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§1. Introduction

Recently, we have shown that there exists a time-periodic global attractor for time-
periodic dynamical systems governed by subdifferentials in Hilbert spaces (cf. [3]). But
we do not know the large-time behaviour of each solution. In general, the solution does
not converge to any periodic solution, although the system is time-periodic (cf. [6, 7]).

In this paper we consider time-periodic double obstacle problems in order to show that
solutions are asymptotically periodic, if given obstacle functions are periodic in time.

At first, we consider a scalar Ty-periodic double obstacle problem of the form:

w(t) + O (u(t) +g(ut)) 20, t=0, (1.1)
where for each ¢ > 0 and given Tp-periodic obstacle functions oy, o1 on Ry := [0, 4+00)
K(t):={z € R; oo(t) <z < o1(t)},

OIk 4 is a subdifferential of the indicator function Ix()(-) on R and g is a smooth function
on R which is in general non-monotone on R such as g(u) = u® — u.

In this case, we shall show that any solution of (1.1) is asymptotically Tp-periodic.
Namely, for any solution u of (1.1) there is a To-periodic solution u, of (1.1) such that

u(t) —up(t) — 0 . ast — +oo.

Next, we give two applications of our result on scalar Tp-periodic obstacle problems.
In the first application we discuss the asymptotically Tp-periodicity of the solution of a
Stefan problem with hysteresis in the higher dimensional case which is left unsolved in
8].

In the second application we consider a partial differential equation with Tp-periodic
double obstacles of the form:

v — kAu+ g(u) + 0Ike(w(t)) 30 in Q:= R, xQ, (1.2)
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%—O-onZ.—RerI‘, ‘ (1.3)

where 2 is a bounded domain in RY (1 £ N < +00), with smooth boundary T' := 91,
for each t € R, := [0, +00) and given obstacle functions og, o7, K(t) is the set

{z € L*(Q); ao(t,") <z < 0y(t,") ae. on Q},

Ol is the subdifferential of the indicator function Ik¢) on L?*(Q2) and g is a non-
monotone smooth function on R. Under some assumptions, we shall show that solutions
of (1.2)-(1.3) are asymptotically Ty-periodic.

§2. Scalar double obstacle problems

Let 0 < Tp < 400 be fixed and we assume that given obstacle functions oy, oy €
W1L2(R, ) satisfy the following conditions:

00 <01 onR,, o (2.1)

oo(t) =0o(t+Tp) and o1(t) =o01(t+Tp) for anyt > 0. (2.2)

For each time ¢ > 0, we define the closed set K(t) and proper L.s.c. convex function I
on R, respectively, by

K(t) = {z € R;o0(t) < 2 < oa(f)} (23)
and
' 0 if zeK(t),
I (2) = { ‘ | (2.4)
400 otherwise.

Now let us consider an ordinary differential equation with Ty-periodic double obstacle
of the form

) + Ol (ult) + 9u®) 30, >0, | (2.5)

where 0Ik(y) is the subdifferentia,l of Ik () and g is a non-monotone smooth function on
R, in general.

Definition 2.1. (1) A function u: Ry — Ris called a solution of (2.5), if it satisfies the
following conditions (C1)-(C3):

(C1) ue WEA(R,).
(C2) u(t) € K(t) foranyte R,.
(C3) There exists a function &£ € L2, .(R,) such that
&(t) € OIkwy(u(t)) for ae. t€ Ry

and _
o' (t) + £(t) + g(u(t)) =0 for ae. t€ R,.
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(2) A function u : Ry — R is called a solution of the Cauchy problem for (2.5), if u is a
solution of (2.5) and satisfies the initial condition: '

(3) A function u : R, — R is called a Ty-periodic solution of (2.5), if u is a solution of
(2.5) and satisfies the Ty-periodic condition:

u(t +To) = u(t) for anyt > 0.

