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\S 1. Introduction

Recently, we have shown that there exists a time-periodic global attractor for time-
periodic dynamical systems governed by subdifferentials in Hilbert spaces (cf. [3]). But
we do not know the large-time behaviour of each solution. In general, the solution does
not converge to any periodic solution, although the system is time-periodic (cf. [6, 7]).

In this paper we consider time-periodic double obstacle problems in order to show that
solutions are asymptotically periodic, if given obstacle functions are periodic in time.

At first, we consider a scalar $T_{0}$-periodic double obstacle problem of the form:

$u’(t)+\partial I_{K(t)(u(t}))+g(u(t))\ni 0$ , $t\geq 0$ , (1.1)

where for each $t\geq 0$ and given $T_{0}$-periodic obstacle functions $\sigma_{0},$ $\sigma_{1}$ on $R_{+}:=[0, +\infty)$

$K(\mathrm{t}):=\{Z\in R;\sigma \mathrm{o}(t)\leq z\leq\sigma 1(t)\}$ ,

$\partial I_{K(t)}$ is a subdifferential of the indicator function $I_{K(t)}(\cdot)$ on $R$ and $g$ is a smooth function
on $R$ which is in general non-monotone on $R$ such as $g(u)=u^{3}-u$ .

In this case, we shall show that any solution of (1.1) is asymptotically $T_{0}$-periodic.
Namely, for any solution $u$ of (1.1) there is a $T_{0}$-periodic solution $u_{p}$ of (1.1) such that

$u(t)-u_{p}(t)arrow 0$ as $tarrow+\infty$ .

Next, we give two applications of our result on scalar $T_{0}$-periodic obstacle problems.
In the first application we discuss the asymptotically $T_{0}$-periodicity of the solution of a
Stefan problem with hysteresis in the higher dimensional case which is left unsolved in
[8].

In the second application we consider a partial differential equation with $T_{0}$-periodic
double obstacles of the form:

$u’-\kappa\Delta u+g(u)+\partial I_{K(t)(u(t}))\ni 0$ in $Q:=R_{+}\cross\Omega$ , (1.2)
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$\frac{\partial u}{\partial n}=0$ on $\Sigma:=R_{+}\cross\Gamma$ , (1.3)

where $\Omega$ is a bounded domain in $R^{N}(1\leq N<+\infty)$ , with smooth boundary $\Gamma:=\partial\Omega$,
for each $t\in R_{+}:=[0, +\infty)$ and given obstacle functions $\sigma_{0},$ $\sigma_{1},$ $K(t)$ is the set

$\{z\in L^{2}(\Omega);\sigma_{0}(t, \cdot)\leq z\leq\sigma_{1}(t, \cdot)$ $\mathrm{a}.\mathrm{e}$ . on $\Omega\}$ ,

$\partial I_{K(t)}$ is the subdifferential of the indicator function $I_{K(t)}$ on $L^{2}(\Omega)$ and $g$ is a non-
monotone smooth function on $R$. Under some assumptions, we shffi show that solutions
of $(1.2)-(1.3)$ are asymptotically $T_{0}$-periodic.

\S 2. Scalar double obstacle problems

Let $0<T_{0}<+\infty$ be fixed and we assume that given obstacle functions $\sigma_{0},$ $\sigma_{1}\in$

$W^{1,2}(R_{+})_{\mathrm{S}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{p}$ the following conditions:

$\sigma_{0}\leq\sigma_{1}$ on $R_{+}$ , (2.1)

$\sigma_{0}(t)=\sigma \mathrm{o}(t+T_{0})$ and $\sigma_{1}(t)=\sigma_{1}(t+T_{0})$ for any $t\geq 0$ . (2.2)

