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Abstract. This note is devoted to the study of a Stefan problem with memory that includes
a third type boundary condition associated with a maximal monotone nonlinearity. The corre-
sponding initial-boundary value problem can be formulated as a Cauchy problem for an abstract
doubly nonlinear integrodifferentiaJ equation which belongs to a class already analyzed by the
authors in a recent paper [2]. A slight variation of the abstract theory developed in [2] is then
applied to deduce the existence of a solution to our Stefan problem.

1. Introduction
Let us consider a two-phase material which occupies a bounded domain $\Omega\subset \mathrm{R}^{3}$ with
smooth boundary $\Gamma$ , at any time $t\in[0, T],$ $T>0$ being fixed. This system is charac-
terized by a pair of state variables, namely the (relative) temperature $\theta$ and the phase
proportion $\chi$ . We assume that the evolution of $\mathrm{t}^{\backslash }\mathrm{h}\mathrm{e}$ pair $(\theta,\chi)$ is governed by the following
energy balance equation (see $[7.’ 8,9]$ and references therein)

$\partial_{t}(\theta+x+\varphi*\theta+\psi*x)-\triangle(\theta+k*\theta)=g$ in $Q:=\Omega\cross(0, T)$ (1.1)

coupled with the condition
$\chi\in \mathcal{H}(\theta)$ in $Q$ (1.2)

relating $\chi$ to $\theta$ . Here, $\triangle$ is the usual Laplace operator acting on the space variables,
$\partial_{t}=\partial/\partial t$ , and $*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the convolution product with respect to time over $(0, t)$ , that
is, for instance,

$( \varphi*\theta)(\cdot, t)=\int_{0}^{t}\varphi(t-s)\theta(\cdot, s)ds$, $t\in[0, T]$ .
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In addition, $\mathcal{H}$ stands for the Heaviside graph ($\mathcal{H}(r)=0$ if $r<0,$ $\mathcal{H}(0)=[0,1]$ ,
$\mathcal{H}(r)=1$ if $r>0$ ) and the memory kernels $\varphi,$

$\psi,$ $k:(0,T)arrow \mathrm{R}$ are given along with
the function $g:Qarrow \mathrm{R}$ .

Initial and boundary value problems for the system $(1.1)-(1.2)$ have been investigated
in several papers (see [4, 6, 7, 9], cf. also [1, 5, 11] for related problems). Nevertheless,
in all the mentioned literature, $(1.1)-(1.2)$ is complemented with variational boundary
conditions, that turn out to be linear with respect to $\theta \mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ the outward normal
derivative $\partial_{\nu}\theta$ . On the contrary, in this note we prove the existence of solutions to
an initial-boundary value problem for $(1.1)-(1.2)$ characterized by a nonlinear boundary
condition. To be more precise, we supply the system with

$\partial_{\nu}(\theta+k*\theta)+\alpha(\theta)\ni h$ on $\Sigma:=\Gamma\cross(0, T)$ (1.3)
$(\theta+x)(\cdot,0)=u_{0}$ in $\Omega$ (1.4)

where $\alpha$ : $\mathrm{R}arrow 2^{\mathrm{R}}$ denotes a maximal monotone graph, and the functions $h:\Sigmaarrow 1\mathrm{R}$

and $u_{0}$ : $\Omegaarrow \mathrm{R}$ are known.
Problem $(1.1)-(1.4)$ contains two monotone nonlinearities represented by the maximal

monotone graphs $\mathcal{H}$ and $\alpha$ . In Section 3, we consider an extended version of $(1.1)-(1.4)$

in which the kernels $\varphi$ and $\psi$ are allowed to depend on the space variables too, and
where the term $-k*\triangle\theta$ is replaced by a rather general second order linear convolution
operator acting on $\theta$ . Moreover, we let the right hand side $g$ of (1.1) incorporate an
additional nonlinearity in order to represent not only a measurable function of $(x,t)$ but
a Lipschitz continuous function of $\theta$ as well. Then we show that the resulting problem can
be reformulated as a C,auchy problem for a doubly nonlinear integrodifferential evolution
equation.

