\pi_{1}(S))$ under $\varphi$ .

2. The closure of $\mathcal{E}$ in $\hat{\mathrm{C}}$ is equal to $\overline{\mathcal{E}}\cup\{0, \infty\}$ .
Proof:

1. $\varphi$ is a homeomorphism from $\mathrm{C}^{+}$ to its image under $\varphi$ , and $\varphi(\mathrm{C}^{+})\cap$

$D(\pi_{1}(S))$ is closed in $D(\pi_{1}(S))$ by the above lemma 5.3.

2. Rom the above lemma 5.3 and the fact that $\mathcal{E}$ contains the positive
real line $\mathrm{R}^{+}$ , we can check the claim.

Now we have a following diagram:

$\mathrm{C}^{+}rightarrow\varphi \mathcal{R}(\pi_{1}(S))$

$\uparrow$ $\uparrow$

$\mathcal{E}$ $arrow\varphi D(\pi_{1}(S))rightarrow\nu\overline{\mathrm{H}}^{2}\cross\overline{\mathrm{H}}^{2}\backslash \Delta$

By the restriction of $\nu$ to the Earle slice $\varphi(\mathcal{E})$ in $Q\mathcal{F}$, We have

Proposition 5.5. $\nu 0\varphi(\mathcal{E})=\{(\nu_{-,\nu_{+})}\in \mathrm{H}^{2}\cross \mathrm{H}^{2}|\nu_{-}\overline{\nu_{+}}=1\}$

Proof: $\mathrm{C}/\mathrm{Z}\cdot 1+\mathrm{Z}\cdot\tau$ is conformal to $\mathrm{C}/\mathrm{Z}\cdot\frac{1}{\tau}+\mathrm{Z}\cdot 1$ .

Therefore its closure in $\overline{\mathrm{H}}^{2}\cross\overline{\mathrm{H}}^{2}\backslash \Delta$ can be written as

Corollary 5.6. $\overline{\nu\circ\varphi(\mathcal{E})}=\{(\nu_{-}, \nu_{+})\in\overline{\mathrm{H}}^{2}\cross\overline{\mathrm{H}}^{2}\backslash \Delta|\nu_{-}\overline{\nu_{+}}=1\}$

Finally we review the notion of pleating rays (see [2, 3]). For a quasi-
fuchsian punctured torus group $\Gamma$ , let $C/\Gamma$ be the convex core of $\mathrm{H}^{3}/\Gamma$ ;
equivalently $C$ is the hyperbolic convex hull of the limit set A of $\Gamma$ . The
boundary $\partial C/\Gamma$ of $C/\Gamma$ has two connected components $\partial C^{\pm}/\Gamma$ , each home-
omorphic to $S$ . These components are each pleated surfaces whose pleating
loci carry the bending measure whose projective classes we denote $pl^{\pm}(\Gamma)$ .

For $x,$ $y\in PML(S)=\hat{\mathrm{R}}$ , The $(x, y)$ -pleating. rays in $\mathcal{E}$ is the set defined
by $P(x, y)=\{d\in \mathcal{E} : pl^{+}(d)=x,pl^{-}(d)=y\}$ . Since the boundary compo-
nents $\partial C^{\pm}$ are conjugate under the involution for groups in $\mathcal{E}$ , we have that
$\mathcal{P}(x, 1/x)\neq\emptyset$ provided $x\neq\pm 1$ , and $P(x, y)=\emptyset$ otherwise. In particular,
the set of rational pleating rays $P(x, 1/x)(x\in\hat{\mathrm{Q}}\backslash \{\pm 1\})$ are dense in $\mathcal{E}$

(see [3]). This allows us to draw the picture shown in figure 1. The positive
real axis represents Fuchsian groups with the rhombic symmetry, and only
the upper half of the Earle slice is shown, the picture being symmetrical
under reflection in the real axis.
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Figure 1: The upper half of the Earle Slice.

6 $\mathcal{E}$ is a Jordan domain

In this section we show that $\mathcal{E}$ is a Jordan domain by using the pivot theo-
rem 4.1.

Proposition 6.1. If a sequence of points $(\nu_{-}^{i}, l’’+)i$ in $\nu\circ\varphi(\mathcal{E})$ goes to the
point $(1, 1)$ in $\hat{\mathrm{R}}\cross\hat{\mathrm{R}}$ , then $d_{i}=(\nu\circ\varphi)-1((\nu_{-}i , \nu_{+}^{i}))$ converges to $0$ in the
$d$ -plane. Similarly if $(\nu_{-}^{i} , \nu_{+}^{i})$ goes to $(-1, -1)$ , then $d_{i}$ diverges to infinity.

