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1 INTRODUCTION
Since the pionaering contribution of Aumann(1976), game theorists and math-

ematical economists have investigated the foundation of game theory, especially
the concept of common-knowledge (or common-belief) in different kinds of epis-
temic models. There are two important approaches among others: The first is
the logical approach; the axiomatic models of knowledge and belief, and the sec-
ond is the Bayesian approach of knowledge; the model of belief with probability 1.
Bacharach(1985) and Samet(1990) adopted the first approach and Monderer and
Samet(1989) adopted the second. They succeeded in extending the ‘Agreeing to
disagree’ theorem of Aumann(1976); that is, it is impossible to agree to disagree
if their posteriors are common-knowledge, even when they have different informa-
tions.

In every approach, the players in model have baen explicitly or implicitly required
to have lo.qicaIly omniscient ability; that is, they can deduce $\mathrm{a}\mathrm{U}$ the logical impli-
cations of their knowledge (or belief) and they know (or believe) every tautology.
However real people are not complete reasoners and the recent idea of ‘bounded ra-
tionality’ suggests dropping the problematic assumption. In this connection Dekel,
Lipman and Rustichini(1998) introduced a unawareness operator with axiom of
plausibility and investigated the relation between unawareness and non-partitional
possibility correspondences.

While in the economics literature knowledge and common-knowledge are treated
in game-theoretical terms, in the logic literature these notions are analyzed in terms
of semantics models (e.g. Kripke semantics.) Although these approaches seem to
be different, the underling ideas are essentially same. Therefore there is a possibil-
ity of the logical reformulation of results concerning of comnon-knowledge in the
economic literature such as Aumann’s theorem as its main achievement. de Swart
and Rauszer(1995) succeeded in giving the logical reconstruction of the proof of
Aumann’s theorem to the modal logic S5 with common-knowledge.
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The purpose of this lecture is to give a syntactical reformulation of the “Agreeing
to disagree” theorem to a weak logic with awareness and common-belief, in which
the players are required neither to be men of complete perception nor to have the
complete ability of logical reasoning. We present the logic of ‘Agreeing to disagree’
that is an extension of the logic of awareness and common-belief, and we show the
two results: First that the logics have a finite model property, and secondly that
the formal sentence of $\mathrm{A}\mathrm{u}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}^{)}\mathrm{s}$ theorem is a theorem in the extended logic.

2 LOGIC OF AWARENESS AND COMMON-BELIEF
We present the logic of awareness and common-belief that is a generalization of

the logic of common-belief by Lismon(1993).

Let us consider multi-modal logics for finitely many players $N=\{1,2, \ldots , n\}$ .
The sentences of the language form the least set containing each atomic sentence
$\mathrm{P}_{m}(m=0,1,2, \ldots)$ closed under the following operations:

$\mathrm{n}\mathrm{u}\mathrm{U}\mathrm{a}\mathrm{r}\mathrm{y}$ operators for $falsity\perp \mathrm{a}\mathrm{n}\mathrm{d}$ for truth $\mathrm{T}$ ;. unary and binary syntactic operations for ne.qation $\urcorner,$
$conditionalityarrow \mathrm{a}\mathrm{n}\mathrm{d}$

$conjunction\wedge$ , respectively;
$2n+3$ unary operations for modality $\coprod_{1},$ $\coprod_{2},$

$\ldots,$
$\coprod_{n},$ $\coprod_{E},$ $\coprod_{C},$ $_{1},$ $_{2},$ $\ldots$ ,

$_{n},$ $_{E}$ .

Other such operations are defined in terms of those in usual ways.
The intended interpretation of $i\varphi$ is the sentence that ‘player $i$ believes a sen-

tence $\varphi$

’ whereas $_{i}\varphi$ is interpreted as the sentence that $‘ i$ is aware of $\varphi,’\coprod_{E\varphi}$ as
‘everybody believes $\varphi.’\square c\varphi$ is interpreted as $‘\varphi$ is commonly believed among all
players,’ and $_{E}\varphi$ as ‘everybody is aware of $\varphi.$

’

An $N$-modal lo.qic is a set $L$ of sentences containing all truth-functional tau-
tologies and closed under substitution and modus ponens. An $N$-modal logic $L’$

is an extension of $L$ if $L\subseteqq L’$ . A sentence $\varphi$ in an $N$-modal logic $L$ is a theo-
rem of $L$ , written $\mathrm{b}\mathrm{y}\vdash_{L}\varphi$ . Other proof-theoretical notions such as L-deducibility,
$L$-consistency, $L$-maximality are defined in usual ways. (See, Chellas, 1980.)

Worthy to notice is that Lindenbaum’s lemma is always true for any N-modal
logic $L$ ; that is, every $L$-consistency set of sentences has an $L$-maximal extension.
This is because $L$ includes the ordinary propositional logic. As a consequence, we
can observe that a sentence is a theorem of $L$ if and only if it is a member of
every maximal set of sentences. We denote by $|\varphi|_{L}$ the class of $L$-maximal sets of
sentences containing the sentence $\varphi$ ; this is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the proof set of $\varphi$ . We note that
a sentence $\varphiarrow\psi$ is a theorem of $L$ if and only if $|\varphi|_{L}\subseteqq|\psi|_{L}$ .