The abstract formulation we obtain essentially reduces to a particular case of a class
of evolution equations studied in [2]. In that paper, two existence results are proved
by means of a semi-implicit time discretization procedure. Here, in Section 2, we state a
slight generalization of the main theorem of [2], whose proof can be achieved by perforlning
simple changes in the original one. This result applies to the abstract equation

$(M\theta)’+A\theta+B*\theta\ni f+F(M\theta)+G(\theta)$ in $V’,$ $\mathrm{a}.\mathrm{e}$ . in $(0,\mathrm{T})$ (1.5)

where $V’$ is meant to be the dual space of $V=H^{1}(\Omega)$ in the framework of $(1.1)-(1.4)$ .

We also point out that $M$ takes the place of $\mathcal{I}+\mathcal{H}$ ( $\mathcal{I}$ being the identity mapping) and
is maximal monotone from $H=L^{2}(\Omega)$ to the same space $H$ (identified with its dual
space). The other maximal monotone operator is $A$ which works from $V$ to $V’$ and
collects the contributions of $-\Delta\theta$ and $\alpha(\theta)$ from (1.1) and (1.3), while $B$ is a function
from $[0, T]$ into the space of linear bounded operators from $V$ to $V’$ . On the other
hand, $f$ maps $(0,T)$ into $V’$ and $F,$ $G$ are causal (cf. Section 2 for a precise definition)
Lipschitz continuous operators on $L^{2}(0, T;H)$ . In addition, $F$ is required to be linear
and it is naturally applied to the same selection of $M(\theta)$ appearing on the left hand side
of (1..5).

The existence of a solution to the Cauchy problem for (1.5) is established in the next
section. Afterwards, the abstract result is used in Section 3 to deduce the existence of
weak solutions to the above mentioned generalized version of $(1.1)-(1.4)$ .
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2. Abstract result

On account of [2, Sect. 2], we introduoe the hypotheses on the data of the Cauchy problem
associated with (1.5).

(A1) Let $V$ and $W$ be reflexive real Banach spaces and let $H$ denote a real Hilbert
space which is identified with its dual. We assume that

$V-Warrow Harrow W’arrow V’$

with dense and continuous injections, the first and the last embeddings being also
compact.

(A2) $M$ is a maximal monotone operator from $H$ to $H$ that is linearly bounded,
namely,

$\exists C_{1}>0$ : $||w||_{H}\leq C_{1}(1+||v||_{H})$ $\forall v\in H,$ $\forall w\in M(v)$ (2.1)

and $M^{-1}$ is Lipschitz continuous, i.e.,

$\exists C_{2}>0$ : $C_{2}||v_{1}-v_{2}||_{H}^{2}\leq(w_{1}-w_{2}, v_{1}-v_{2})$

$\forall v_{1},v_{2}\in H,$ $\forall w_{1}\in M(v_{1}),$ $\forall w_{2}\in M(v_{2})$ (2.2)

where $(\cdot, \cdot)$ stands for the scalar product in $H$.

(A3) $A$ is a maximal monotone and bounded operator from $V$ to $V’$ such that
$A=A_{1}+A_{2}$ , where $A_{i}$ coincides with the subdifferential $\partial J_{i}$ of a convex and
lower semicontinuous function $J_{i}$ : $Varrow \mathrm{R}$, for $i=1,2$ . Furthermore, $A_{1}$ is linear,
$A_{2}$ is bounded from $V$ to $W’$ , and $J:=J_{1}+J_{2}$ satisfies

$\frac{1}{2}||v||_{H}^{2}+J(v)\geq C_{3}||v||_{V}^{\mathrm{p}}-C_{4}$ $\forall v\in V$ (2.3)

for some constants $p\geq 2,$ $C_{3}>0,$ $C_{4}\geq 0$ .

