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Abstract. This note is devoted to the study of a Stefan problem with memory that includes
a third type boundary condition associated with a maximal monotone nonlinearity. The corre-
sponding initial-boundary value problem can be formulated as a Cauchy problem for an abstract
doubly nonlinear integrodifferential equation which belongs to a class already analyzed by the
authors in a recent paper [2]. A slight variation of the abstract theory developed in [2] is then
applied to deduce the existence of a solution to our Stefan problem.

1. Introduction

Let us consider a two-phase material which occupies a bounded domain Q c R® with
smooth boundary T, at any time ¢t € [0,T], T > 0 being fixed. This system is charac-
terized by a pair of state variables, namely the (relative) temperature ¥ and the phase
proportion X. We assume that the evolution of the pair (4, X) is governed by the following
energy balance equation (see [7 8, 9] and references therein)

(P +X+o+xd+h*X)— AW +k*d) =g in Q:=02x(0,T) (1.1)
coupled with the condition :
XeHW) inQ : (1.2)

relating X to . Here, A is the usual Laplace operator acting on the space variables,
9; = 8/0t, and * denotes the convolution product with respect to time over (0,t), that
is, for instance,

(@ 0)(-,8) = /Otgp(t—s)ﬂ(-,s)d.s, te0,T].
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In addition, H stands for the Heaviside graph (H(r) = 0 if r < 0, H(0) = [0,1],
H(r) =1 if r > 0) and the memory kernels ¢, ¥, k : (0,T) — R are given along with
the function ¢: @ — R. :

Initial and boundary value problems for the system (1.1)-(1.2) have been investigated
in several papers (see [4, 6, 7, 9], cf. also [1, 5, 11] for related problems). Nevertheless,
in all the mentioned literature, (1.1)-(1.2) is complemented with variational boundary
conditions, that turn out to be linear with respect to ¥ and/or the outward normal
derivative 8,9. On the contrary, in this note we prove the existence of solutions to
an initial-boundary value problem for (1.1)-(1.2) characterized by a nonlinear boundary
condition. To be more precise, we supply the system with

8,9 +kx9)+a(d)d2h on X:=Tx(0,T) (1.3)
@+X)(-,0)=uo in (1.4)

where o : R — 2R denotes a maximal monotone graph, and the functions A : £ — R
and ug: ) — IR are known. |

Problem (1.1)-(1.4) contains two monotone nonlinearities represented by the maximal
monotone graphs H and «. In Section 3, we consider an extended version of (1.1)-(1.4)
in which the kernels ¢ and 1 are allowed to depend on the space variables too, and
where the term —k * A9 is replaced by a rather general second order linear convolution
operator acting on 9. Moreover, we let the right hand side g of (1.1) incorporate an
additional nonlinearity in order to represent not only a measurable function of (z,t) but
a Lipschitz continuous function of ¥ as well. Then we show that the resulting problem can
be reformulated as a Cauchy problem for a doubly nonlinear integrodifferential evolution
equation.

The abstract formulation we obtain essentially reduces to a partlcula,x case of a class
of evolution equations studied in [2]. In that paper, two existence results are proved
by means of a semi-implicit time discretization procedure. Here, in Section 2, we state a
slight generalization of the main theorem of [2], whose proof can be achieved by performing
simple changes in the original one. This result applies to the abstract equation

(MOY + AD + B+9 > f+ F(M9) + G(¥) in V', ae. in (0,T) (1.5)

where V' is meant to be the dual space of V = H!(Q) in the framework of (1.1)-(1.4).
We also point out that M takes the place of Z+H (I being the identity mapping) and
is maximal monotone from H = L?*() to the same space H (identified with its dual
space). The other maximal monotone operator is A which works from V' to V' and
collects the contributions of —A¥ and «(¥) from (1.1) and (1.3), while B is a function
from [0,7] into thie space of linear bounded operators from V to V’. On the other
hand, f maps (0,T) into V' and F, G are causal (cf. Section 2 for a precise definition)
Lipschitz continuous operators on L%(0,T; H). In addition, F' is required to be linear
and it is naturally applied to the same selection of M (¥) appearing on the left hand side
of (1.5).

The existence of a solution to the Cauchy problem for (1.5) is established in the next
section. Afterwards, the abstract result is used in Section 3 to deduce the existence of
weak solutions to the above mentioned generalized version of (1.1)-(1.4).
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2. Abstract result

On account of [2, Sect. 2], we introduce the hypotheses on the data of the Cauchy problem
associated with (1.5). :

(A1) Let V and W be reflexive real Banach spaces and let H denote a real Hilbert
space which is identified with its dual. We assume that

Vf—{Wt—)HL-»W"——)V'

with dense and continuous injections, the first and the last embeddings being also
compact.