For each time $t\geq 0$ , we define the closed set $K(\mathrm{t})$ and proper l.s.c. convex function $I_{K(t)}$

on $R$ , respectively, by
$K(t):=\{Z\in R;\sigma \mathrm{o}(t)\leq z\leq\sigma_{1}(t)\}$ (2.3)

and

$I_{K(t)}(z):=\{$

$0$ if $z\in K(t)$ ,

$+\infty$ otherwise.
(2.4)

Now let us consider an ordinary differential equation with $T_{0}$-periodic double obstacle
of the form

$u’(t)+\partial I_{K(t)(u(\mathrm{t}}))+g(u(t))\ni 0$ , $t\geq 0$ , (2.5)

where $\partial I_{K(t)}$ is the subdifferential of $I_{K(t)}(\cdot)$ and $g$ is a non-monotone smooth function on
$R$ , in general.

Definition 2.1. (1) A function $u:R_{+}arrow R$ is called a solution of (2.5), if it satisfies the
following conditions $(\mathrm{C}1)-(\mathrm{c}3)$ :

(C1) $u\in W_{l_{\mathit{0}}}^{1}’ c2(R_{+})$ .

(C2) $u(t)\in K(t)$ for any $t\in R_{+}$ .

(C3) There exists a function $\xi\in L_{loc}^{2}(R_{+})$ such that

$\xi(t)\in\partial I_{K(t)(u(t}))$ for $\mathrm{a}.\mathrm{e}$. $t\in R_{+}$

and
$u’(t)+\xi(t)+g(u(t))=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in R_{+}$ .
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(2) A function $u:R_{+}arrow R$ is called a solution of the Cauchy problem for (2.5), if $u$ is a
solution of (2.5) and satisfies the initial condition:

$u(0)=u_{0}$ .

(3) A function $u:R_{+}arrow R$ is called a $T_{0}$-periodic solution of (2.5), if $u$ is a solution of
(2.5) and satisfies the $T_{0}$-periodic condition:

$u(t+T_{0})=u(t)$ for any $t\geq 0$ .

We can easily see that (2.5) is reformulated as an evolution equation governed by
time-dependent subdifferentials of the form

(E) $u’(t)+\partial\varphi(t(ut))+g(u(t))\ni 0$ in $H$, $t>0$ ,

where $H$ is a real Hilbert space, $\partial\varphi^{t}$ is the subdifferentials of time-dependent convex
function $\varphi^{t}(\cdot)$ on $H$ and $g(\cdot)$ is a Lipschitz operator on $H$. In fact, we take $R$ as the Hilbert
space $H$ and $I_{K(t)}(\cdot)$ as $\varphi^{t}(\cdot)$ . By (2.2), we easily see that the class $\{\varphi^{t}\}:=\{\varphi^{t};t\in R_{+}\}$

of proper l.s.c. convex functions $\varphi^{t}$ on $H$ satisfies $T_{0}$-periodicity condition

$\varphi^{t+\tau_{0}}(\cdot)=\varphi(t.)$ on $H$, $\forall t\in R_{+}$ .
Hence, by applying the abstract results in [3] we get the existence-uniqueness and global
boundedness results of the solution of the Cauchy problem for (2.5).

As a main result on the asymptotic behaviour of solution $u$ of (2.5), we have the
following theorem.
Theorem 2.1. Assume that $g(\xi)=0$ has a finite number of roots. Then any solution $u$

of (2.5) is asymptotically $T_{0}$ -periodic, more precisely, one of the following four cases (1),
(2), (3) and (4) occurs:
(1) $u(t)-u^{*}(t)arrow \mathrm{O}$ as $tarrow+\infty$ , where $u^{*}$ is the maximal $T_{0}- pe\dot{n}odic$ solution of (2.5).
(2) $u(t)-u_{*}(t)arrow \mathrm{O}$ as $tarrow+\infty$ , where $u_{*}$ is the minimal $T_{0}$ -periodic solution of (2.5).
(3) There is a root $\xi_{0}$ of $g(\xi)=0$ such that $u(t)arrow\xi_{0}$ as $tarrow+\infty$ .
(4) $u(t)-u_{p}(t)arrow 0$ as $tarrow+\infty$ , where $u_{p}$ is the unique $T_{0}$-periodic solution of (2.5).