We can easily see that (2.5) is reformulated as an evolution equation governed by
time-dependent subdifferentials of the form

(E) /() +0¢'(u(t)) + g(u(t)) 50in H, ¢ >0,

where H is a real Hilbert space, 9y is the subdifferentials of time-dependent convex
function ¢*(-) on H and g(-) is a Lipschitz operator on H. In fact, we take R as the Hilbert
space H and Ik (-) as ¢*(-). By (2.2), we easily see that the class {¢*} := {¢%t € R, }
of proper Ls.c. convex functions ¢* on H satisfies Tg-periodicity condition

() =¢() onH, Vt€R,.

Hence, by applying the abstract results in [3] we get the existence-uniqueness and global
boundedness results of the solution of the Cauchy problem for (2.5)

As a main result on the asymptotic behaviour of solution u of (2.5), we have the
following theorem.

Theorem 2.1. Assume that g(§) = 0 has a finite number of roots. Then any solution u
of (2.5) is asymptotically Ty-periodic, more precisely, one of the following four cases (1),
(2), (3) and (4) occurs:

(1) u(t) — u*(t) — 0 as t — +o0, where u* is the mazimal Ty-periodic solution of (2.5).
(2) u(t) — ux(t) — 0 as t — +oo, where u, is the minimal Ty-periodic solution of (2.5).
(8) There is a root & of g(€) = 0 such that u(t) — & ast — -+oo.

(4) u(t) — up(t) — 0 as t — +o0, where u, is the unique Ty-periodic solution of (2.5).

By using some numerical experiences, we shall explain Theorem 2.1.
For simplicity, we assume that g(u) = u® —u, namely, there are three roots of g(¢) = 0.
Now, we consider the following six obstacle cases.

Case 1. We assume that
0'0(t) <-1 and 1 < Ul(t), Vt € R+.

In this case, any solution u of (2.5) converges to one of stationary solutions -1, 0, 1 of
(2.5) as t — +o00. The behaviour of solution u of (2.5) is illustrated in the Fig.2.1.
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Fig.2.1

Case 2. Assume that o4(t) > 0 for any ¢t € R,
oo(t) < -1, Vie R, and oy(tg) <1 forsomety € R,.

In this case, any solution u with initial data uy > 0 converges to the maximal Ty-periodic
solution of (2.5). In fact, the solution u coincide with the maximal Tp-periodic solution
of (2.5) after a certain finite time ¢; € R,. For the other data, the solution u converges
to 0 or -1 as t — +0o. The behaviour of solution u of (2.5) is illustrated in the Fig.2.2.

R
1
0 t
-1 ;/\/\/\/\
Fig.2.2

Case 3. Assume that og(t) < 0 < 04(t) for any t € R,
—1 < o¢(ty) forsometyp € Ry and oy(t;) <1 forsomet; € Ry.

In this case, for any solution w of (2.5) with initial data up > 0 (resp. ug < 0) there is a
finite time t2 € R such that

u(ty) = o1(t2)  (resp. oo(t2))-
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Therefore, the solution v coincides with a maximal Ty-periodic solution u* (resp. a mini-

mal Tp-periodic solution u,) of (2.5) after a certain finite time. If initial data ug = 0, the
solution u(t) is constant 0.

The behaviour of solution u of (2.5) is illustrated in the Fig.2.3.

R

Fig.2.3

Case 4. Assume that
oo(to) < —1, Vte Ry and o1(tp) <0 for some ty € R,.

In this case, any solution u of (2.5) converges to a stationary solution —1 of (2.5) as
t — +o00. The behaviour of solution u of (2.5) is illustrated in the Fig.2.4.

BALNASANANANY

Fig.2.4
Case 5. Assume that oo(t) < 0 for any t € Ry,

—1 < o9(ty) for some ty € Ry ‘and o1(ty) <0 for some t; € Ry
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In this case, any solution u of (2.5) is negative somewhere. Therefore u converges to
the unique Top-periodic solution u, of (2.5) as ¢ — +o0o. In fact, any solution u of (2.5)

coincides with w, after some finite time.
The behaviour of solution u of (2.5) is illustrated in the Fig.2.5.
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Fig.2.5
Case 6. Assume that
0 <o0g(tg) forsomety€ Ry and o1(t;) <0 forsomet; € Ry.