Proof: Suppose first that $(\nu_{-}^{i} , \nu_{+}^{i})arrow(1,1)$ . There is a unique element
$A\in PSL_{2}(\mathrm{Z})$ satisfying $A(1)=\infty$ and $A(-1)=1/2$ . Let $\nu_{\pm}^{i}(1)$ denote the

points of $\overline{\mathrm{H}}^{2}$ to which $\nu_{\pm}^{i}$ are taken by A. $\nu_{+}^{i}(1)$ and $\nu_{-}^{i}(1)$ are related by
$\nu_{-}^{i}(1)=1-\overline{\nu_{+}^{i}(1)}$ from the relation in corollary 5.6.

First we show that for a sufficiently large $i,$ $1\in\hat{\mathrm{Q}}$ becomes a pivot
for the representation $\rho_{i}$ whose pair of end invariants is $(\nu_{-}^{i}, \nu_{+}^{i})$ . When
$Im\nu_{+}^{i}(1)arrow\infty$ , then $Im\nu_{-}^{i}(1)arrow\infty$ by the relation $\nu_{-}^{i}(1)=1-\overline{\nu_{+}^{i}(1)}$ .
From a well-known comparison of extremal and hyperbolic length (see [5]),
the length $\iota_{\pm}^{i}(1)$ of the geodesic corresponding to the slope 1 $\in\hat{\mathrm{Q}}$ be-
comes short in the boundary torus $\Omega\pm/\rho(\pi_{1}(S))$ . Then by Bers’ inequal-
ity $1/l^{i}(1) \geq\frac{1}{2}(1/l^{i}(+1)+1/l_{-}^{i}(1))$ , the length $l^{i}(1)$ of the geodesic $\gamma(1)$ in
$\mathrm{H}^{3}/\rho_{i}(\pi_{1}(S))$ corresponding to $1\in\hat{\mathrm{Q}}$ is also short, hence by the pivot the-
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orem 4.1(1), $1\in\hat{\mathrm{Q}}$ is a pivot for $\rho_{i}$ . When $Im\nu_{+}^{i}(1)$ remains bounded
and hence $Re\nu_{+}^{i}(1)arrow\pm\infty$ , then $Re\nu_{-}^{i}(1)arrow\mp\infty$ and in this case, by
definition, $1\in\hat{\mathrm{Q}}$ is also a pivot for $\rho_{i}$ (see figure 2).

Figure 2:

Hence by the pivot theorem 4.1 (2), the complex translation length $\lambda_{\rho_{i}}(1)$

satisfying $|Im\lambda_{\rho_{i}}(1)|<\pi$ goes to $0$ . This implies that Tr $\gamma(1)$ goes to 2.
Rom the equality Tr $\gamma(1)=\mathrm{b}A_{d_{i}}B^{-}d_{i}1=2(2d_{i}^{2}+1),$ $d_{i}$ goes to $0$ .

The remaining case that $(\nu_{-}^{i} , \nu_{+}^{i})arrow(-1, -1)$ can be proved by the same
argument.

Theorem 6.2. The restriction of $\nu^{-1}t_{\mathit{0}\nu\circ}\overline{\varphi(\mathcal{E})}$ is a homeomorphism from
$\overline{\nu 0\varphi(\mathcal{E})}$ to $\overline{\varphi(\mathcal{E})}$ .

Proof: Because $\nu^{-1}(\nu\circ\varphi(\mathcal{E}))$ is closed by the above proposition 6.1, it must
be the closure $\overline{\varphi(\mathcal{E})}$ of $\varphi(\mathcal{E})$ in $D(\pi_{1}(S))$ . Rom the same reason $\nu^{-1}|_{\overline{\nu 0\varphi(\mathcal{E}}}$

)

the restriction of $\nu^{-1}\mathrm{t}_{0\nu\circ}\overline{\varphi(\mathcal{E})}$ is a homeomorphism.

Next result is a corollary of theorem 6.2 and proposition 5.4.

Corollary 6.3. 1. The boundary $of\mathcal{E}$ in $\mathrm{C}^{+}$ consisits of two open Jordan
arcs terminating $0$ and $\infty$ .