By using some numerical experiences, we $\mathrm{s}\dot{\mathrm{h}}\mathrm{a}\mathrm{l}\mathrm{l}$ explain Theorem 2.1.
For simplicity, we assume $\mathrm{t}\mathrm{h}\backslash$at $g(u)=u^{3}-u$ , namely, there are three roots of $g(\xi)=0$ .
Now, we consider the following six obstacle cases.

Case 1. We assume that

$\sigma_{0}(t)\leq-1$ and $1\leq\sigma_{1}(t)$ , $\forall t\in R_{+}$ .

In this case, any solution $u$ of (2.5) converges to one of stationary solutions-l, $0,1$ of
(2.5) as $tarrow+\infty$ . The behaviour of solution $u$ of (2.5) is illustrated in the Fig.2.1.
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$\mathrm{t}$

Fig.2.1

$\underline{\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}2.}$ Assume that $\sigma_{1}(t)\geq 0$ for any $t\in R_{+}$ ,

$\sigma_{0}(t)\leq-1$ , $\forall t\in R_{+}$ and $\sigma_{1}(t_{0)}<1$ f.or some $t_{0}\in R_{+}$ .

In this case, any solution $u$ with initial data $u_{0}>0$ converges to the maximal $T_{0}$-periodic
solution of (2.5). In fact, the solution $u$ coincide with the maximal $T_{0}$-periodic solution
of (2.5) after a certain finite time $t_{1}\in R_{+}$ . For the other data, the solution $u$ converges
to $0$ or-.l fl.q $f$. $arrow\neq(\mathrm{x}7_{-}\mathrm{T}\mathrm{h}\mathrm{p}$. $\mathrm{b}\rho.\mathrm{h}\mathrm{f}\mathrm{l}.\mathrm{v}\mathrm{i}\circ 11T\mathrm{n}\mathrm{f}\backslash \mathrm{q}\circ 1\rceil \mathrm{l}\mathrm{f}\mathrm{l}\mathrm{i}$($1\mathfrak{n}\mathrm{n}/$. nf 19-.5) i.g iltll.q$\mathrm{f}\mathrm{t}\Gamma \mathrm{f}\mathrm{l}.\mathrm{f}_{\mathfrak{l}\rho \mathrm{d}}$ in the Fig.2.2.

$\mathrm{R}$

1

$0$ $\mathrm{t}$

$-]$

Fig.2.2

Case 3. Assume that $\sigma_{0}(t)<0\leq\sigma_{1}(t)$ for any $t\in R_{+}$ ,

$-1<\sigma_{0}(t_{0})$ for some $t_{0}\in R_{+}$ and $\sigma_{1}(\mathrm{t}_{1})<1$ for some $t_{1}\in R_{+}$ .

In this case, for any solution $u$ of (2.5) with initial data $u_{0}>0$ (resp. $u_{0}<0$) there is a
finite time $t_{2}\in R_{+}$ such that

$u(t_{2})=\sigma_{1}(t_{2})$ (resp. $\sigma_{0}(t_{2})$).
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Fig.2.3

Case 4. Assume that

$\sigma_{0}(t_{0})\leq-1$ , $\forall t\in R_{+}$ and $\sigma_{1}(t_{0})<0$ for some $t_{0}\in R_{+}$ .

Fig.2.4

Case 5. Assume that $\sigma_{0}(t)<0$ for any $t\in R_{+}$ ,

$-1<\sigma_{0}(t_{0)}$ for some $t_{0}\in R_{+}$ and $\sigma_{1}(t_{1})<0$ for some $t_{1}\in R_{+}$ .
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Fig.2.5

Case 6. Assume that

$0\leq\sigma_{0}(t_{0})$ for some $t_{0}\in R_{+}$ and $\sigma_{1}(t_{1})\leq 0$ for some $t_{1}\in R_{+}$ .

