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Abstract

We consider a reaction-diffusion equation (RDE) of the form

$\{$

$\partial_{t}u=\nu\Delta u-f(u)-\lambda_{0}u-g$

$u|_{t=0}=u_{0}(x)$ , $x\in 1\mathrm{R}^{n}$

with $u=u(t, x)\in$ IR scalar and $x\in \mathrm{I}\mathrm{R}^{n}$ . Here $g=g(x),$ $u_{0}(x),$ $\lambda_{0}>0$ and the nonlinearity

$f\in C^{1}(1\mathrm{R}\cross \mathrm{I}\mathrm{R}^{n})$ are supposed to be given. Under appropriate conditions on $f,g$ and $u_{0}$ we

prove both existence of a global attractor for equation (1) in the whole space $\mathrm{I}\mathrm{R}^{n}$ and lower and

upper bounds (in terms of physical parameter $\nu$) for the Hausdorff dimension of the attractor.

Note that the case of $\mathrm{I}\mathrm{R}^{n}$ has specific difficulties. First, the semigroup generated by the above

equation is not compact. The second difficulty is connected with the fact that the Laplace

operator has continuous spectrum. We overcome these difficulties by systematic use of weighted

Sobolev spaces.

Introduction and Results

One of the most important objects used to. describe large-time dynamics of infinite-

dimensional dynamical systems are global attractors and their dimensions. The global attractor

of an evolution equation is the maximal, “compact”, finite dimensional (in the sense of Haus-

dorff), invariant set in the phase space which attracts bounded sets. Upper and lower bounds for
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the Hausdorff dimension of the attractor (in terms of some physical parameters) imply that even

infinite-dimensional dynamical systems possess an asymptotic behavior determined by a finite

number of degrees of freedom. For a precise definition of the attractor and concepts of dimension

see [2]. According to a conjecture of Landau and Ruelle-Takens, the non-trivial dynamics on

the attractors of the Navier-Stokes system determines turbulent behavior of fluids. Hence both

existence of attractors and upper and lower bounds (in terms of physical parameters) on their

dimensions, are of great interest. Note that at present the existence of global attractors as well

as estimates on their Hausdorff dimensions were obtained for many equations of mathematical

physics in bounded domains, see [2]. In this paper, we consider a reaction-diffusion equation

(RDE) of the form

(1) $\{$

$\partial_{t}u=\nu\Delta u-f(u)-\lambda_{0}u-g$

$u|_{t=0}=u_{0}(x)$ , $x\in 1\mathrm{R}^{n}$

where $u=u(t, x)\in \mathrm{I}\mathrm{R}$ is scalar and $x\in \mathrm{I}\mathrm{R}^{n}$ . Here $g=g(x),$ $u_{0}(x),$ $\lambda_{0}>0$ and the nonlinearity

$f\in C^{1}$ (IR $\cross \mathrm{I}\mathrm{R}^{n}$ ) are supposed to be given. We $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\theta$ conditions on $f,u_{0}$ , and $g$ later. Our main

goal is both, to prove existence of global attractors for RDE (1), and to obtain lower and upper

bounds (in terms of the Reynolds number $\nu^{-1}$ ) for the Hausdorff dimensions of the attractors.

For a proof of existence of the attractor in this case we follow [3]. There the following restrictions

are imposed on the nonlinearity $f=f(u)$ .

$\dot{\mathrm{C}}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}1$.

1. $f\in C^{1}$ and $f’(u)\geq-C$
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2. $f(u)\cdot u\geq 0$ for all $u\in \mathrm{I}\mathrm{R}$

3. $|f(u)|\leq|u|^{1+\alpha}(1+|u|^{p_{2}})$ ,

where $0\leq\alpha,$ $0\leq p_{2}$ and $p_{2}+ \alpha\leq p_{0}=\min\{\frac{4}{n}, \frac{2}{n-2}\}$ , if $n\geq 3$ . For $n\leq 2$ we can take $p_{0}= \frac{4}{n}$ .

Let $H_{l,\gamma}(\mathrm{I}\mathrm{R}^{n})$ be the weighted Sobolev spaces with norms

$||u||_{l,\gamma}^{2}.= \sum_{|\alpha|\leq l}||\partial^{\alpha}u||_{0,\gamma}^{2}$
,

where

$||u||_{0,\gamma}^{2}= \int_{\mathrm{R}^{n}}(1+|\epsilon x|^{2})^{\gamma}|u(x)|^{2}d_{X}$

and $\epsilon>0$ is a small enough, but fixed number.