2. The boundary of $\mathcal{E}$ in $\hat{\mathrm{C}}$ is a Jordan curve. Therefore $\mathcal{E}$ is a Jordan
domain.

7 Asymptotic bihaviour of the boundary $\partial \mathcal{E}$

Theorem 7.1. In the $d$ -plane, there exist two open round discs $B$ in $\mathcal{E}$ and
$-B_{t}$ symmetric with respect to the imaginary axis whose closures are tangent
at $0$ .
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Proof: First we fix a branch of the complex length function $\lambda_{d}(1)$ on $\mathcal{E}$

by the condition that it is real valued on the positive real line $\mathrm{R}^{+}$ . We
remark that $Re\lambda_{d}(1)=l_{d}(1)>0$ on $\mathcal{E}$ , hence $\lambda(\mathcal{E}):=\{\lambda(d)\in \mathrm{C}|d\in \mathcal{E}\}$ is
contained in the right half $\lambda$-plane $\mathrm{C}^{+}$ .

Next we extend this branch to a neighborhood of $0$ in the $d$-plane. The
equality Tr $A_{d}B_{d}^{-1}=2 \cosh\frac{\lambda_{d}(1)}{2}=2(2d^{2}+1)$ implies that $d= \sinh\frac{\lambda_{d}(1)}{4}$ ,
hence the branch $\lambda_{d}(1)$ can be extended conformally in a a neighborhood $U$

of $0$ in $\mathrm{C}$ (see figure 3). Especially by taking $U$ sufficiently small, we may
assume that $|Re\lambda_{d}(1)|$ and $|Im\lambda_{d}(1)|$ are both small. Then by the pivot
theorem 4.1(1), $1\in \mathrm{Q}$ is a pivot for any points in $U\cap \mathcal{E}$ .

Now take a horizontal line $L_{k}=Im\nu_{+}(1)=k(k>0)$ in $\mathrm{H}^{2}$ parametrized
by the real part of $Re\nu_{+}(1)$ , i.e., $L_{k}=\{\sigma(s)|s=Re\nu_{+}(1)\in \mathrm{R}\}$ . From a
well-known comparison of extremal and hyperbolic length (see [5]), $\nu_{+}^{-1}(\sigma(s))$

goes to $0$ as $|s|arrow\pm\infty$ . In particular, there exists $r_{1}>0$ such that
$\nu_{+}^{-1}(\sigma(s))\in U\cap \mathcal{E}$ for $|s|>r_{1}$ .

On the other hand, by the pivot theorem 4.1(2),

$d_{\mathrm{H}^{2}}( \frac{2\pi i}{\lambda_{\nu_{+}^{-1}(}(\sigma(S)))1}, 2_{S}-1+i(2k+1))<c1$

for $|s|>r_{1}$ which implies that the curve $\{\lambda s(1)\}_{S}\in \mathrm{R}$ is tangent at $0$ . There-
fore in $\lambda(U\cap \mathcal{E})$ , we can take a small open round disc tangent to the imag-
inary axis at $0$ . Take $B$ as the image of this disc under the conformal map
$d= \sinh(\frac{\lambda}{4})$ around $0$ (see figure 4).

$arrow\lambda$

Figure 3:

Now we have the follwing result for the asymptotic behaviour of the
boundary $\partial \mathcal{E}$ .

$\mathcal{E}\mathrm{C}.0\Gamma \mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{y}7.2$

. In the $d$ -plane there exists a right half region contained in
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$_{+}^{-1}\swarrow$

$arrow\backslash /$

Figure 4:

Proof: Take the image of the round disc $B$ in the previous theorem 7.1
under the conformal involution $\sigma(d)=1/2d$ of $\mathcal{E}$ .

Remark 7.3. By using the pivot theorem 4.1, we can show that $\mathcal{E}$ is not a
quasi-disc (see $[7J$). Miyachi recently announced a more strong $result_{i}$ for the
case of the Maskit slice and the Earle slice of punctured torus groups, every
boundary point corresponding to a cusp group is $a$ inward-pointing cusp.

8 End invariants and pleating invariants

In [3], we showed that any rational pleating ray $\mathcal{P}(x, 1/x)(x\in \mathrm{Q}\backslash \{\pm 1\})$

lands at a point $c_{x}\in\partial \mathcal{E}$ representing a cusp group at which $|\mathrm{b}\gamma(x)|=2$ .
Therefore $c_{x}$ is obtained from the corresponding boundary of $S\cross \mathrm{R}$ by
deleting a simple closed curve corresponding to $x\in$ Q. This implies that
its pair of end invarinats is $(1/x, x)$ . Since $\partial \mathcal{E}$ and $\hat{\mathrm{R}}\backslash \{\pm 1\}$ are identified
under the map $\nu_{+}0\varphi$ , we have

Theorem 8.1. Every pleating ray lands at the boundary of $\mathcal{E}_{f}$
. rational pleat-

ing ray lands at doublly cusped group, while iwational pleating ray lands at
doublly degenerate group. In particular, $P(x, 1/x)$ lands to the boundary
group whose end invariant pair is $(1/x, x)$ .
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