In this case, it follows $\mathrm{h}\mathrm{o}\mathrm{m}$ the facts of Case 2-4 that there exists a unique $T_{0}$-periodic
solution $u_{p}$ of (2.5) and any solution $u$ of (2.5) coincide with the unique $T_{0}$-periodic
solution $u_{p}$ of (2.5) after some finite time.

The $\mathrm{b}\rho.\mathrm{h}\mathrm{f}\mathrm{l}1’.\mathrm{i}\cap 11\Gamma \mathrm{n}\mathrm{f}.\mathrm{Q}\cap$] $\iota \mathrm{l}\mathrm{f}.\mathrm{i}\cap Y\iota\eta/$. $\mathrm{n}\mathrm{f}(\eta-.\mathrm{s})\mathrm{i}.\mathrm{Q}\mathrm{i}\mathrm{l}\iota\iota \mathrm{l}.\mathrm{q}+_{\iota \mathrm{r}}\mathrm{f}\mathrm{l}.\mathrm{f}.P.\mathrm{d}\mathrm{i}\eta \mathrm{t}.\mathrm{h}P$ . Fi $\sigma_{-}2_{-}6-$

$\mathrm{R}$

1

$0$
$\mathrm{t}$

$-]$

Fig.2.6

Remark. All the cases of relationships between $\sigma_{0}$ and $\sigma_{1}$ are covered by Cases 1-6,
except their symmetric case.

44



\S 3. Application to a Stefan Problem with hysteresis

In this section, we consider a Stefan problem with hysteresis, which is a model for
solid-liquid phase transition with superheating and undercooling effect.

In [8], the following system was treated:

$[\theta+w]_{i}-\Delta\theta=f(\mathrm{t},X)$ $Q:=(0, +\infty)\cross\Omega$ , (3.1)

$w_{t}(t,X)+\partial I_{\theta()(w(t,)}t,xX)\ni 0$, $(t, x)\in Q$ , (3.2)
$\theta=g(x)$ on $\Sigma:=(0, +\infty)\cross \mathrm{r}$, (3.3)

$\theta(0, \cdot)=\theta_{0(x})$ , $w(0, \cdot)=w_{\mathrm{o}(X})$ in $\Omega$ . (3.4)
where $\Omega$ is a bounded domain in $R^{N}(N\geq 1)$ , with smooth boundary $\Gamma=\partial\Omega,$ $\partial I_{\theta(x)}t$, is
the subdifferential of the indicator function $I_{\theta(t,x)}(\cdot)$ on the interval $[f_{a}(\theta(t, x)), fd(\theta(t, X))]$ ,
$f_{a}$ and $f_{d}$ are given continuous and nondecreasing functions on $R$ such that $f_{a}\leq f_{d}$ on $R$

and $f(t,x),$ $g(x),$ $\theta_{0}(x),$ $w_{0}(x)$ are prescribed as data.
As well known $[5, 11]$ , (3.2) is equivalent to the hysteresis operator $F(\cdot;w_{0})$ :

$w(t,x)=[F(\theta(\cdot, x);w0(X))](t)$ , $(t,x)\in Q$ ,

Fig.3.1

For simplicity, system $(3.1)-(3.4)$ is denoted by $(\mathrm{S}\mathrm{P})$ .

Definition 3.1. A couple of functions $\{\theta, w\}$ is called a (weak) solution of $(\mathrm{S}\mathrm{P})$ on $R_{+}$ ,
if the following conditions $(\mathrm{S}1)-(\mathrm{S}3)$ are satisfied:
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(S1) $\theta\in W_{lo}^{1,2}c(R+;L^{2}(\Omega))\mathrm{n}L_{lc}\infty_{o}(R+;H^{1}(\Omega))$ ,
$w\in W_{lc}^{1,2}(\mathit{0}+;RL^{2}(\Omega))$ .