In this case, it follows from the facts of Case 2-4 that there exists a unique Tp-periodic
solution u, of (2.5) and any solution v of (2.5) coincide with the unique Tg-periodic
solution u, of (2.5) after some finite time.

The behaviour of solution u of (2.5) is illustrated in the Fig.2.6.

Fig.2.6

Remark. All the cases of relationships between ¢¢ and oy are covered by Cases 1-6,
except their symmetric case.
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§3. Application to a Stefan Problem with hysteresis

In this section, we consider a Stefan problem with hysteresis, which is a model for
solid-liquid phase transition with superheating and undercooling effect.
In [8], the following system was treated:

[0+w]:— A0 = f(t,z) Q:=(0,+00) x £, (3.1)
wy (¢, T) + aIﬂ(tﬂ:)(w(t: z)) 3 0, (t,z) € Q, (3:2)
f=g(z) onX:=(0,+00)xT, (3.3)
0(0,-) = bo(z), w(0,-) =wo(x) in Q. (3.4)

where 2 is a bounded domain in RN (N > 1), with smooth boundary I' = 99, Olp(tz) is
the subdifferential of the indicator function Ip ) (-) on the interval [f,(8(t, z)), fa(6(¢, z))l,
fo and f; are given continuous and nondecreasing functions on R such that fa< faon R
and f(t,z), g(z), 6o(z), wo(x) are prescribed as data.

As well known [5, 11], (3.2) is equivalent to the hysteresis operator F(-;wp):

w(tv .’E) = {F(G(a x);wO(m))](t)7 (t,.’E) € Qy

whose input-output relation £(-) — w(-) = F(&wy)(-) is illustrated in Figure 3.1 (in
detail, we refer for it to [11]).

w=fd,(£) AT
,yrl/
[ L A

<
™~

Fig.3.1
For simplicity, system (3.1)-(3.4) is denoted by (SP).

Definition 3.1. A couple of functions {#,w} is called a (weak) solution of (SP) on R,
if the following conditions (S1)-(S3) are satisfied:
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(S1) 6 € Wi (Ry; L)) N Lis(Ry; HY(Q)),
w € Wi (Ry; LA()).

(S2) [0 +w]: — A8 = f(t,z) in H(Q) for a.e. t>0and

O(t)[r =gonI' (in the sense of traces) for all t € R,.

(S3) There exists a function ¢ € L7,,((0, +00); L*(Q)) such that
£(t,x) € Olgpz)(w(t,z)) forae t>0

and
wi(t,z) + €(t,z) =0 for ae. (¢,z) € Ry x Q.

By [8; Theorems 2.1, 5.1], an existence-uniqueness result was obtained for the Cauchy
problem of (SP) as well as the existence of a periodic solution for (SP). Also the equi-
librium stability and periodic stability of the solution {6, w} of (SP) were discussed. In

particular, in case f(t,-) is periodic in time, it was proved that the function @ is asymptot-
 ically periodic, but the asymptotically periodicity of the function w has not been proved
yet, in the higher dimensional case. |

In this section we give a proof of the asymptotically periodicity of w, too, by applying
Theorem 2.1, which is an improvement of [8; Theorem 6.2]. Our result is mentioned
below.

Theorem 3.1. Let 0 < Ty < +00, g € H3(T), 8y € HX(Q) with Gplr = g a.e. onT, wy €
L2(Q) with f,(80) < wo < fa(6) a.e. on Q and f = f* + f2 with f* € L (Ry; L*(Q))
and f2 € Wi (R, ; H-Y(Q)). Suppose that
@) = f(t+To) in LX)+ H'(Q) for a.e. t € Ry,
and there are two functions f., f* € H1(Q) such that
fi <fO L frin H Y Q) forae teR,.