Theorem 1 ([3]) Let $\gamma>0,$ $g\in H_{0,\gamma},$ $u_{0}\in H_{1,\gamma}$ and let the nonlinearity $f=f(u)$ satisfy

Condition 1. Then there exists a unique solution $u(t, x)$ of $RDE(\mathit{1})$ , which belongs to

$L_{2}([0,T], H_{2,\gamma})\cap L_{\infty}([0, T], H_{1,\gamma})$.

Moreover the mappings $S_{t}$ : $u_{0}(x)\mapsto u(t, x)$ form a semigroup which possesses a global attractor

$A\subset H_{0,\gamma}$ .

Let us consider $\mathrm{t}\mathrm{I}_{1}\mathrm{e}$ following special cases of Theorem 1.

Proposition 1 The global attractor $A$ consists of only one point in the following cases

1. $g=0$ and $f$ saiisfies Condition 1.

2. $g\in H_{0,\gamma}(\mathrm{I}\mathrm{R}^{n})$ and $f’(u)\geq-\lambda_{0}$ .
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Proof: First consider the case 1), that is,

(2) $\{$

$\partial_{t}u=\nu\Delta u-f(u)-\lambda_{0}\mathrm{u}$

$u|_{t=0}=u_{0}(x)$ .

The condition $f(u)\cdot u\geq 0$ implies that $u\equiv 0$ is an equilibrium. On the other hand, multiplying

both sides of (2) by $\varphi\cdot u$, where $\varphi(x)=(1+|\epsilon x|^{2})^{\gamma}$ and integrating with respect to $x$ , we obtain

that any solution of (2) tends to $u\equiv 0$ as $tarrow\infty$ in $H_{0,\gamma}$ . Hence $A=\{0\}$ . Let us next consider

case 2). We start with the special case of 2), where $f\equiv 0$ and $g\in H_{0,\gamma}$ . Then (1) takes the form

$\{$

$\partial_{t}u=\nu\Delta u-\lambda_{0u-g}(x)$

$u|_{t=0}=u_{0}(x)$ .

Let $u_{*}(x)$ be the unique solution of

(3) $\nu\Delta u_{*}-\lambda_{0}u_{*}=g$

As $g\in H_{0,\gamma}$ , we have $u_{*}\in H_{2,\gamma}(\mathrm{I}\mathrm{R}^{n})$ . On the other hand, equation (3) can be rewritten as

$\frac{\partial u_{*}}{\partial t}=\nu\triangle u_{*}-\lambda_{0}u_{*}-g$

and as a result we $\mathit{0}$btain

$\frac{\partial(u-u_{*})}{\partial t}=\nu\Delta(u-u_{*})-\lambda_{0}(u-u_{*})$ ,

which in turn implies $A=\{u_{*}\}=\{(\nu\Delta-\lambda_{0}I)^{-1}g\}$ . We next proof that in the general case 2)

the attractor also consists of only one single point.
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Let $S$ be the set of all equilibria of (1). We prove that $S$ consists of a single point. Indeed,

let $u_{1}$ and $u_{2}$ be two distinct equilibria, that is,

(4) $\nu\Delta u_{1}-f(u_{1})-\lambda_{0}u_{1}-g(x)=0$

(5) $\nu\Delta u_{2}-f(u_{2})-\lambda_{0}u_{2}-g(x)=0$.

Subtracting (5) ffom (4) we obtain

(6) $\nu\Delta(u_{1}-u_{2})-(f(u_{1})-f(u_{2}))-\lambda_{0}(u_{1}-u_{2})=0$ .