(S2) $[\theta+w]_{t}-\Delta\theta=f(t,x)$ in $H^{-1}(\Omega)$ for $\mathrm{a}.\mathrm{e}$. $t\geq 0$ and

$\theta(t)|_{\mathrm{r}}=g$ on $\Gamma$ (in the sense of traces) for all $t\in R_{+}$ .

(S3) There exists a function $\xi\in L_{loc}^{2}((\mathrm{o}, +\infty);L^{2}(\Omega))$ such that

$\xi(t, x)\in\partial I_{\theta(t,x})(w(t, X))$ for $\mathrm{a}.\mathrm{e}$ . $t\geq 0$

and
$w_{t}(t,x)+\xi(t,x)=0$ for $\mathrm{a}.\mathrm{e}$ . $(t,x)\in R_{+}\cross\Omega$ .

By [$8|$ Theorems 2.1, 5.1], an existence-uniqueness result was obtained for the Cauchy
problem of $(\mathrm{S}\mathrm{P})$ as well as the existence of a periodic solution for $(\mathrm{S}\mathrm{P})$ . Also the equi-
librium stability and periodic stability of the solution $\{\theta,w. \}$ of $(\mathrm{S}\mathrm{P})$ were discussed. In
particular, in case $f(t, \cdot)$ is periodic in time, it was proved that the function $\theta$ is asymptot-
ically periodic, but the asymptotically periodicity of the function $w$ has not been proved
yet, in the higher dimensional case.

In this section we give a proof of the asymptotically periodicity of $w$ , too, by applying
Theorem 2.1, which is an improvement of [8; Theorem 6.2]. Our result is mentioned
below.

Theorem 3.1. Let $0<T_{0}<+\infty,$ $g\in H^{\frac{1}{2}}(\Gamma),$ $\theta_{0}\in H^{1}(\Omega)$ with $\theta_{0}|_{\Gamma}=g$ a. $e$ . on $\mathrm{r}_{f}w_{0}\in$

$L^{2}(\Omega)$ with $f_{a}(\theta_{0})\leq w_{0}\leq f_{d}(\theta_{0)}a.e$ . on $\Omega$ and $f=f^{1}+f^{2}$ with $f^{1}\in L_{loc}^{2}(R_{+};L^{2}(\Omega))$

and $f^{2}\in W_{l\circ c}^{1,11}(R+;H-(\Omega))$ . Suppose that

$f(t)=f(t+T_{0})$ in $L^{2}(\Omega)+H^{-1}(\Omega)$ for a. $e$ . $t\in R_{+}$ ,

and there are two functions $f_{*},$ $f^{*}\in H^{-1}(\Omega)$ such that

$f_{*}\leq f(\mathrm{t})\leq f^{*}$ in $H^{-1}(\Omega)$ for a. $e$ . $t\in R_{+}$ .

Then for any solution $\{\theta,w\}$ of $(SP)$ associated urith initial data $\{\theta_{0}, w_{0}\}$ , there exists a
$T_{0}$ -periodic $\mathit{8}olution\{\theta_{p}, w_{p}\}$ of $(SP)$ such that

$\theta(t_{X},)-\theta_{p}(t, X)arrow \mathrm{O}$ for a. $e$ . $x\in\Omega$ , (3.5)

$w(t_{X},)-w_{p}(t, X)arrow \mathrm{O}$ for a. $ex\in\Omega$ , (3.6)

$a\mathit{8}\mathrm{t}arrow+\infty$ .

By using Theorem 2.1 and the following lemma, we can prove Theorem 3.1.