(A2) M is a maximal monotone operator from H to H that is linearly bounded,
namely,

3C1>0 : |wl|lg £Ci(1+]v]lg) VveH, Ywe M(v) | (2.1)
and M~! is Lipschitz continuous, i.e.,

3C; >0 Coflvy — woll) < (wi — wy, vy — vy)
V'Ul,'Uz € H, le € M(‘l)l), V’U)‘z € M(‘Uz) (22)

where (-, -) stands for the scalar product in H.

(A3) A is a maximal monotone and bounded operator from V to V' such that
A = A; 4+ A,, where A; coincides with the subdifferential 8J; of a convex and
lower semicontinuous function J;: V — IR, for i = 1,2. Furthermore, A; is linear,
A; is bounded from V to W', and J := J; + J, satisfies

1
siollE +J(0) 2 Gsllolly, —C4 VweVv (2.3)
for some constants p > 2, C3 >0, C,> 0.

(A4) B e WU'Y(0,T;L(V,V’)), where L(V,V’) stands for the Banach space of all the
linear and continuous operators from V to V.

(A5) F,G: L*0,T;H) —.L*0,T; H) are two Lipschitz continuous operators that
are causal in the sense that

if vy,v, € L*(0,T; H), t€(0,T), and v; = v, a.e. in (0,1),
then F(v1) = F(v2), G(v1) = G(v;) a.e. in (0,1).

Moreover, F' is linear.
(A6)  fe L*0,T;H)+ W (0,T; V).

(AT)  woeH, doi=M(w)eV, J(fo)< +o.
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Here is the precise formulation of the Cauchy problem.

Problem (P) Find ¥ € L*(0,T;V) and two auziliary functions

u € Wl'z(O,T; VYN L®(0,T;H), ¢eL*(0,T;V") (2.4)
such that | |
W+E+Bxd=f+Fu)+G@) in V', ae in (0,T) (2.5)
u(t) € M(J(t)) fora.a. t€(0,T) (2.6)
£(t) € A(9(t)) fora.a. t€(0,7) (2.7)
u(0) =uo in V' (2.8)

The existence of a solution to (P) is ensured by

Theorem 2.1 Let (A1)-(A7) hold. Then there exists at least one solution (9,u,€) to
Problem (P), with the additional property that 9 € W'%(0,T; H).

A comparison between our Problem (P) and its counterpart in [2] shows that the term

(Bxo)H) = [ "Bt — s)d(s)ds, te[0,T]

is now used in place of the original one, which is k* BY for a kernel k¥ in W'1(0,T) and
some operator B € L(V, V") (in fact, k* B is a special case of Bx, cf. (A4)). However, a
careful examination of the proof of Theorem 2.1 in [2] reveals that the procedure devised
there also works in the present case. Basically, the main change concerns the proof of [2,
Lemma 3.6], where one has to deduce [2; ineq. (3.19)]. This can be done by taking into
account that [2, ineq. (3.25)] still follows from [2, ineq. (3.23)] in our current setup.

Remark 2.2 Regarding (A3), we note that the subdifferential dJ coincides with the
sum 90J; + 8J; = A and that the functions J, J;, and J; are all continuous from V to
IR (cf. Remarks 2.3 and 2.4 in [2]).

3. Application

Here we consider a generalization of the Stefan problem (1.1)-(1.2) and provide a weak
formulation of it in accordance with Problem (P). Then, the existence of solutions can
be demonstrated by applying Theorem 2.1 (see [2, Sect. 5] for other possible applications
of the abstract result).

Throughout this section, £ will denote a smooth bounded domain of RY (N > 1)
and the notation for I', @, ¥ is the same as in the Introduction. As usual, the variable
in QUT is indicated by = = (2y,...,2n) and J,, simply replaces 9/dz;, j =1,...,N.
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We start by setting the (formal) Stefan problem for the unknowns 19 Q@ — R and
X : @ — [0,1] which have to satisfy

OG0+ X+o(z, )*d+9(z, )% X)+ AI + Bx 9 = g(z,t,9) in Q (3.1)
' XeH() inQ@ - (3.2
Oya+sn¥ + a(?d) 3 h(z,t) on T (3.3)

(F+X)|t=0o=uo in Q (3.4)

in a suitable sense, where ¢, % : Q — R and g: Q x R — R are prescribed. Moreover,
A is the linear second order differential operator

(Av)(e) = - é 0, (aim()0.0(2)), €D (3.5)
and B*9 is 'deﬁﬁed by
(Bxv)(z,)i=— 3 o, Bim(@t = )00 v(z,8))ds,  (5,) €Q.  (3.6)

Here the coefficients a;,, and b;,, are measurable functions from © and Q, respectively,
to R. Note that both .4 and B are in divergence form. Besides, Ou(A+Bx) denotes
the conormal derivative related to the operator A + Bx (see below for details), while
h:¥ — R and up: Q2 — R are given data.