(A4) $B\in W^{1.1}(0, T;\mathcal{L}(V, V’))$ , where $\mathcal{L}(V, V’)$ stands for the Banach space of all the
linear and continuous operators from $V$ to $V’$ .

(A5) $F,$ $G$ : $L^{2}(0, T;H)arrow L^{2}(0, T;H)$ are two Lipschitz continuous operators that
are causal in the sense that

if $v_{1},v_{2}\in L^{2}(0, T;H),$ $t\in(0, T)$ , and $v_{1}=v_{2}\mathrm{a}.\mathrm{e}$. in $(0, t)$ ,
then $F(v_{1})=F(v_{2}),$ $G(v_{1})=G(v_{2})\mathrm{a}.\mathrm{e}$ . in $(0, t)$ .

Moreover, $F$ is linear.

(A6) $f\in L^{2}(0, T;H)+W^{1,1}(0, T;V’)$ .

(A7) $u_{0}\in H$ , $\theta_{0}:=M^{-1}(u_{0})\in V$, $.I(\theta_{0})<+\infty$ .
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Here is the precise formulation of the Cauchy problem.

Problem (P) Find $\theta\in L^{\infty}(\mathrm{O},T;V)$ and two auxiliary functions

$u\in W^{1,2}(0,T;V’)\cap L^{\infty}(0, T;H)$ , $\xi\in L^{\infty}(0, T;V’)$ (2.4)

such that

$u’+\xi+B*\theta=f+F(u)+G(\theta)$ in $V’,$ $\mathrm{a}.\mathrm{e}$ . in $(0,T)$ (2.5)
$u(t)\in M(\theta(t))$ for $\mathrm{a}.\mathrm{a}$ . $t\in(0, T)$ (2.6)

$\xi(t)\in A(\theta(t))$ for $\mathrm{a}.\mathrm{a}$. $t\in(0, T)$ (2.7)
$u(0)=u_{0}$ in $V’$ . (2.8)

The existence of a solution to (P) is ensured by

Theorem 2.1 Let $(Al)-(A7)$ hold. Then there exists at least one solution $(\theta, u,\xi)$ to
Problem (P), with the additional property that $\theta\in W^{1,2}(0,T;H)$ .

A comparison between our Problem (P) and its $\mathrm{c}o$unterpart in [2] shows that the term

$(B* \theta)(t)=\int_{0}^{t}B(t-s)\theta(s)ds$ , $t\in[0, T]$

is now used in place of the original one, which is $k*B\theta$ for a kernel $k$ in $W^{1,1}(0, T)$ and
some operator $B\in \mathcal{L}(V, V’)$ (in fact, $k*B$ is a special case of $B*$ , cf. (A4)). However, a
careful examination of the proof of Theorem 2.1 in [2] reveals that the procedure devised
there also works in the present case. Basically, the main change concerns the proof of [2,
Lemma 3.6], where one has to deduce [2, ineq. (3.19)]. This can be done by taking into
account that [2, ineq. (3.25)] still follows from [2, ineq. (3.23)] in our current setup.

Remark 2.2 Regarding (A3), we note that the subdifferential $\partial J$ coincides with the
sum $\partial J_{1}+\partial J_{2}=A$ and that the functions $J,$ $J_{1}$ , and $J_{2}$ are all continuous from $V$ to
$\mathrm{R}$ (cf. Remarks 2.3 and 2.4 in [2]).

3. Application

Here we consider a generalization of the Stefan problem $(1.1)-(1.2)$ and provide a weak
formulation of it in accordance with Problem (P). Then, the existence of solutions can
be demonstrated by applying Theorem 2.1 (see [2, Sect. 5] for other possible applications
of the abstract result).