Definition. A system of awareness and common-belief is an $N$-modal logic $L$

closed under the $2n+3$ rules of inference $\mathrm{R}\mathrm{E}_{\square },$ $\mathrm{R}\mathrm{E}_{}$ and containing the schemata
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$(\mathrm{D}\mathrm{e}\mathrm{E}_{E}),$ $(\mathrm{D}\mathrm{e}\mathrm{f}_{E})$ and $(\mathrm{P}\mathrm{L})$ :

$(\mathrm{R}\mathrm{E}_{\square })$ $\frac{\varphirightarrow\psi}{\coprod_{*}\varphirightarrow\coprod_{*}\psi}$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$ $\ldots,n,$ $E,$ $C$ ;

$(\mathrm{R}\mathrm{E}_{})$ $\frac{\varphirightarrow\psi}{_{*}\varphirightarrow_{*}\psi}$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$
$\ldots,$ $n,$ $E$ ;

$(\mathrm{D}\mathrm{e}\mathrm{E}_{E})$ $\square _{E\varphi}rightarrow\coprod_{1}\varphi\bigwedge_{-2\varphi\wedge\cdots\bigwedge_{-n}}$ ;

$(\mathrm{F}\mathrm{P})$ $\square c\varphirightarrow\coprod_{E}(\varphi\wedge\square c\varphi)$ ;

$(\mathrm{D}\mathrm{e}\mathrm{f}_{E})$ $_{E\varphi}rightarrow _{1}\varphi\wedge _{2}\varphi\wedge\cdots\wedge _{n}\varphi$ ;

$(\mathrm{P}\mathrm{L})$ $\coprod_{i}\varphi\coprod_{i^{\neg}}\coprod_{i}\varphiarrow _{i}\varphi$ for $i=1,2,$ $\ldots$ , $n$ .
By the lo.qic of awareness and common-belief we mean the smallest system of

awareness and common-belief, denoted by $ACB$ .
Definition. A player $i$ is said to have a $lo$.qically omniscient ability in an N-

modal logic if the system has the axiom and rules:

$(\mathrm{N}_{\square _{t}})$ $\Pi_{i}\mathrm{T}$ ; $(\mathrm{M}_{\coprod_{f}})$ $\frac{\varphiarrow\psi}{\coprod_{i}\varphiarrow\coprod_{i}\psi}$ .

Remark. Every player in the logic $ACB$ is not to be required to have a logically
omniscient ability.

2 AWARENESS STRUCTURE
We present the notion of awareness structure. By a state-space we mean a non-

empty (perhaps, infinite) set.
Definition. A belief structure is a tuple $\langle\Omega, (B_{i})\rangle$ in which $\Omega$ is a state-space

and $(B_{i})$ is a class of $i’ \mathrm{s}$ belief operators on $2^{\Omega}$ . The mutual belief operator is the
operator $B_{E}$ that assigns to each event $F$ the intersection of $B_{i}F$ for all $i$ of $N$ ;
that is,

$B_{E}F= \bigcap_{i\in N}B_{i}F$
.

The interpretation of $B_{i}F$ is the event that $‘ i$ believes $F,$ ’ whereas $B_{E}F$ is
interpreted as the event that ‘everybody believes $F$ ’

A common-belief operator is an operator $B_{C}$ on $\Omega \mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathfrak{h}^{\gamma}\mathrm{i}\mathrm{n}\mathrm{g}$ the fixed point
property:

FP $B_{C}F\subseteq B_{E}(F\cap B_{C}F)$ for every $F$ of $2^{\Omega}$ .
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We say that an event $E$ is common-belief at $\omega$ if $\omega$ belongs to $B_{C}E$ .
The canonical common-belief operator is defined as follows: Construct the de-

scending chain $\{B^{m}\}$ such that $B^{0}F:=B_{E}F;\overline{B}^{m-1}F:=B_{E}(F\cap B^{m-1}F);B^{m}F:=$

$\overline{B}^{m-1}F\cap B^{m-1}F$. The common-belief operator $B_{C}$ is given by the infimum of the
chain:

$B_{C}E= \bigcap_{m=0,1,2},\cdots B^{m}E$
.

Therefore the canonical common-belief operator satisfies Axiom $\mathrm{F}\mathrm{P}$ , and it yields
the iterated notion of common-belief$\cdot$, that is, when $\omega$ occurs then for all players it
is true that all players believe $E$ and they believe that they believe $E$ and... and
so on.

Definition. An awareness structure is a tuple $\langle\Omega, (A_{i}), (B_{i})\rangle$ in which $\langle\Omega, (B_{i})\rangle$

is a belief structure and $(A_{i})$ is a class of $i’ \mathrm{s}$ awareness operators on $2^{\Omega}$ such that
Axiom PL (axiom of plausibility) is valid:

PL $B_{i}F\cup B_{i}(\Omega\backslash B_{i}F)\subseteq A_{i}F$ .
The awareness structure is called finite if the state-space is a finite set.

The axiom PL due to Dekel, Lipman and Rustichini (1998) says that $i$ is aware
of $F$ if he believes it or if he believes that he dose not believe it.

The mutual awareness operator is the operator $A_{E}$ on $2^{\Omega}$ that assigns to each
event $F$ the intersection of $A_{i}F$ for all $i$ of $N$ ; that is,

$A_{E}F= \bigcap_{i\in N}A_{i}F$
.

The interpretation of $A_{i}F$ is the event that $‘ i$ is aware of $F,’ \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ as $A_{E}F$ is
interpreted as the event ‘everybody is aware of F.’

3 MODEL AND TRUTH

A model on awareness structure is a tuple $B=<A,$ $A_{E},B_{E},B_{C},$ $V>$ , in which
$A=<N,$ $\Omega,$ $(A_{i}),$ $(B_{i})>\mathrm{i}\mathrm{s}$ an awareness structure, $A_{E}$ the mutual awareness oper-
ator, $B_{E}$ the mutual belief operator, $B_{C}$ a common-belief operator and a mapping
$V$ assigns either $0$ or 1 to every $\omega\in\Omega$ and to every atomic formula $\mathrm{P}_{m}$ . The model
is said to be finite if the awareness structure is finite.