Let us introduce now the assumptions that will enable us to reformulate (3.1)-(3.4)

as (P).
(B1) o, ¥ € WVY(0,T; L°(Q2)).
(B2) g is a Carathéodory function satisfying g(-, -,0) € L?(Q) and
lg(t,z,21) — g(t,2,22)| < aa]er — 25|  for aa. (2,8) € Q, Vzq, 2, € R.
for some positive constant c;.

(B3)  ajm = am; € L®(Q) and bj, € WH0,T;L=°(Q)) for jm = 1,...,N. In
addition, there exists a constant c; > 0 such that :

Z aim(T)Yiym > coly|* Vy= (yl,'. ., YN) € ]R]Y, for a.a. z € f). (3.7
Jym=1
Also, setting

‘ a(v,w) := Z | @im Vs, Way, Yv,we HY(N)

7ym=1

and associating with any v € L?(0,T; H'(2)) the element Sxv € C°([0, T]; H'(Q))
specified by '

@B+ v)(0),w >m(m—]§_/ bim % vs,) (-1 £) s,
Yw e H(Q), Ve 0,T], (3.8)
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we point out that the conormal derivative 8,(4+8x) is then defined for all v €
L*(0,T; H'(Q)) such that (A+ Bx)v € L*(0,T; L*(Q)) by

L2(0,T;H-1/2(T)) (av(A+B*)‘U, w)Lz (0,T;H1/2(T)) '
T
:=/0 (a(w(-, ), (-, 1)) + meay{(8 +0)(t),, w(-, 1)) m(a)) dt
T .
- /0 /ﬂ w(A+Bsyw  Yw e L¥0,T; H'(R)). (3.9)

(B4) o =0¢ where ¢:IR — R is a convex potential satisfying
#z)<e(lzP+1) VzeR
for some positive constant cs.
(B5) he WL (0,T;L4(T)), uo € L), and do = (T + H) (uo) € H(Q).

Therefore, on account of (B1)-(B5), we can now state a weak formulation of the Stefan
problem (3.1)-(3.4). For the sake of convenience, in the sequel we denote by < -,- > the
duality pairing between H'(Q)' and H'(R).

Problem (S) Find 9 € W12(0,T; L*(2))n L*(0, T; HY()) and the auiliary functions
X € L™(Q), n€L®0,T;L*T))
which satisfy
9 +X € WH(0,T; H'(Q)) (3.10)

<8t(19+X+<,o*19+¢*X),v>+a(z9,v)+<ﬂ*ﬂ,v>+/rnv

= (g(-, -,19),v)+/rhv Vv e HY(Q), ae. in (0,7) (3.11)
X e HW) ae in @ (3.12)

_ n€a(d) ae on X (3.13)

(I +X)(0)=uy in HYQ). (3.14)

Our main result is

Theorem 3.1 Let (B1)-(B5) hold. Then Problem (S) admits a solution.

Remark 3.2 It is worth noting that Theorem 3.1 can be viewed as a generalization of
[10, Prop. 2.4]. Moreover, making a comparison between Problem (S) and (3.1)-(3.4),
we observe that equation (3.1) does not hold in L%(Q) and, especially, the boundary
condition (3.3) cannot be recovered in the sense of traces in L*(0,T; H */*(T")) (contrary
to the example developed in [2, Subsect. 5.1]). However, choosing v € H}(§2) as a test
function in (3.11), it is straightforward to deduce :

a(ﬂ,‘v)+<ﬂ*19,v>‘=~—<3t(19+X+gp*19+'z/)*X)—g(-,-,19),-u>
‘ Vv e Hy(R), ae in (0,T).
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Then, integrating in time over (0,t), ¢ € (0,T), and recalling (B3), (3.5), and (3.6), we
obtain with the help of (3.14) ‘
t
(A+Bx)(1%9))(t) = (0 + X+ *x9+ 9 *X)(-,t) + uo +/0 g(-,8,9(-,8))ds
in H7Y(Q), for a.a. t € (0,T) (3.15)

where (1 * 9)(+,t) = [39(-,s)ds. Note that the right hand side of (3.15) belongs to
L*(Q). Hence, we have that (A+B*)(1%9) € L%(Q) and, in view of (3.9), the integrated
boundary condition

6,,(,4;5*)(1*19)-1-1*17 31x%xh

(cf. (3.13) as well) holds in the sense of traces in L2(0,T; H=Y(I)). At this point, we
could also argue that equation (3.1) makes sense, e.g., in W-12(0,T; H ~1Q)).