Lemma 3.1. Suppose all the assumption of Theorem 3.1 hold. $Then_{f}$ for any solution
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$\{\theta,w\}$ of $(SP)$ with initial data $\{\theta_{0}, w_{0}\}_{\mathrm{z}}$ there e:nist a finite time $t_{0}\in R_{+}$ and $f^{\infty},$ $f_{\infty}\in$

$H^{-1}(\Omega)$ such that
$f_{\infty}\leq f_{*}\leq f(t_{0})\leq f^{*}\leq f^{\infty}$ in $H^{-1}(\Omega)$ ,

and
$z_{\infty}\leq\theta(t_{0})\leq z^{\infty}$ and $f_{a}(z_{\infty})\leq w(t_{0})\leq f_{d}(z^{\infty})$ $a.e$ . on $\Omega$ , (3.7)

where $z_{\infty}$ and $z^{\infty}$ are the solutions of the following $stationarl/$ problems:

$-\triangle z_{\infty}=f_{\infty}$ in $H^{-1}(\Omega)$ , $z_{\infty}|_{\Gamma}=g$ a. $e$ . on $\Gamma$ ;

$-\Delta_{Z^{\infty}}=f^{\infty}$ in $H^{-1}(\Omega)$ , $z^{\infty}|\mathrm{r}=g$ a. $e$ . on F.

4. Application to double obstacle problems for PDEs

Let us consider a double obstacle problem for a PDE of the form

$u_{t}-\kappa\Delta u+\partial I_{K(}.)(u)+g(u)\ni \mathrm{o}$ in $Q:=R_{+^{\mathrm{x}}}\Omega$ , (4.1)

$\frac{\partial u}{\partial n}=0$ on $\Sigma:=R_{+}\cross\Gamma$ , (4.2)

where $\Omega$ is a bounded domain in $R^{N}(1\leq N<+\infty)$ , with smooth boundary $\Gamma:=\partial\Omega$ , for
each $t\in R_{+}:=[0, +\infty),$ $g(u)=u^{3}-u$ and given obstacle imctions $\sigma_{0},$

$\sigma_{1}\in W_{l_{oC}}^{1,2}(R_{+})$ ,

$K(t):=\{z\in L^{2}(\Omega);\sigma_{0}(\mathrm{t})\leq Z\leq\sigma 1(t)$
$\mathrm{a}.\mathrm{e}$ . on $\Omega\}$ ,

$\partial I_{K(t)}$ is the subdifferential of the indicator function $I_{K(t)}$ on $L^{2}(\Omega)$ defined by

$I_{K(t)}(Z):=\{$

$0$ , if $z\in K(t)$ ,
$+\infty$ , otherwise.

For simplicity, we denote $(4.1)-(4.2)$ by (P) and $(4.1)-(4.2)$ with $T_{0}$-periodic condition
$u(t)=u(t+T_{0})$ by $(\mathrm{P}\mathrm{P})$ .

We assume further that the obstacle functions $\sigma_{i},$ $i=1,2$ , satisfy

$\sigma_{0}(t)\leq\sigma_{1}(t),$ $\sigma_{0}(t)=\sigma \mathrm{o}(t+T_{0})$ and $\sigma_{1}(t)=\sigma_{1}(t+T_{0})$ , $\forall t\in R_{+}$ .

Definition 4.1. (1) A function $u:R_{+}arrow L^{2}(\Omega)$ is called a solution of (P), if it satisfies
the following conditions $(\mathrm{P}1)_{-}(\mathrm{p}3)$ :

(P1) $u\in C(R_{+};L^{2}(\Omega))\cap L_{\iota_{oC}}^{2}((0, +\infty);H^{1}(\Omega))\cap W_{l_{o\mathrm{C}}}^{1,2}((\mathrm{o}, +\infty);L^{2}(\Omega))$.