Throughout this section, $\Omega$ will denote a smooth bounded dolnain of 1R$N(N\geq 1)$

and the notation for $\Gamma,$ $Q,$ $\Sigma$ is the same as in the Introduction. As usual, the variable
in $\Omega\cup\Gamma$ is indicated by $x=$ $(x_{1}, \ldots , x_{N})$ and $\partial_{x_{j}}$ simply replaces $\partial/\partial x_{j},$ $j=1,$ $\ldots$ , $N$ .
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We start by $s$etting the (formal) Stefan problem for the unknowns $\theta$ : $Qarrow \mathrm{R}$ and
$x:Qarrow[0,1]$ which have to satisfy

$\partial_{t}(\theta+\chi+\varphi(x, \cdot)*\theta+\psi(x, \cdot)*x)+A\theta+B*\theta=g(x, t, \theta)$ in $Q$ (3.1)
$\chi\in \mathcal{H}(\theta)$ in $Q$ (3.2)

$\partial_{\nu\langle A+\mathcal{B}*)}\theta+\alpha(\theta)\ni h(x,t)$ on $\Sigma$ (3.3)
$(\theta+\chi)|_{t=0}=u_{0}$ in $\Omega$ (3.4)

in a suitable sense, where $\varphi,$ $\psi:Qarrow \mathrm{R}$ and $g:Q\cross \mathrm{R}arrow \mathrm{R}$ are prescribed. Moreover,
$A$ is the linear second order differential operator

$(Av)(x):=- \sum_{j,m=1}^{N}\partial_{x_{j}}(a_{jm}(x)\partial_{x_{m}}v(x))$, $x\in\Omega$ (3.6)

and $B*\theta$ is defined by

$(B*v)(x,t):=- \sum_{j,m=1}^{N}\partial_{x_{\mathrm{j}}}\int_{0}^{t}(b_{jm}(x,t-s)\partial_{x_{m}}v(x,s))ds$, $(x,t)\in Q$ . (3.6)

Here the coefficients $a_{jm}$ and $b_{jm}$ are measurable functions from $\Omega$ and $Q$ , respectively,
to R. Note that both $A$ and $B$ are in divergence form. Besides, $\partial_{\nu\langle A+B*)}$ denotes
the conormal derivative related to the operator $A+B*$ (see below for details), while
$h:\Sigmaarrow \mathrm{R}$ and $u_{0}$ : $\Omegaarrow 1\mathrm{R}$ are given data.

Let us introduce now the assumptions that will enable us to reformulate $(3.1)-(3.4)$
as (P).

(B1) $\varphi,$ $\psi\in W^{1,1}(0, T;L^{\infty}(\Omega))$ .

(B2) $g$ is a Carath\’eodory function satisfying $g(\cdot, \cdot,0)\in L^{2}(Q)$ and

$|g(t,x, z_{1})-g(t, x, z_{2})|\leq c_{\grave{1}}|z_{1}-z_{2}|$ for $\mathrm{a}.\mathrm{a}$ . $(x, t)\in Q,$ $\forall z_{1},$ $z_{2}\in \mathrm{R}$ .

for some positive constant $c_{1}$ .

(B3) $a_{\mathrm{j}m}=a_{mj}\in L^{\infty}(\Omega)$ and $b_{jm}\in W^{1,1}(0, T;L^{\infty}(\Omega))$ for $j,$ $m=1,$ $\ldots,$
$N$ . In

addition, there exists a constant $c_{2}>0$ such that

$\sum_{j,m=1}^{N}a_{jm}(x)y_{j}y_{m}\geq c_{2}|y|^{2}$ $\forall y=(y_{1}, \ldots , y_{N})\in 1\mathrm{R}^{N}$, for $\mathrm{a}.\mathrm{a}$ . $x\in\Omega$ . (3.7)

Also, setting
$a(v, w):= \sum_{j,m=1}^{N}\int_{\Omega}a_{jm}v_{x_{f}}.w_{x_{m}}$ $\forall v,$ $w\in H^{1}(\Omega)$

and associating with any $v\in L^{2}(0, T;H^{1}(\Omega))$ the element $\beta*v\in C^{0}([0, T];H^{1}(\Omega)’)$

specified by

$H^{1}(\Omega)^{\prime\langle(\beta*v)(t),w\rangle_{H^{1}(\Omega\rangle}}$ $:= \sum_{j,m=1}^{N}\int_{\Omega}(b_{jm}*v_{x_{\mathit{3}}})(\cdot, t)w_{x_{m}}$