Then for any solution {8, w} of (SP) associated with initial data {60, wo}, there exists a
- Ty-periodic solution {6,,w,} of (SP) such that

0(t,z) — ,(t,x) — O for a.e. z € Q, (3.5)
w(t,z) — wy(t,x) — 0 for a.ex €, (3.6)

as t — 4+00.

By using Theorem 2.1 and the following lemma, we can prove Theorem 3.1.

Lemma 3.1. Suppose all the assumption of Theorem 3.1 hold. Then, for any solution
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{0, w} of (SP) with initial data {60, wo}, there exist a finite time to € R, and f ®, fe €
- H7Y(Q) such that

foo S fu < flto) < f* < f™ in HH(Q),
and
Zoo S O(t0) £ 2°  and  fo(2zeo) S w(to) < fa(2°)  a.e. on Q, (3.7)
where 2o and z*° are the solutions of the following stationary problems:

—AZoo = fo M HHR), 2olr=g a.e onT

—Az®° =f* i H'Y(Q), 2°r=g ae onl.

4. Application to double obstacle problems for PDEs

Let us consider a double obstacle problem for a PDE of the form

us — kAU + Oy (u) +g(u) 50 inQ:=R, xQ, (4.1)
Ou : |
o 0 onX:=R, xT, (4.2)

where () is a bounded domain in RV (1 < N < +00), with smooth boundary I' := 8, for
each t € R, :=[0,400), g(u) = u® — v and given obstacle functions oy, o; € Wii2(R,),

K(t) .= {z € L*(Q); oo(t) <2< 0y(t) ae. on Q},
OIk(y is the subdifferential of the indicator function Ix(;) on L2(f) defined by

0, if z € K(t),

+00, otherwise.

IK(t) (z) = {

For simi)licity, we denote (4.1)-(4.2) by (P) and (4.1)-(4.2) with Ty-periodic condition
u(t) = u(t + Tp) by (PP). |
We assume further that the obstacle functions o;, ¢ = 1, 2, satisfy

oo(t) < o1(t), oo(t) = oo(t +Tb) and o1(t) = o1 (t +Tp), V¢ € R,

Definition 4.1. (1) A function u : R, — L*(Q) is called a solution of (P), if it satisfies
the following conditions (P1)-(P3):

(P1) u € C(Ry; LA(Q)) N L2,.((0, +00); HX(R)) N W52((0, +00); L2(R2)).
(P2) u(t) € K(t) for all t € R,.
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(P3) There is a function £ € L% (R+; L2()), with £(t) € 8l (u(t)) for a.e. t € Ry,
such that

(W (t) + £(t) + g(u(t)), 2) + /Q Vu(t) - Vadz = 0
for all z € H*({2) and a.e. t € R;.
(2) A solution » of (P) is called that of (PP) if u(t) = u(t+ To) for all t € R,

As is easily checked, (P) is written in the form:
(E) /() +0¢"(u(t) +9(u(t)) 50, t>0,

in Hilbert space H := L*(Q), where 8¢ is the subdifferential of time-dependent proper
l.s.c. convex function ¢*(-) on H defined by

Hz) = { %fQIVdex if z € K(t) N H(Q),

400 otherwise.

According to [3, 10, 13], the Cauchy problem for (P) has one and only one solution,
provided that the initial value is prescribed in K(0), and the To-periodic problem (PP)
has at least one solution. _

Here noted that if the initial value ug is constant on 2, then the solution of (P) with
u(0, ) = uyp is that of the scalar double obstacle problem (2.5) treated in section 2.

Now, let us consider the large time behaviour of solutions of (P). Our main theorem
is stated as follows:

Theorem 4.1. (1) Suppose that obstacle functions satisfy
oo(t) <0< 01(t), VteR,.