Definition. $\mathrm{B}\mathrm{y}\models_{\omega}^{g}\varphi$ , we mean that a sentence $\varphi$ is true at a state $\omega$ in a model
B. Truth at a state $\omega$ in a model $B=<A,$ $A_{E},$ $B_{E},$ $B_{C},$ $V>\mathrm{i}\mathrm{s}$ defined as follows:

(i) $\models_{\omega}^{B}\mathrm{P}_{m}$ if and only if $V(\omega,\mathrm{P}_{m})=1$ , for $m=0,1,2,$ $\ldots$ ;

(ii) $\models_{\omega}^{\beta}\mathrm{T}$ , and not $\models_{\omega}^{B}\perp$ ;
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(iii) $\models_{\omega}^{\mathcal{B}}\neg\varphi$ if and only if $\mathrm{n}\mathrm{o}\mathrm{t}\models_{\omega}^{\mathcal{B}}\varphi$ ;

(iv) $\models_{\omega}^{B}\varphiarrow\psi$ if and only if $\models_{\omega}^{g}\varphi \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\models_{\omega}^{\beta}\psi$ ;

(v) $\models_{\omega}^{g}\varphi\wedge\psi$ if and only if $\models_{\omega}^{B}\varphi \mathrm{a}\mathrm{n}\mathrm{d}\models_{\omega}^{g}\psi$ ;

(vi) $\models_{\omega}^{\beta}\square _{i}\varphi$ if and only if $\omega\in B_{i}(||\varphi||^{B})$ , for $i=1,2,$ $\ldots,$
$n$ ;

(v\"u) $\models_{\omega}^{B}_{i}\varphi$ if and only if $\omega\in A_{i}(||\varphi||^{B})$ , for $i=1,2,$ $\ldots$ , $n$ ;

(v\"ui) $\models_{\omega}^{g}_{E}\varphi$ if and only if $\omega\in A_{E}(||\varphi||^{\mathcal{B}})$ .
(ix) $\models_{\omega}^{\mathcal{B}}$ if and only if $\omega\in B_{E}(||\varphi||^{B})$ ;

(x) $\models_{\omega}^{e-}$ if and only if $\omega\in B_{C}(||\varphi||^{\mathcal{B}})$ ;

We denote by $||\varphi||^{B}$ the set of all the states in $B$ at which $\varphi$ is true; this is called
the truth set of $\varphi$ . We say that a sentence $\varphi$ is $tme$ in the model $\mathcal{B}$ and $\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}\models^{\mathcal{B}}\varphi$

$\mathrm{i}\mathrm{f}\models_{\omega}^{g}\varphi$ for every state $\omega$ in $\mathcal{B}$. A sentence is said to be vdid in an awareness
structure $A$ if it is true in every model on $A$.

Definition. Let $\Sigma$ be a set of sentences. We say that $B$ is a model for $\Sigma$ if every
member of $\Sigma$ is true in $\mathcal{B}$ . An awareness structure $A$ is said to be for $\Sigma$ if every
member of $\Sigma$ is valid in $A$.

Let $M$ be a class of models on awareness structure. An $N$-modal $1_{0_{\mathrm{o}}^{\circ}}\mathrm{i}\mathrm{c}L$ is sound
with respect to $M$ if every member of $M$ is a model for $L$ . It is complete with respect
to $M$ if every sentence valid in all members of $M$ is a theorem of $L$ . We say that
$L$ is determined by $M$ if $L$ is sound and complete with respect to $M$.

Proposition 1. Every system of awareness lo.qic is sound with respect to the
class $C$ of all models on awareness structure. In particular, the lo.qic of awareness
and belief $ACB$ is sound with respect to the class $C_{FIN}$ of all finite models on
awareness structure.

Proof. Follows easily ffom the definition of an awareness structure. $\square$

4 CANONICAL MODEL AND COMPLETENESS THEOREM

A canonical model for a system $L$ of awareness and common-belief is a model
$B_{L}=<A_{L},$ $A^{L_{E}},$ $B^{L_{E}},$ $B^{L_{C}},$ $V_{L}>$ for $L$ where $A_{L}=<N,$ $\Omega_{L},$ $(A^{L}i),$ $(B^{L}i)>$ is
an awareness structure with the mutual belief operator $B^{L_{E}}$ , the common-belief
operator $B^{L_{C}}$ and the mutual awareness operator $A^{L_{E}}$ , which consists of.$\cdot$

(i) $\Omega_{L}$ is the set of all the $L$-maximal sets of sentences;

(ii) $A^{L}\dot{\mathrm{t}}$ is the operator on $2^{\Omega_{L}}$ such that for every $\omega$ of $\Omega_{L}$ ,

$_{i}\varphi\in\omega$ if and only if $\omega\in A^{L}i(|\varphi|_{L})$ ;
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(iii) $A^{L_{E}}$ is the operator on $2^{\Omega_{L}}$ such that for every $\omega$ of $\Omega_{L}$ ,

$_{E\varphi}\in\omega$ if and only if $\omega\in A^{L_{E}}(|\varphi|_{L})$ ;

(iv) $B^{L}i$ is the operator on $2^{\Omega_{L}}$ such that for every $\omega$ of $\Omega_{L}$ ,

$\coprod_{i}\varphi\in\omega$ if and only if $\omega\in B^{L}i(|\varphi|L)$ ;

(v) $B^{L_{E}}$ is the operator on $2^{\Omega_{L}}$ such that for every $\omega$ of $\Omega_{L}$ ,

$\varphi\in\omega$ if and only if $\omega\in B^{L}E(|\varphi|L)$ ;

(vi) $B^{L_{C}}$ is the operator on $2^{\Omega_{L}}$ such that for every $\omega$ of $\Omega_{L}$ ,

$\square c\varphi\in\omega$ if and only if $\omega\in B^{L}c(|\varphi|_{L})$ ;

(v\"u) $V_{L}$ is the mapping that assigns to every $\mathrm{P}_{m}$ and to every $\omega\in\Omega$ either $0$ or
1 such that for $m=0,1,2,$ $\ldots$ ,

$\mathrm{P}_{m}\in\omega$ if and only if $V_{L}(\omega,\mathrm{P}_{m})=1$ .

Where we should note that these operators $B_{*}^{L}$ and $A_{*}^{L}$ are well-defined in the
sense that $B_{*}^{L}(|\varphi|_{L})=B_{*}^{L}(|\psi|_{L})$ and $A_{*}^{L}.(|\varphi|L)=A_{*}^{L}(|\psi|_{L})$ whenever $|\varphi|_{L}=|\psi|_{L}$

by virtue of the rules $(\mathrm{R}\mathrm{E}_{\square })$ and $(\mathrm{R}\mathrm{E}_{})$ .
We prove that

Proposition 2. There is a canonical model for each system of awareness and
common-belief.