$\forall w\in H^{1}(\Omega),$ $\forall t\in[0, T]$ , (3.8)
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we point out that the conormal derivative $\partial_{\nu(A+B*)}$ is then defined for all $v\in$

$L^{2}(0,T;H^{1}(\Omega))$ such that $(A+\mathcal{B}*)v\in L^{2}(0,T;L^{2}(\Omega))$ by

$L^{2}\mathrm{t}^{0,T\cdot H^{-1\prime 2}(\Gamma))(\partial_{\nu\langle A+B*)}}.v,w)_{L^{2}(0,T;H^{1/2}(\Gamma))}$

$:= \int_{0}^{T}(a(v(\cdot,t),w(\cdot,t))+H^{1}(\Omega)^{\prime\langle(\beta}*v)(t),$ $,w(\cdot,t))_{H^{1}(\Omega)})dt$

$- \int_{0}^{T}\int_{\Omega}w(A+B*)v$ $\forall w\in L^{2}(0,T;H^{1}(\Omega))$ . (3.9)

(B4) $\alpha=\partial\phi$ where $\emptyset:\mathrm{R}arrow \mathrm{R}$ is a convex potential satisfying

$\phi(z)\leq c_{3}(|z|^{2}+1)$ $\forall z\in \mathrm{R}$

for some positive constant $c_{3}$ .
(B5) $h\in W^{1,1}(0,T;L^{2}(\Gamma)),$ $u_{0}\in L^{2}(\Omega)$ , and $\theta_{0}=(\mathcal{I}+\mathcal{H})^{-1}(u_{0})\in H^{1}(\Omega)$.
TherefoTe, on account of $(\mathrm{B}1)-(\mathrm{B}5)$ , we can now state a weak formulation of the Stefan
problem $(3.1)-(3.4)$ . For the sake of convenience, in the sequel we denote by $<\cdot,$ $\cdot>$ the
duality pairing between $H^{1}(\Omega)’$ and $H^{1}(\Omega)$ .

Problem (S) Find $\theta\in W^{1,2}(0, T;L^{2}(\Omega))\cap L^{\infty}(0, T;H^{1}(\Omega))$ and the auxiliary functions
$\chi\in L^{\infty}(Q)$ , $\eta\in L^{\infty}(0, T;L^{2}(\Gamma))$

which satisfy

$\theta+\chi\in W^{1,1}(0,T;H^{1}(\Omega)’)$ (3.10)

$<\partial_{l}(\theta+x+\varphi*\theta+\psi*x),$ $v>+a(\theta,v)+<\beta*\theta,$ $v>+ \int_{\Gamma}\eta v$

$=(g( \cdot, \cdot, \theta), v)+\int_{\Gamma}hv$ $\forall v\in H^{1}(\Omega)$ , $\mathrm{a}.\mathrm{e}$. in $(0, T)$ (3.11)

$\chi\in \mathcal{H}(\theta)$ a,.e. in $Q$ (3.12)
$\eta\in\alpha(\theta)$ $\mathrm{a}.\mathrm{e}$ . on $\Sigma$ (3.13)

$(\theta+\chi)(0)=u_{0}$ in $H^{1}(\Omega)’$ . (3.14)

Our main result is

Theorem 3.1 Let $(Bl)-(B\mathit{5})$ hold. Then Problem (S) admits a solution.