Then, any solution u of (P) with initial value ug > 0 for a.e. on § or ug < 0 for a.e. on
Q is asymptotically Ty-periodic. More precisely, one of the following three cases (i), (ii)
and (iii) occurs:
(i) u(t) — u*(t) — 0 in L®(Q) as t — +oo, where u* is the mazimal To-periodic solution
of the scalar double obstacle problem (2.5).
(i) u(t) — u.(t) — 0 in L®() ast — +oo, where u, is the minimal To-periodic solution
of the scalar double obstacle problem (2.5).
(i) u(t) — —1 or 0 or 1 in L*(Q) as t — +oo.

(2) Suppose that there ezists to € [0,Tp| such that

Uo(t()) >0o0r0> Ul(tg).

Then, any solution of (P) is asymptotically Ty-periodic, namely, the following (iv) occurs:
(iv) u(t) — up(t) — 0 in L®(Q) ast — +oo, where w, is the unique To-periodic solution

of (2.5).
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Now, we give numerical experiences for (P) in one dimensional case,
| Ut — KUgg + g(u) + Ok (u(t)) 20 in Q:= R, x (0,1), (4.3)

uz(t,0) = ux(t,1) =0 for ¢t > 0. (4.4)
Here we consider the following cases.

Case 1. We assume that
Uo(t) <-1 and 1 < 0’1(t), Vt e R+.

In this case, (iii) of Theorem 4.1 holds. If up = 0 on £, then the solution u = 0 for all
(t,z) € Q. In the initial data uy < 0 a.e. on Q with /9 ug(z)dz < 0, the solution v of
(4.3)-(4.4) with initial value uy converges to —1 in L*(Q2) as t — +o0.

In the initial data 4o > 0 a.e. on  with /9 uo(z)dz > 0, the solution u of (4.3)-(4.4)

with initial value uo converges to 1 in L®(Q) as ¢t — +o0o. In this case, the behaviour of
solution u of (4.3)-(4.4) is illustrated in Fig.4.1

Fig.4.1

Case 2. Assume that 0¢(t) < 0 < 0y(t) for any ¢t € R,
—1<o0p(ty) forsomety€ Ry and oy(t) <1 forsomet; € Ry.

If up = 0 on §, then the solution u = 0 for all (¢,z) € Q. |
In case up > 0 a.e. on ) with /9 ug(z)dz > 0, the solution u of (4.3)-(4.4) with initial

value ug converges to u*(t) in L*°(f2) as t — +o00, where u* is the maximal Ty-periodic
solution of the scalar double obstacle problem (2.5).
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In case ug < 0 a.e. on 2 and fnuodx < 0, the solution u of (4.3)-(4.4) with initial

value 4y converges to u.(t) in L=(Q) as t — 400, where u, is the minimal Tp-periodic
solution of the scalar double obstacle problem (2.5). '
In Case 2, the behaviour of solution u of (P) is illustrated in Fig.4.2-4.3.

Fig.4.2

Fig.4.3

Case 3. Assume that

oo(to) >0 for some tp € B and o0(t1) <0 for somet; € R,.
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In this case, the scalar double obstacle problem (2.5) has a unique Ty-periodic solution
up. Hence we see that any solution u of (4.3)-(4.4) converges to u, in L(Q) as t — +oo.
The behaviour of solution u of (4.3)-(4.4) is illustrated in the Fig.4.4.

Fig4.4

Remark. (1) In Case 1, N. Chafee and E. F. Infante [1] showed that any solution u of
(4.3)-(4.4) converges to some stationary solution of (4.3)-(4.4) in one dimensional case.
But in higher dimensional case, the asymptotic behaviour of any solution u is still open.

(2) In Case 2, if the initial function up changes the sign, we do not know if the
solution u is asymptotically Tp-periodic or not. The behaviour of solution u of (4.3)-
(4.4) is illustrated in Fig.4.5. Our numerical experiences suggest the To-periodicity of any
solution.

Fig.4.5
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