Multiplying both sides of (6) by $(u_{1}-u_{2})$ and integrating with respect to $x$ , we obtain, using

$u_{i}\in H0_{\gamma},,$ $\gamma>0$ , that

(7) $\nu\int|\nabla(u_{1}-u_{2})|^{2}dx+\int(\Psi(u_{1})-\Psi(u_{2}))(u_{1}-u_{2})dx\geq 0$

where $\Psi(u):=f(u)-\lambda_{0}u$ . Note that $\Psi’(u)\geq 0$ . Therefore the integrand in (7) is positive and

$u_{1}\equiv u_{2}$ . Then the assertion of Proposition 1, Case 2 is an easy consequence of the gradient

structure of (1).
$\mathrm{N}$

Proposition lleads to the following natural question: How rich is the global attractor $A$ for

reaction-diffusion equation (1). Our main result gives a partial answer to this question. In order

to formulate it, we introduce a class of nonlinearities $\mathcal{M}$ : we say $f\in \mathcal{M}$ , iff there exists $\xi\in$ IR

such that $f’(\xi)<-\lambda_{0}$ .

Proposition 1 showed that

Corollary 1 If $f$ satisfies Condition 1, but $f\not\in M$ , then the attractor $A$ consists of a

singleton. In particular, $\dim A=0$ .
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Next we formulate our main result.

Theorem 2 Let $u_{0}\in H_{1,\gamma}(\mathrm{I}\mathrm{R}^{n}),$ $\gamma>0$ and $f\in \mathcal{M}$ satisfy Condition 1. Then there exists

$L_{0}>0$ such that for all $L\geq L_{0}$ there is (an explicitly given) $g_{L}(x)\in H_{0,\gamma}$ , and the global

attractor $A_{L}$ of $RDE(\mathit{1})$ with $g=g_{L}(x)$ admits the following double-sided estimates

$C_{1}\nu^{-n/2}L^{n}\leq\dim A_{L}\leq C_{2^{\mathcal{U}^{-n/2}}}L^{n}$.

Here the constants $C_{1}$ and $C_{2}$ depend on $\lambda_{0}$ but not on $\nu$ and $L$ .

Proof: We start with $n=1$ . Let $L$ be any given positive number and $z(x)\in C_{0}^{\infty}(1\mathrm{R})$ such

that $z(x)=\xi \mathrm{i}\mathrm{f}-L\leq x\leq L$ and $z(x)=0$ if $|x|\geq L+1$ . Here $\xi\in$ IR is chosen such that

$f’(\xi)<-\lambda_{0}$ . Define

$g_{L}(x):=\nu\triangle z(x)-f(z(x))-\lambda_{0^{Z}}(x)$ ,

Note that $g_{L}(x)\in H_{0,\gamma}(\mathrm{I}\mathrm{R}^{n}),$ $\gamma>0$ . Consider now

(8) $\{$

$\partial_{t}u=\nu\Delta u-f(u)-\lambda_{0}u-g_{L}(x)$

$u|_{t=0}=u_{0}(x)$

Obviously $u_{*}(x):=z(x)$ is an equilibrium for (8). Let $M_{+}(z)$ be the unstable manifold at this

equilibrium (see [2]). Note that the unstable manifold exists, and is finite dimensional, since

the essential spectrum of the linearization, determined by $\nu\triangle-f’(z(x))-\lambda_{0}$ , is strictly left of

the imaginary axis. Since $M_{+}(z)\subset A$ , a lower bound for $\dim M_{+}(z)$ yields a lower bound for

the dimension of $A$ as well. Therefore we have to estimate $\dim M_{+}(z)$ . To this end, we have to
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study the linearized equation at $z(x)$ , that is, the linearized operator,

$A’(z(x))w=\nu\Delta w-f’(z(x))w-\lambda_{0}w$ .

Since $z\in C_{0}^{\infty}(\mathrm{I}\mathrm{R})$ it is not difficult to see that

1. $\langle A’(z(x))w, h\rangle=\langle w, A’(z(x))h\rangle$ for $\mathrm{a}\mathrm{U}w,$ $h\in H_{2,\gamma}$

2. $\langle A’(z(x))w, w\rangle\leq\beta\langle w, w\rangle$, for some $\beta>0$ and for all $w\in H_{2,\gamma}$ .