Remark 3.2 It is worth noting that Theorem 3.1 can be viewed as a generalization of
[10, Prop. 2.4]. $\dot{\mathrm{M}}$oreover, making a comparison between Problem (S) and $(3.1)-(3.4)$ ,
we observe that equation (3.1) does not hold in $L^{2}(Q)$ and, especially, the boundary
condition (3.3) cannot be recovered in the sense of traces in $L^{2}(0, T, H^{-1/2}(\Gamma))$ (contrary
to the example developed in [2, Subsect. 5.1] $)$ . However, choosing $v\in H_{0}^{1}(\Omega)$ as a test
function in (3.11), it is straightforward to deduce

$a(\theta, v)+<\beta*\theta,$ $u>=-<\partial_{t}(\theta+x+\varphi*\theta+\psi*x)-g(\cdot, \cdot, \theta),$ $v>$

$\forall v\in H_{0}^{1}(\Omega).\prime \mathrm{a}.\mathrm{e}$ . in $(0, T)$ .
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Then, integrating in time over $(0,t),$ $t\in(0,T]$ , and recalling (B3), (3.5), and (3.6), we
obtain with the help of (3.14)

$((A+B*)(1* \theta))(t)=-(\theta+\chi+\varphi*\theta+\psi*\chi)(\cdot,t)+u_{0}+\int_{0}^{t}g(\cdot, s,\theta(\cdot, s))ds$

in $H^{-1}(\Omega)$ , for $\mathrm{a}.\mathrm{a}$ . $t\in(0, T)$ (3.15)

where $(1* \theta)(\cdot, t)=\int_{0}^{t}\theta(\cdot,s)ds$ . Note that the right hand side of (3.15) belongs to
$L^{2}(Q)$ . Hence, we have that $(A+B*)(1*\theta)\in L^{2}(Q)$ and, in view of (3.9), the integrated
boundary condition

$\partial_{\nu(A+\mathcal{B}*)}(1*\theta)+1*\eta\ni 1*h$

(cf. (3.13) as well) holds in the sense of traces in $L^{2}(0,T;H^{-1/2}(\Gamma))$ . At this point, we
could also argue that equation (3.1) makes sense, e.g., in $W^{-1;2}(0, T;H^{-1}(\Omega))$ .
Proof of Theorem 3.1. It suffices to show that Problem (S) can be put in the abstract
framework of (P). Then, the existence will follow from Theorem 2.1. Hence, let $V=$
$H^{1}(\Omega),$ $H=L^{2}(\Omega)$ , and introduce the new variable

$u=\theta+\chi$ . (3.16)

Note that, owing to (B1), the relations $(3.11)-(3.12)$ can be rewritten in the form

$<\partial_{t}u,$ $v>+a( \theta,v)+\int_{\Gamma}\eta v+<\beta*\theta,$$v>=<f,$ $v>+(F(u)+G(\theta), v)$

$\forall v\in V’,$ $\mathrm{a}.\mathrm{e}$ . in $(0, T)$

$u\in(\mathcal{I}+\mathcal{H})(\theta)$ $\mathrm{a}.\mathrm{e}$ . in $Q$

where
$<f(t),$ $v>= \int_{\Gamma}h(\cdot, t)v$ (3.17)

for any $v\in V$ and almost any $t\in[0, T]$ . Here, we have set

$F(u)(x, t)=-\psi(x, 0)u(x, t)-(\partial_{t}\psi*u)(x, t)$ (3.18)
$G(\theta)(x,t)=g(x, t, \theta(x, t))+(\psi-\varphi)(x, 0)\theta(x, t)+(\partial_{t}(\psi-\varphi)*\theta)(x, t)$ (3.19)

for almost all $(x, t)\in Q$ . Using $(\mathrm{B}1)-(\mathrm{B}2)$ and Young’s inequality for convolution prod-
ucts, it is not difficult to check that $F$ and $G$ are Lipschitz continuous and causal
operators from $L^{2}(0, T;H)$ to itself, whence (A5) is fulfilled.