Proof. Let $L$ be a system of awareness and common-belief. Let $\Omega_{L}$ be set by
the same way as above and and $V_{L}$ defined by $V_{L}(\omega, \mathrm{P}_{m})=\{\omega\in\Omega^{L}|\mathrm{P}_{m}\in\omega\}$ .
We define the awareness structure $A_{L}=<N,$ $L,$ $(B^{L}i),$ $(A^{L}i)>$ such that $B^{L}iF$

consists of all the states $\omega$ of $\Omega_{L}$ that for some sentence $\varphi,$ $F=|\varphi|_{L}$ with $\coprod_{i}\varphi\in\omega$ ,
and $A^{L}iF$ consists of all the state $\omega$ of $\Omega_{L}$ that for some sentence $\varphi,$ $F=|\varphi|_{L}$

with $_{i}\varphi\in\omega$ . We can plainly observe that $B^{L}i$ and $A^{L}i$ respectively $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ the
above conditions (iv) and (ii). Let $B^{L_{E}}$ and $A^{L_{E}}$ be respectively the mutual belief
operator and the mutual awareness operator We can veriy by $(\mathrm{D}\mathrm{e}\mathrm{f}\coprod_{E})$ and
$(\mathrm{D}\mathrm{e}\mathrm{f}_{E}\backslash )$ that $B^{L_{E}}$ and $A^{L_{E\mathrm{S}\mathrm{a}}}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ the conditions (v) and (iii) respectively; that
is, $B^{L_{E}}(|\varphi|_{L})=|\square _{E}\varphi|_{L},$ $A^{L_{E}}(|\varphi|_{L})=|_{E\varphi 1_{L}}$ . In view of the plausibility axiom
$(\mathrm{P}\mathrm{L})$ we can further $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\Psi$ that Axiom PL is valid. Let $B^{L_{C}}$ be the operator on
$\Omega_{L}$ such that $B^{L_{C}}F$ consists of all the state $\omega$ of $\Omega_{L}$ that for some sentence $\varphi$ ,
$F=|\varphi|_{L}$ with $\square c\varphi\in\omega$ . In view of Axiom $(\mathrm{F}\mathrm{P})$ and the above definition of $B^{L_{C}}$

it is plainly observed that both the property FP and the condition (vi) are valid.
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Therefore, $\mathcal{B}_{L}=<A_{L},$ $A^{L_{E}},$ $B^{L_{E}},$ $B^{L_{C}},$ $V_{L}>$ is indeed a canonical model on an
awareness structure $A_{L}=<N,$ $\Omega_{L},$ $(A^{L}i)_{i},$ $(B^{L}i)>$ , in completing the proof. $\square$

The important result about a canonical model is the following:

Proposition 3. Let $\mathcal{B}_{L}$ be a canonical model for a system $L$ of awareness and
common-belief. Then for every sentence $\varphi$,

$\models^{B_{L}}\varphi$ if and only if $\vdash_{L}\varphi$ .

Proof. By induction on the complexity of $\varphi$ . For non-model cases, see Section
2.7 in Chellas(1980). For modal cases, adapt the proof of Theorem 9.5 with taking
note of Exercise 7.10 in Chellas(1980). $\square$

We can now state a main result in this lecture:

Theorem 1. The lo.qic of awareness and common-belief $ACB$ is determined by
the class of all finite models on awareness structure $C_{FIN}$ .

That is, the logic of awareness and common-belief has a finite model property.

Before proceeding to the proof we introduce the notion of the filtration of models.
By this we can construct a finite awareness structure from a system of logic.

Filtration of a model $B_{L}$ .
Let $L$ be a system of awareness and common-belief. For each set of sentences $\Gamma$ ,

we define the equivalence relation $\equiv \mathrm{o}\mathrm{n}\Omega_{L}$ by
$\omega\equiv\xi$ if and only if for every sentence $\psi$ of $\Gamma$ ,

$\models_{\omega^{L}}^{B}\psi$ $\Leftrightarrow$ $\models_{\xi}^{\mathcal{B}_{L}}\psi$ .
Let $[\omega]$ denote the equivalence class of $\omega$ and [X] the set of equivalence classes

$[\omega]$ for all $\omega$ of $X$ whenever $X$ is a subset of $\Omega_{L}$ .
By the filtration of $B_{L}$ throu.qh $\Gamma$ , we mean the tuple

$B_{L}^{\Gamma}=\langle N, \Omega^{\Gamma}, (A_{i}^{\Gamma}), (B_{i}^{\Gamma}), A_{E}^{\Gamma},B_{E}^{\Gamma}, B_{C}^{\Gamma}, V^{\Gamma}\rangle$

such that:

(i) $\Omega^{\Gamma}=[\Omega_{L}]$ ;

(ii) For $\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}*=1,2,$
$\ldots,$ $n,$ $E$ ,

$A_{*}^{\Gamma}([F])=[A_{*}F]$ for every $[F]\subseteqq\Omega^{\Gamma}$ ;

(iii) For $\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}*=1,2,$
$\ldots$ , $n,$ $E,$ $C$ , the operator $B_{*}^{\Gamma}$ on $2^{\Omega^{\Gamma}}$ is given by

$B_{*}^{\Gamma}([F])=[B_{*}F]$ for every $[F]\subseteqq\Omega^{\Gamma}$ ;

(iv) $V^{\Gamma}$ is the mapping that assigns to every $\mathrm{P}_{m}$ and to every $[\omega]\in\Omega^{\Gamma}$ either $0$

or 1 such that for $m=0,1,2,$ $\ldots$ ,
$V^{\Gamma}([\omega],\mathrm{P}_{m})=V_{L}(\omega,\mathrm{P}_{m})$ .
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It should be noticed that $B_{L}^{\Gamma}$ is indeed a finite model on an awareness structure
$A_{L}^{\Gamma}=<N,$ $\Omega^{\Gamma},$ $(A_{i}^{\Gamma}),$ $(B_{i}^{\Gamma})>$ : For $B_{E}^{\Gamma}$ and $A_{E}^{\Gamma}$ respectively coincides with the in-
tersection of all belief operators $B_{i}^{\Gamma}$ and that of $\mathrm{a}\mathrm{U}$ awareness operators $\mathrm{A}^{\Gamma}$ . It is
plainly observed that Axiom PL is true for $A_{i}^{\Gamma}$ and $B_{i}^{\Gamma}$ , furthermore that Axiom
FP is also valid. Viewing that the number of $\mathrm{a}\mathrm{U}$ subsentences of $\varphi$ is finite we can
$\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\infty$ that $\Omega^{\Gamma}$ is a finite set.