Here by $\langle\cdot, \cdot\rangle$ we denote the scalar product in $H_{0,\gamma}(\mathrm{I}\mathrm{R}^{n})$ . Let $R_{k}$ be a $k$-dimensional subspace of

$H_{1,\gamma}(\mathrm{I}\mathrm{R}^{n})$ , defined as

$R_{k}:=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}[w_{1}(x), \cdots,w_{k}(x)]$

where $w_{j}(x)$ are eigenvalues $\mathrm{o}\mathrm{f}-\Delta$ , with Dirichlet boundary conditions, that is

$\int-\Delta w_{j}=\lambda_{j}w_{j}$

(9)
$\downarrow w_{j}(-L)=w_{j}(L)=0$

with $0<\lambda_{1}<\lambda_{2}\leq\cdots\leq\lambda_{k}\leq\cdots$ , and $k$ is chosen such that $\lambda_{k}<-f’(\xi)-\lambda_{0}$ . An explicit

computation shows $\lambda_{j}=(_{L}^{\pi}-i)^{2}$ and $w_{j}(x)=\sin_{L}^{\pi}\lrcorner x,$ $|x|\leq L$ . We continue $w_{j}(x)$ on the whole

real line by $w_{j}(x)\equiv 0$ in $|x|\geq L$ . Thus, in order to fulfill $\lambda_{k}<-f’(\xi)-\lambda_{0}$ , we can $\mathrm{c}\mathrm{h}o$ ose

(10) $k=[L(-f’(\xi)-\lambda_{0}.)^{1/2}\cdot\pi^{-1}]$,

where $[x]$ denotes the integer part of $x$ . We next show that

$\langle A’(z(x))w, w\rangle|_{w\in R_{k}}>0$ .
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Since $(A’(z(x))w_{j}, w_{k})=0$ if $j\neq k$ , it is sufficient to che&(10) at $w=w_{j)}j=1,$ $\cdots k$ . Indeed,

$\langle A’(z(x))w_{j},w_{j}\rangle=-\int_{-L}^{L}((w_{j}’(x))^{2}+(f’(\xi)+\lambda_{0})w_{j}^{2}(x))dx=$

$=- \int_{-L}^{L}(\frac{\pi^{2}j^{2}}{L^{2}}w_{j}^{2}+(f’(\xi)+\lambda_{0})w_{j}^{2})dx=$

$=-( \frac{\pi^{2}j^{2}}{L^{2}}+f’(\xi)+\lambda_{0})\int_{-L}^{L}w_{j}^{2}(x)dx>0$

for all $j=1,$ $\cdots,$
$k$ according to (10). Due to Courant’s Minimax Principle, we have

$\dim M_{+}(z)\geq k=[L(-f’(\xi)-\lambda_{0})^{1/2}\cdot\pi^{-1}]$ .

Hence in case of $n=1$ we obtain

$\dim A\geq LC_{1}(\lambda_{0})$

for sufficiently large L. $\mathrm{R}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{g}-\Delta \mathrm{b}\mathrm{y}-\nu\Delta$ in (9) yields

(11) $\dim A\geq L\nu^{-1/2}C_{1}(\lambda_{0})$ .

It remains to show that

(12) $\dim A\leq C_{2}(\lambda_{0})L\cdot\nu^{-1/2}$

for sufficiently large $L$ . A proof of (12) is based on the estimate (see [3])

$\dim A\leq C(\lambda_{0})\nu^{-1/2}||g||_{L_{2}(\mathbb{R})}^{2}$

where $g(x)$ is the forcing function in (1). If we set $g=g_{L}(x)$ , then $||g||_{L_{2}(\mathbb{R})}^{2}=O(L)$ and

(13) $\dim A\leq C_{2}(\lambda_{0})\nu^{-1/2}\cdot L$

for sufficently large $L$ . This proves Theorem 2 in the case $n=1$ .
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In the case $n>1$ , the proof of Theorem 2 is based on the estimate of eigenvalues $\mathrm{o}\mathrm{f}-\Delta$ in

a ball. Consider, instead of (9), the Dirchlet problem in a ball $B_{L}=\{x\in 1\mathrm{R}^{n}|||x||\leq L\}$

$\{$

$-\Delta w_{j}=\lambda_{j}w_{j}$

$w_{j}|_{\partial B_{L}}=0$

It is $\mathrm{w}\mathrm{e}\mathrm{U}$-known that $\lambda_{j}\sim j^{\frac{2}{\mathfrak{n}}}$ for $jarrow\infty$ , so that the estimates (12) and (13) take the form

$C_{1}(\lambda_{0})\nu^{-n/2}L^{n}\leq\dim A\leq C_{2}(\lambda_{0})\nu^{-n/2}L^{n}$

for sufficiently large $L$ .

Corollary 2 The dimension of the aitractor can be made arbitrarily large.
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