Proof of Theorem 3.1. It suffices to show that Problem (S) can be put in the abstract
framework of (P). Then, the existence will follow from Theorem 2.1. Hence, let V =
H(Q), H = L*(Q), and introduce the new variable '

u=9+X, - (3.16)
Note that, owing to (B1), the relations (3.11)-(3.12) can be rewritten in the form
< Btu,ﬁ >+ a(ﬂ,v) +/I;r1v +<Bxd,v>=< fo>+ (F(u)+ G¥),v)
YveV', ae. in (0,T)
u€(Z+H)I) ae inQ
where |
<ﬂ&v>=AM3m; (3.17)
for any v € V and almost any ¢ € [0, T]. Here, we have set
F(u)(z,t) = —(z, 0)u(z, t) — (O * u)(z, t) (3.18)
G)(2,t) = g(,£,9(2, 1)) + (¥ — @)(2,0)9(2,8) + (3 — ) * V)(z,1)  (3.19)

for almost all (z,t) € Q. Using (B1)-(B2) and Young’s inequality for convolution prod-
ucts, it is not difficult to check that F and G are Lipschitz continuous and causal
operators from L*(0,T; H) to itself, whence (A5) is fulfilled.

On the other hand, the maximal monotone operator M defined by

Mv=(T+H)(v), veH (3.20)

clearly satisfies (A2) and, in particular, (2.1)-(2.2). Next, let us take W = H34(Q), so
that (A1) holds, and specify the functions

Ji(v) = %a(v,v), Jo(v) = /rqﬁ(v), veV. (3.21)
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In view of (B3), the quadratic form a is continuous and symmetric. Therefore A; = 8J;
is a linear and bounded operator from V' to V' which is given by :

< Ay(v),w > =a(v,w) Vo,weV. (3.22)

As far as A, = 8J, is concerned, we can invoke, for instance, [2, Lemmas 5.1 and 5.2]
and verify that ‘

w € Ay(z) if and only if (w,v) = /va VveV,
for some w € L*(T) such that w € 8¢(z) a.e. in T. (3.23)‘

In addition, from (B4) it follows that (see, e.g., [2, Lemma 5.2]) there exists a positive
constant Cj, depending only on ¢z and the surface measure of T, such that

< w,v > < Cs (1+ [l2lrllzm) llolelleey V2,0 €V, Vw € Asg(2). (3.24)

Since the trace operator v — v|r is continuous from W to L*(T'), by (3.24) we deduce
that A, = 8J, maps bounded sets of V' into bounded sets of the dual space of W. Then,
in order to conclude the verification of (A3), it remains to check (2.3). Note, however,
that (2.3) is a direct consequence of (3.21), (3.7), and the fact that ¢ is bounded from
below by an affine function (see, e.g., [3, Prop. 2.1, p. 51]). Hence, by recalling that
A = A; + A,, it turns out that assumption (A3) is completely satisfied.

Next, we introduce the operator '

N
< Bt)v,w>= Y ﬂbjm(-,t)vgcju.)a,m Vv,weV, Vte[0,T). (3.25)
Jym=1

and use (B3) to infer that B fulfills (A4). Moreover, on account of (3.8), it is clear that
the image of v € L*0,T;V) under (Bx) is fx*v € L*(0,T; VY.

‘Finally, we observe that (B4), (B5), (3.17), (3.20), and (3.21) entail the validity of (A6)
and (AT).

In conclusion, thanks to (3.16)-(3.23) and (3.25), we deduce that Problem (S) can
be equivalently set as Problem (P). Indeed, the solution component ¢ in (P) satisfies
£ = Ay9+¢€, for some &, € Ay(9) almost everywherein (0,7'), and 7 in (S) is exactly the
boundary function corresponding to &, in (3.23). Thus, the L*(0,T; L*(T')) regularity of
n follows from (2.4) and (3.24). Note also that X € L>°(Q) comes directly from (3.12),
which actually implies that 0 < X < 1 almost everywhere in Q. Then, Theorem 2.1
enables us to conclude the proof. O
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