We note further that for every state $\omega$ of $\Omega_{L}$ and for every subsentence $\psi$ of $\varphi$ ,
$\omega\in B_{*}^{L}(||\psi||^{B_{L}})$ if and only if $[\omega]\in B_{*}^{\Gamma}(||\psi||^{B_{L^{\Gamma}}})$ for $\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}*=1,2,$

$\ldots,$ $n,$ $E,$ $C$ and
note that $\omega\in A_{*}^{L}(||\psi||^{\mathcal{B}_{L}})$ if and only if $\omega\in A_{*}^{\Gamma}(||\psi||^{B_{L}^{\Gamma}})$ for $\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}*=1,2,$

$\ldots,$ $n,$ $E$ .
This implies that for every sentence $\varphi$ and for the filtration $B_{L^{\Gamma}}$ of $B_{L}$ through
subsentences of $\varphi$ ,

$\models^{B_{L}}\varphi$ if and only if $\models^{B_{L^{\Gamma}}}\varphi$ .

Proof of Theorem 1. Soundness follows ffom Proposition 1. For completeness, we
first observe that $ACB$ is complete with respect to $C$ : For, in view of Proposition
3, this follows ffom the existence of a canonical model $\mathcal{B}_{ACB}$ for the system $ACB$

by Proposition 2. Suppose that $\varphi$ is not a theorem of $ACB$ , so that by Proposition
3 it is false in the canonical model $B_{ACB}$ . Let $B_{ACB}^{\Gamma}$ be the filtration of $B_{ACB}$

through $\Gamma$ the set of all subsentences of $\varphi$ . Viewing the above equivalence about
validity between in $B_{L}$ and in $B_{L}^{\Gamma}$ we can observe that $\varphi$ is false in a finite model
$B_{ACB}^{\Gamma}$ on awareness structure $A_{ACB}^{\Gamma}$ , in completing the proof.

6 EXTEMSION OF AUMANN’S THEOREM
While Aumann(1976) had showed his ‘Agreeing to disagree’ theorem in the par-

titional information model, Bacharach(1985) proved it in the Kripke semantics to
the modal logic S5. We extend the theorem to the models for the logic $ACB$ . We
first introduce the following two concepts:

Definition. We say that an event $F$ is self-aware of $i$ if $F\subseteq A_{i}F$ and it is
said to be publicly aware if $F\subseteq A_{E}F$ . An event $T$ is said to be $i’s$ evident belief if
$T\subseteq B_{i}T$ , and it is said to be public belief at state $\omega$ if $\omega\in T\subseteq B_{E}T$.

An event is public belief (or respectively, it is publicly aware) if whenever it
occurs all players believe it (or they are all aware of it.) We can think of public
belief as embodying the essence of what is involved in all players making their direct
observations.

Definition. The associated information structure $(P_{i})$ is a class of the mappings
$P_{i}$ of $\Omega$ into $2^{\Omega}$ in which $P_{i}$ assigns to each $\omega$ the intersection of all the $i’ \mathrm{s}$ evident
belieffi $T$ to which $\omega$ belongs; that is,

$P_{i}( \omega)=\bigcap_{T\in 2^{\Omega}}\{T|\omega\in T\subseteq B_{i}T\}$
.
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(If there is no event $T$ for which $\omega\in T\subseteq B_{i}T$ then we take $P_{i}(\omega)$ to be non-
ddined.) We call $P_{\dot{\mathrm{t}}}(\omega)$ the $i’ \mathrm{s}$ evidence set at $\omega$ .

An evidence set is interpreted as the basis for all $i’ \mathrm{s}$ evident beliefs since each $i’ \mathrm{s}$

evident belief $T$ is decomposed into a union of all evidence sets contained in $T$.

Definition. A non-empty event $H$ is said to be $P_{i}$-invariant if for every $\xi$ of $H$ ,
$P_{i}(\xi)$ is defined and is contained in $H$ .

Remark. The stron.$q$ epistemic model (Bacharach,1985)1 can be interpreted as
an awareness structure $\langle\Omega, (A_{i}), (B_{i})\rangle$ such that $B_{i}$ satisfies $\mathrm{N},$ $\mathrm{K},$ $\mathrm{T},$ $4$ and 5, and
$A_{i}$ is the trivial awareness operator; i.e. $A_{i}(E)=\Omega$ for every $E\in 2^{\Omega}$ . This says
that an awareness structure is an extension of the strong epistemic model.

Example. Consider the following situation. Player 1 believes that “the earth is
not flat and it moves around the sun,” while Player 2 believes that “the earth is not
flat and it does not moves around the sun”; furthermore these beliefs are evident
and it is public belief that “the earth is not flat.”

In this circumstances the logic $ACB$ is given as follows: The language consists
of two atomic sentences $\mathrm{P}_{1},\mathrm{P}_{2}$ and modal operators $,$ $\coprod_{2},$ $_{1},$ $_{2}$ , where $\mathrm{P}_{1}$

represents the sentence “the earth is flat,” $\mathrm{P}_{2}$ represents the sentence “the earth
moves around the sun.”