On the other hand, the maximal monotone operator $M$ defined by

$Mv=(\mathcal{I}+\mathcal{H})(v)$ , $v\in H$ (3.20)

clearly satisfies (A2) and, in particular, $(2.1)-(2.2)$ . $\mathrm{N}\mathrm{e}\mathrm{x}\mathrm{t}_{J}$. let us take $W=H^{3/4}.(\Omega)$ , so
that (A1) holds, and specify the functions

$J_{1}(v)= \frac{1}{2}a(v, v)$ , $J_{2}(v)= \int_{\Gamma}\phi(\iota))$ , $v\in V.$ (3.21)
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In view of (B3), the quadratic form $a$ is continuous and symmetric. Therefore $A_{1}=\partial J_{1}$

is a linear and bounded operator from $V$ to $V’$ which is given by

$<A_{1}(v),w>=a(v,w)$ $\forall v,$ $w\in V$. (3.22)

As far as $A_{2}=\partial J_{2}$ is concerned, we can invoke, for instance, [2, Lemmas 5.1 and 5.2]
and verify that

$w\in A_{2}(z)$ if and only if $(w,v)= \int_{\Gamma}\omega v$ $\forall v\in V$,

for some $\omega\in L^{2}(\Gamma)$ such that $\omega\in\partial\phi(z)\mathrm{a}.\mathrm{e}$. in F. (3.23)

In addition, from (B4) it follows that (see, e.g., [2, Lemma 5.2]) there exists a positive
constant $C_{5}$ , depending only on $c_{3}$ and the surface measure of $\Gamma$ , such that

$|<w,v>|\leq C_{5}(1+||z|_{\Gamma}||_{L^{2}(\Gamma)})||v|_{\Gamma}||_{L^{2}(\Gamma)}$ $\forall z,$ $v\in V,$ $\forall w\in A_{2}(z)$ . (3.24)

Since the trace operator $vrightarrow v|_{\Gamma}$ is continuous from $W$ to $L^{2}(\Gamma)$ , by (3.24) we deduce
that $A_{2}=\partial J_{2}$ maps bounded sets of $V$ into bounded sets of the dual space of $W$. Then,
in order to conclude the verification of (A3), it remains to check (2.3). Note, however,
that (2.3) is a direct consequence of (3.21), (3.7), and the fact that $\phi$ is bounded from
below by an affine function (see, e.g., [3, Prop. 2.1, p. 51]). Hence, by recalling that
$A=A_{1}+A_{2}$ , it turns out that assumption (A3) is completely satisfied.

Next, we introduce the operator

$<B(t)v,w>= \sum_{j,m=1}^{N}\int_{\Omega}b_{\mathrm{j}m}(\cdot, t)v_{x_{\mathrm{j}}}w_{x_{m}}$ $\forall v,$ $w\in V,$ $\forall t\in[0, T]$ . (3. $\cdot$25)

and use (B3) to infer that $B$ fulfills (A4). Moreover, on account of (3.8), it is clear that

the image of $v\in L^{2}(0, T;V)$ under $(B*)$ is $\beta*v\in L^{2}(0, T;V’)$ .

Finally, we observe that (B4), (B5), (3.17), (3.20), and (3.21) entail $\mathrm{t}_{\mathrm{J}}\mathrm{h}\mathrm{e}$ validity of (A6)
and (A7).

In conclusion, thanks to $(3.16)-(3.23)$ and (3.25), we deduce that Problem (S) can
be equivalently set as Problem (P). Indeed, the solution component $\xi$ in (P) satisfies
$\xi=A_{1}\theta+\xi_{2}$ for some $\xi_{2}\in A_{2}(\theta)$ almost everywhere in $(0, T)$ , and $\eta$ in (S) is exactly the
boundary function corresponding to $\xi_{2}$ in (3.23). Thus, the $L^{\infty}(0, T;L^{2}(\Gamma))$ regularity of
$\eta$ follows from (2.4) and (3.24). Note also that $\chi\in L^{\infty}(Q)$ comes directly from (3.12),
which actually implies that $0\leq\lambda’\leq 1$ almost everywhere in $Q$ . Then, $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{u}.2.1$

enables us to conclude the proof. $\square$
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