(P2) $u(t)\in K(t)$ for all $t\in R_{+}$ .
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(P3) There is a function $\xi\in L_{lo}^{2}(CR+;L^{2}(\Omega))$ , with $\xi(t)\in\partial I_{K(t)(u(t}))$ for $\mathrm{a}.\mathrm{e}$ . $t\in R_{+}$ ,
such that

$(u’(t)+ \xi(t)+g(u(t)), Z)+\int_{\Omega}\nabla u(t)\cdot\nabla Zdx=0$

for all $z\in H^{1}(\Omega)$ and $\mathrm{a}.\mathrm{e}$ . $t\in R_{+}$ .

(2) A solution $u$ of (P) is called that of $(\mathrm{P}\mathrm{P})$ if $u(t)=u(t+T_{0})$ for all $t\in R_{+}$ .

As is easily checked, (P) is written in the form:

(E) $u’(t)+\partial\varphi^{t}(u(t))+g(u(t))\ni 0$ , $t>0$ ,

in Hilbert space $H:=L^{2}(\Omega)$ , where $\partial\varphi^{t}$ is the subdifferential of time-dependent proper
l.s.c. convex function $\varphi^{t}(\cdot)$ on $H$ defined by

$\varphi^{t}(z):=\{$

$\frac{1}{2}\int_{\Omega}|\nabla z|^{2}dX$ if $z\in K(\mathrm{t})\cap H^{1}(\Omega)$ ,

$+\infty$ otherwise.

According to [3, 10, 13], the Cauchy problem for (P) has one and only one solution,
provided that the initial value is prescribed in $K(\mathrm{O})$ , and the $T_{0}$-periodic problem $(\mathrm{P}\mathrm{P})$

has at least one solution.
Here noted that if the initial value $u_{0}$ is constant on $\Omega$ , then the solution of (P) with

$u(0, \cdot)=u_{0}$ is that of the scalar double obstacle problem (2.5) treated in section 2.
Now, let us consider the large time behaviour of solutions of (P). Our main theorem

is stated as follows:

Theorem 4.1. (1) Suppose that obstacle functions satisfy

$\sigma_{0}(t)\leq 0\leq\sigma 1(t)$ , $\forall t\in R_{+}$ .

Then, any solution $u$ of $(P)$ with initial value $u_{0}\geq 0$ for a. $e$ . on $\Omega$ or $u_{0}\leq 0$ for a. $e$ . on
$\Omega$ is asymptotically $T_{0}$ -periodic. More precisely, one of the following three cases (i), (ii)
and (iii) occurs:
(i) $u(t)-u^{*}(\mathrm{t})arrow \mathrm{O}$ in $L^{\infty}(\Omega)$ as $tarrow+\infty$ , where $u^{*}$ is the maximal $T_{0^{-}}pe$riodic soluhon

of the scalar double obstacle problem (2.5).
(ii) $u(t)-u_{*}(t)arrow \mathrm{O}$ in $L^{\infty}(\Omega)$ as $\mathrm{t}arrow+\infty$ , where $u_{*}$ is the minimal $T_{0}$ -periodic solution

of the scalar double obstacle problem (2.5).
(iii) $u(t)arrow-1$ or $0$ or 1 in $L^{\infty}(\Omega)$ as $tarrow+\infty$ .

(2) Suppose that there exists $t_{0}\in[0, T_{0}]$ such that

$\sigma_{0}(t_{0})>0$ or $0>\sigma_{1}(t\mathrm{o})$ .

Then, any solution of $(P)$ is asymptotically $T_{0^{-pe7}}\dot{\mathrm{B}}odicJ$ namely, the following (iv) occurs:
(iv) $u(t)-u_{p}(t)arrow 0$ in $L^{\infty}(\Omega)$ as $tarrow+\infty$ , where $u_{\mathrm{p}}$ is the unique $T_{0}$ -periodic solution

of (2.5).
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Now, we give numerical experiences for (P) in one dimensional case,

$u_{t}-\kappa u_{xx}+g(u)+\partial I_{K()(u}t(t))\ni 0$ in $Q:=R_{+}\mathrm{X}(0,1))$ (4.3)

$u_{x}(t, \mathrm{o})=u_{x}(t, 1)=0$ for $t>0$ . (4.4)
Here we consider the following cases.