For this logic a model $\langle\Omega, (B_{i}), V\rangle$ will be constructed as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$: The state-space
$\Omega$ consists of four states $\alpha,\beta,\gamma,\delta$ , and $V$ is the valuation such that

$V(\alpha,\mathrm{P}_{1})=0,$ $V(\beta, \mathrm{P}_{1})=0,$ $V(\gamma,\mathrm{P}_{1})=1,$ $V(\delta,\mathrm{P}_{1})=1$ ;
$V(\alpha, \mathrm{P}_{2})=1,$ $V(\beta, \mathrm{P}_{2})=0,$ $V(\gamma,\mathrm{P}_{2})=0,$ $V(\delta, \mathrm{P}_{2})=1$ .

Whence a state $\alpha$ represents the proposition “the earth is not flat but it moves
around the sun,” state $\beta$ represents the proposition “the earth is not flat and it
does not moves around the sun.” The belief operators are given by:

$B_{1}(\{\emptyset\})=\{\alpha,\gamma\},B_{1}(\{\alpha, \beta\})=\{\alpha,\beta\},$ $B_{1}(\Omega)=\{\alpha\}$ and $B_{1}(E)=\emptyset$ otherwise;
$B_{2}(\{\emptyset\})=\{\beta,\gamma\},B_{2}(\{\beta\})=\Omega,$ $B_{2}(\{\alpha,\beta\})=\{\alpha,\beta\},B_{2}(\Omega)=\{\beta\}$ and
$B_{2}(E)=\emptyset$ otherwise.

The associated information structure is given by:

$P_{1}(\alpha)=\{\alpha\},$ $P_{1}(\beta)=\{\alpha,\beta\}$ and $P_{1}(\omega)$ is not defined otherwise;
$P_{2}(\alpha)=\{\alpha,\beta\},$ $P_{2}(\beta)=\{\beta\}$ and $P_{2}(\omega)$ is not defined otherwise.

1The strong epistemic model is a tuple $(\Omega, (K_{i})\rangle$ , in which $\Omega$ is a state-space and $K_{i}$ is an $i’ \mathrm{s}$

knowledge operator $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}$ing the following axioms: For every $E,$ $F$ of $2^{\Omega}$ ,
$\mathrm{N}$ $K_{i}\Omega=\Omega$ ; $\mathrm{K}$ $K_{i}(E\cap F)=K_{i}E\cap K_{i}F$; $\mathrm{T}$ $K_{i}F\subseteq F$ ;
4 $K_{i}F\subseteq K_{i}K_{i}F$ ; 5 $\Omega\backslash K_{i}F\subseteq K_{i}(\Omega\backslash K_{i}F)$ .
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Let $\mu$ be the equal probability measure on $\Omega:\mu(\omega)=1/4$ , and $q_{i}(X,\omega)$ the
posterior of $X$ at $\omega$ defined by $\mu(X|P_{i}(\omega))$ . Accordingly we obtain that $q_{2}(\{\alpha\}, \alpha)=$

$1/2$ ; that is, player $2’ \mathrm{s}$ posterior of the event $\{\alpha\}$ (the earth is not flat and it moves
around the sun) is 1/2 when player 2 believes that $\beta$ is the true state and never
believes that $\alpha$ is so $(B_{2}(\alpha)=\emptyset)$ , contrary to the spirit of the example.

We improve on the definition of posterior as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$:

Definition. Let $\langle\Omega, (A_{i}), (B_{i}),\mu\rangle$ be an awareness structure with a common-
prior $\mu$ . For every real number $q_{i}$ , we denote

$[q_{i}]=\{\omega\in\Omega|\mu(X\cap A_{i}(X)|P_{\dot{\mathrm{t}}}(\omega))=q_{i}\}$ .

An interpretation of $\mu(X\cap A_{i}(X)|P_{i}(\omega))$ is the conditional probability of the
$i’ \mathrm{s}$ awareness section of $X$ under his evidence set at $\omega$ .

We say $q_{i}$ to be the $i’ \mathrm{s}$ poste$r\dot{\mathrm{v}}or$ of $X$ at $\omega$ if $\omega$ belongs to $[q_{i}]$ . We denote by
$q$ the profile $(q_{t}’)_{i\in N}$ . An event $[q]$ is the intersection of the sets $[q_{i}]$ for all $i$ of $N$;
that is,

$[q]= \bigcap_{i\in N}[q_{i}]$
.

For Example as above, letting $A_{i}(E)=B_{i}(E)\cup B_{i}(-B_{i}(E))$ we obtain that
$A_{2}(\{\alpha\})=\{\beta\}$ . Therefore it follows that the player $2’ \mathrm{s}$ improved posterior of $\{\alpha\}$

at state $\alpha$ is $\mu(\{\alpha\}\cap A_{i}(\{\alpha\})|P_{i}(\alpha))=0$ , as desired.

The following lemma is the key to proving Theorem 2.

Fundamental Lemma. Let $(P_{i})$ be the associated information structure with
a finite awareness structure and $\mu$ a $common- pr\dot{\eta}or$. Let $q_{i}$ be an $i^{f}s$ poste$7\dot{?}or$ of an
event $X$ at a state $\omega$ . If there is an event $H$ such that the followin.$q$ two properties
(a), (b) are $tme$ then we obtain that

$\mu(X\cap A_{i}(X)|H)=q_{i}$ :

(a) $H$ is non-empty and it is $P_{i^{-}}inva\dot{n}ant$,
(b) $H$ is contained in $[q_{i}]$ .
Proof. See Appendix in Matsuhisa and Usami(1999). $\square$

We say that the players commonly believe their posteriors $q_{i}$ of $X$ at $\omega$ if $[q]$ is
common-belief at $\omega$ ; that is, $\omega\in B_{C}([q])$ . We can prove the generalized version of
Aumann’s theorem:

Theorem 2.(Matsuhisa and Usami, 1999) In a finite awareness structure with
a common-prior, if all players commonly believe their poste$7^{\cdot}iorsq_{i}$ of a publicly
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aware event $X$ at a state $\omega$ then they cannot a.qree to disa.qree; that $is_{f}q_{i}=q_{j}$ for
every $i,j$ , even when they does not have lo.qically omniscient ability.

Proof. We set $[q]\cap B_{C}([q])$ by $H$ . We note that $H$ is $P_{i}$-invariant for every
$i$ . It follows that $H$ satisfies the conditions (a) and (b) in Fundamental Lemma.
Therefore $\mu(X|H)=\mu(X\cap A_{i}(X)|H)=q_{i}$ for every $i$ . $\square$

Remark. The class of finite models for the logic $ACB$ is not sound for the
following rules: For $\tau=\coprod_{1},$ $\coprod_{2}$ . $\cdots,$

$\coprod_{n}$ ,

$(\mathrm{R}\mathrm{M}_{\tau})$ $\frac{\varphiarrow\psi}{\tau\varphiarrow\tau\psi}$ ;

$(\mathrm{R}\mathrm{I})$

In fact, putting $\varphi=\perp,$ $\psi=\neg \mathrm{P}_{1}$ , we can observe that the model $\langle\Omega, (B_{i}), V\rangle$

constructed in Example with the canonical common-belief operator $B_{C}$ is actually
a counter model for $(\mathrm{R}\mathrm{M}_{\tau})$ and for $(\mathrm{R}\mathrm{I})$ .

7 LOGIC OF ‘AGREEING TO DISAGREE’

In order to give a syntactical reformulation of the extension of Aumann’s theo-
rem, we extend the logic $ACB$ to the lo.qic of ${}^{t}a.qreein.q$ to $disa.\cdot qree’ AD$ that consists
of the symbols, the rules and the schemata of $ACB$ in additlon with

$\bullet$ Symbols:
Variables $\mathrm{q}_{1},$ $\mathrm{q}_{2},$ $\cdots,\mathrm{q}_{n}$ : Real numbers;
Constants 0,1 : Zero, one
Predicates $=,$ $<$ : Equality, is lesser than
For $i\in N$ , $\rho_{i}$ : $i’ \mathrm{s}$ posterior

$\bullet$ Terms and Sentences:
(i) The variables and the constants are terms;
(ii) If $\mathrm{s}$ and $\mathrm{t}$ are two terms then $\mathrm{s}=\mathrm{t}$ and $\mathrm{s}<\mathrm{t}$ are atomic

sentences;
(iii) If $\varphi$ is a sentence then $\rho_{i}(\varphi)$ is a term.

$\bullet$ Axiom(EA): $\varphiarrow _{E}\varphi$ .

By $p_{i}(\varphi)=\mathrm{q}_{i}$ we mean the sentence that a player $i’ \mathrm{s}$ posterior of $\varphi$ is $\mathrm{q}_{i}$ .
Axiom(EA) says that all players are aware of every sentence. Therefore, by

$( \bigwedge_{i\in N}\rho_{i}(\varphi)=\mathrm{q}_{i})\wedge\square c(\bigwedge_{i\in N}\rho_{i}(\varphi)=\mathrm{q}_{i})arrow\bigwedge_{i,j\in N}(\mathrm{q}_{i}=\mathrm{q}_{\dot{f}})$

we mean the sentence that when each playeri’s posterior is $\mathrm{q}_{i}$ and if it is common-
belief then all the posteriors are equal to each other; i.e. it is impossible to agree
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to disagree if all posteriors are common-belief among the players. The purpose of
this section is to show that the sentence is a theorem in the logic $AD$ .

Modek for $ACB$ are extended as follows:
Definition. A model for the logic of agreeing to disagree $AD$ is a tuple $\mathcal{M}=$

$\langle B,\mu, v\rangle$ , in which $\mathcal{B}=\langle N, \Omega, (A_{i}), (B_{i}), A_{E},B_{E}, B_{C}, V\rangle$ is a model for $ACB$ such
that $\mu$ is a probability measure on $2^{\Omega}$ , and $v$ is valuation on $\{\mathrm{q}_{1},$

$\mathrm{q}_{2},$ $\cdots,\mathrm{q}_{n},$ $0,1$
$\}$ into $\mathrm{R}$ with $v(\mathrm{O})=0$ and $v(1)=1$ .

We denote by $M$ the set of all models $\mathcal{M}$ for $AD$ , and by $M_{FIN}$ the set of all
finite models $\mathcal{M}$ for $AD$ .

The variables and constants get their meaning via a valuation $v$ , and truth in a
model $\mathcal{M}=\langle B,\mu, v\rangle$ is defined as follows:

Definition. An extended valuation $v_{\langle\lambda 4,\omega\rangle}$ is a mapping on the set of all terms
of $AD$ into $\mathrm{R}$ such that

. $v_{\langle \mathcal{M},\omega\rangle}(\mathrm{q}_{i})=v(\mathrm{q}_{i}),$ $v_{\langle\lambda 4,\omega\rangle}(0)=0,$ $v_{\langle\Lambda 4,\omega\rangle}(1)=1$ ;

. $v_{\langle\Lambda 4,\omega\rangle}(\rho_{i}(\varphi))=\mu(||\varphi||^{\lambda 4}\cap A_{i}(||\varphi||^{\lambda 4})|P_{i}(\omega))$ ,
where $(P_{i})$ is the associated information structure with B. $\mathrm{B}\mathrm{y}\models_{\omega}^{\lambda 4}\varphi$ we mean that
$\varphi$ is $tr\mathrm{t}\iota th$ at $\omega$ in a model $\mathcal{M}$ . Truth at $\omega$ in a model $\mathcal{M}=\langle B, \mu, v\rangle$ is defined as
follows: For terms $\mathrm{s}$ and $\mathrm{t}$ ,

(i) $\models_{\omega}^{\lambda 4}\mathrm{s}=\mathrm{t}$ if and only if $v_{\langle\lambda 4,\omega\rangle}(\mathrm{s})=v_{\langle \mathcal{M},\omega\rangle}(\mathrm{t})$ ;

(ii) $\models_{\omega}^{\mathcal{M}}\mathrm{s}<\mathrm{t}$ if and only if $v_{\langle \mathcal{M},\omega\rangle}(\mathrm{s})<v_{\langle \mathcal{M},\omega\rangle}(\mathrm{t})$ ;