$\underline{\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{l}.}$ We assume that

$\sigma_{0}(t)\leq-1$ and $1\leq\sigma_{1}(t)$ , $\forall t\in R_{+}$ .

In this case, (iii) of Theorem 4.1 holds. If $u_{0}\equiv 0$ on $\Omega$ , then the solution $u\equiv 0$ for all
$(t, x)\in Q$ . In the initial data $u_{0}\leq 0\mathrm{a}.\mathrm{e}$. on $\Omega$ with $\int_{\Omega}u_{0}(X)dx<0$ , the solution $u$ of
$(4.3)-(4.4)$ with initial value $u_{0}$ converges to-l in $L^{\infty}(\Omega)$ as $tarrow+\infty$ .

In the initial data $u_{0}\geq 0\mathrm{a}.\mathrm{e}$ . on $\Omega$ with $\int_{\Omega}u_{0}(X)dx>0$ , the solution $u$ of $(4.3)-(4.4)$

with initial value $u_{0}$ converges to 1 in $L^{\infty}(\Omega)$ as $\mathrm{t}arrow+\infty$ . In this case, the behaviour of
solution $u$ of $(4.3)-(4.4)$ is illustrated in Fig.4.1

Fig.4.1

Case 2. Assume that $\sigma_{0}(t)<0\leq\sigma_{1}(t)$ for any $t\in R_{+}$ ,

$-1<\sigma_{0}(t_{0})$ for some $t_{0}\in R_{+}$ and $\sigma_{1}(t_{1})<1$ for some $\mathrm{t}_{1}\in R_{+}$ .

If $u_{0}\equiv 0$ on $\Omega$ , then the solution $u\equiv 0$ for all $(t,x)\in Q$ .
In case $u_{0}\geq 0\mathrm{a}.\mathrm{e}$ . on $\Omega$ with $\int_{\Omega}u_{0}(x)dx>0$ , the solution $u$ of $(4.3)-(4.4)$ with initial

value $u_{0}$ converges to $u^{*}(t)$ in $L^{\infty}(\Omega)$ as $tarrow+\infty$ , where $u^{*}$ is the maximal $T_{0}$-periodic
solution of the scalar double obstacle problem (2.5).
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In case $v_{O}\leq 0\mathrm{a}.\mathrm{e}$ . on $\Omega$ and $\int_{\Omega}u_{0}dx<0$ , the solution $u$ of $(4.3)-(4.4)$ with initial
value $v_{\mathfrak{v}}$ converges to $u_{*}(t)$ in $L^{\infty}(\Omega)$ as $tarrow+\infty$ , where $u_{*}$ is the minimal $T_{0}$-periodic
solution of the scalar double obstacle problem (2.5).

In Case 2, the behaviour of solution $u$ of (P) is illustrated in Fig.4.2-4.3.

Fig.4.2

Fig.4.3

Case 3. Assume that

$\sigma_{0}(t_{0})\geq 0$ for some $t_{0}\in R_{+}$ and $\sigma_{1}(t_{1})\leq 0$ for some $t_{1}\in R_{+}$ .
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Fig.4.4

Remark. (1) In Case 1, N. Chafee and E. F. Infante [1] showed that any solution $u$ of
$(4.3)-(4.4)$ converges to some stationary solution of $(4.3)-(4.4)$ in one dimensional case.
But in higher dimensional case, the asymptotic behaviour of any solution $u$ is still open.

(2) In Case 2, if the initial function $u_{0}$ changes the sign, we do not know if the
solution $u$ is asymptotically $T_{0}$-periodic or not. The behaviour of solution $u$ of $(4.3)-$
(4.4) is illustrated in Fig.4.5. Our numerical experiences suggest the $T_{0}$-periodicity of any
solution.

Fig.4.5
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