(iii) $\models_{\omega}^{\lambda 4}\mathrm{P}$ if and only if $V(\omega, \mathrm{P})=1$ for any atomic sentence $\mathrm{P}$ ;

(iv) $\models_{\omega}^{\lambda 4}\coprod_{*\varphi}$ if and only if $\omega\in B_{*}(||\varphi||^{\lambda 4}),$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$
$\ldots,$ $n,$ $E,$ $C$ ;

(v) $\models_{\omega}^{\lambda 4}_{*}\varphi$ if and only if $\omega\in A_{*}(||\varphi||^{\lambda 4}),$ $\mathrm{f}\mathrm{o}\mathrm{r}*=1,2,$
$\ldots,$ $n,$ $E$ ;

where $||\varphi||^{\mathcal{M}}$ is the $\mathrm{t}\mathrm{r}.\mathrm{u}$th set $\{\omega\in\Omega|\models_{\omega}^{\lambda 4}\varphi\}$ of $\varphi$ .
Definition. A canonical model for the logic $AD$ is a model $\mathcal{M}_{C}=\langle B,\mu, v\rangle\in M$

such that $B=\langle\Omega, (A_{\iota’}), (B_{i}), A_{E}, B_{E}, B_{C}, V\rangle$ is a canonical model for the logic $ACB$
with $\mu$ a probability measure on $\Omega$ and $v$ a valuation.

By Lindenbaum’s lemma it can be verified that in a canonical model $\mathcal{M}c$ as
above, a sentence $\varphi$ is a theorem if and only if $\varphi\in\Omega$ . We denote by $|\varphi|AD$ the set
of all maximal consistent sets in $AD$ containing $\varphi.$ .

Basic theorem. A sentence $\varphi$ is a theorem in the lo.qic of a.qreein.q to disa.qree
$AD$ if and only if it is valid in a canonical model for $AD_{f}\cdot$ i..e.,

$||\varphi||^{\mathcal{M}c}=|\varphi|_{AD}$ .
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Proof can be done in the same line of Proposition 3.

Definition. Let $\mathcal{M}$ be a model for the logic $AD$ and $\Gamma$ a finite subset of sentences
in $AD$ . a $\Gamma$-filtration of $\mathcal{M}=\langle B,\mu,v\rangle$ is a tuple $\mathcal{M}^{\Gamma}=\langle B^{\Gamma},\mu^{\Gamma},v^{\Gamma}\rangle\in M_{FIN}$ , in
which $B^{\Gamma}=\langle\Omega^{\Gamma}, (A_{i}^{\Gamma}), (B_{i}^{\Gamma}), A_{E}^{\Gamma}, B_{E}^{\Gamma}, B_{C}^{\Gamma}\rangle$ is the filtration of $B$ through $\Gamma,$ $\mu^{\Gamma}$ is the
equal probability measure defined by $\mu^{\Gamma}([\omega])=\overline{|\Omega}^{\mathrm{F}}\overline{|}1$ , and $v^{\Gamma}=v$ .

In view of the above definition it immediately follows that

Proposition 4. A sentence $\varphi$ is valid in $\mathcal{M}$ if and only if $\varphi$ is valid in $\mathcal{M}^{\Gamma}$ ;
that is,

$\models^{\mathcal{M}}\varphi$ if and only if $\models^{\mathcal{M}^{\Gamma}}\varphi$.

Let $C$ be a subclass of $M$. We $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\models^{G}\varphi \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}\models_{\omega}^{\mathcal{M}}\varphi$for all $\mathcal{M}\in C$ and for
all $\omega\in \mathcal{M}$ . The following theorem is a main result in this lecture.

Theorem 3. The lo.qic of a.qreein.$q$ to disa.qree has a finite model property:

That is, a sentence $\varphi$ is a theorem in the logic $AD$ if and only if $\varphi$ is valid for
all finite models for $AD$ ;

$\vdash_{AD\varphi}$ if and only if $\models^{M_{FIN}}\varphi$.

Proof. $\mathrm{I}\mathrm{f}\vdash_{AD}\varphi$ it is plainly observed that $\models^{M_{FIN}}\varphi$ . The converse will be
shown by the way of contradiction as follows: Suppose that some sentence $\varphi$ is not
a theorem in $AD$ . In view of the basic theorem it follows that $\varphi$ is not valid for a
canonical model $\mathcal{M}_{C}$ . Let $\Gamma$ be the set of all subsentences of $\varphi$ . By Proposition 4
we can observe that $\varphi$ is not valid for a finite model $\mathcal{M}_{C}^{\Gamma}$ , in contradiction. $\square$

The following result shows that a formal statement of “Agreeing to disag.ree” is
a theorem in the logic $AD$ .

Theorem 4. $\vdash_{AD}(\bigwedge_{i\in N}p_{i}(\varphi)=\mathrm{q}_{i})\wedge\square c(\bigwedge_{i\in N}\rho_{i}(\varphi)=\mathrm{q}_{i})arrow\bigwedge_{i,j\in N}(\mathrm{q}_{i}=$

%).

Proof. In view of Theorem 2, it follows that for any finite model $\mathcal{M}=\langle \mathcal{B},\mu, v\rangle$

in $M_{FIN}$ ,

$|| \bigwedge_{i\in N}p_{i}(\varphi)=\mathrm{q}_{i}||^{\Lambda 4}\cap B_{C}(||\bigwedge_{i\in N}\rho_{i}(\varphi)=\mathrm{q}_{i}||^{\Lambda 4}\subseteq\bigcap_{i,j,\in N}||\mathrm{q}_{i}=\%$

$||^{\mathcal{M}}$ .

Viewing this result together with Theorem 3 we have shown Theorem 4 in com-
pleting the proof. $\square$
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8 CONCLUDING REMARK
de Swart and Rauszer(1995) gave the logical reconstruction of the proof of

Aumann’s theorem by Kripke semantics of the modal logic S5 with common-
knowledge. In the same line we present the weaker logic $AD$ without player’s
logically omniscient ability and show that $AD$ has a finite model property. By
virtue of this we observe that the formal sentence of Aumann’s theorem is provable
in $AD$ .
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