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Abstract

In this paper we present a gentle introduction to the important topic of rewrite strate-
gies for term rewrite systems. We survey normalization results and introduce the recent
ffamework of Durand and Middeldorp for the study of optimal rewrite strategies.

1 Introduction

Term rewriting is a general model of computation. One of the fundamental issues in term
rewriting is the ability to compute normal forms. Given a rewrite system and a term, a
rewrite strategy specifies which part(s) of the term to evaluate. The desirable property of
$\mathrm{r}.\mathrm{e}$

write strategies is normalization: repeated evaluation $0.\mathrm{f}$ the part $(\mathrm{s},)$ selected by the rewrite
strategy leads to a normal form, if the term under consideration has a normal form.

Consider the term rewrite system (TRS for short) $\mathcal{R}_{1}$ consisting of the following rewrite
rules, specifying addition and multiplication on natural numbers:

$0+y$ $arrow$ $y$ $0\cross y$ $arrow$ $0$

$\mathrm{s}(x)+y$ $arrow$ $\mathrm{s}(x+y)$ $\mathrm{s}(x)\cross y$ $arrow x\cross y+y$

Suppose we want to compute the term $(0+0\cross \mathrm{s}(0))+0\cross 0$ . This term contains three
instances of left-hand sides of rewrite rules (so-called redexes):

Redexes (1) and (3) are not contained in larger redexes. We call them outermost. Re-
dexes (2) and (3) are innermost; they do not contain smaller redexes. If we select the
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leftmost-outermost redex (1), we obtain the term $\mathrm{O}\cross \mathrm{s}(\mathrm{O})+\mathrm{O}\cross \mathrm{O}$ which contains two re-

dexes. Selecting again the leftmost-outermost redex, we obtain the term $0+0\cross 0$ . After

two further contractions of the leftmost-outermost redex we arrive at the normal form $0$ .
Instead of selecting a single redex in each step, we can also contract redexes in parallel. For

instance, redexes (1) and (3) do not interfere, i.e., after contraction of redex (1), redex (3) is

not affected, and vice-versa. If we contract all outermost redexes in parallel we also obtain

the normal form $0:(0+0\mathrm{x}\mathrm{s}(0))+0\cross 0arrow^{*}0\cross \mathrm{s}(\mathrm{O})+\mathrm{O}arrow \mathrm{O}+\mathrm{O}arrow \mathrm{O}$

Does it matter which redexes we select for contraction? For the above example the answer
is no since $\mathcal{R}_{1}$ does not admit infinite rewrite sequences. Hence, no matter which redexes we
select for contraction, we are guaranteed to find a normal form. In general, however, terms

may have a normal form but also admit infinite rewrite sequences. Consider for example the

TRS $\mathcal{R}_{2}$ consisting of the following rewrite rules:

$0+y$ $arrow$ $y$ head $(x:y)$ $arrow x$

$\mathrm{s}(x)+y$ $arrow$ $\mathrm{s}(x+y)$ $\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{I}(x:y)$ $arrow$ $y$

fib $arrow$ $\mathrm{f}(\mathrm{s}(\mathrm{O}), \mathrm{s}(\mathrm{O}))$ $\mathrm{f}(x, y)$ $arrow$ $x:\mathrm{f}(y, x+y)$

This TRS computes the infinite list of Fibonacci numbers. The term head $(\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{l}(\mathrm{t}\mathrm{a}|\mathrm{I}(\mathrm{f}\mathrm{i}\mathrm{b})))$ can

be reduced to its normal form $\mathrm{s}(\mathrm{s}(\mathrm{O}))$ , the third number in the list of Fibonacci numbers,

e.g. by means of the rewrite strategy that always selects the leftmost-outermost redex, but

repeatedly contracting an innermost redex will produce an infinite rewrite sequence.

If a term $t$ has a normal form we can always compute a normal form of $t$ by computing the

reducts of $t$ in a breadth-first manner until we encounter a normal form. However, in general

this is a highly inefficient way to compute normal forms. In this paper we present more effi-

cient ways to compute normal forms. The basic idea is to compute a single rewrite sequence

rather than explore all rewrite sequences starting from a given term. The computation of

this rewrite sequence is guided by a strategy.

Definition 1.1 A rewrite strategy for a TRS is a mapping $S$ that assigns to every term $t$

not in normal form a non-empty set of finite non-empty rewrite sequences starting from $t$ .

We write $t\prec^{S}t’$ if $tarrow^{+}t’\in S(t)$ . A rewrite strategy is called deterministic if $S(t)$ contains

a single rewrite sequence for every non-normal form $t$ .

A strategy $S$ is useless if for a term $t$ that has a normal form a rewrite sequence computed

by $S$ misses the normal form.

Definition 1.2 A strategy $S$ normalizes a term $t$ if there are no infinite $S$-rewrite sequences
starting from $t$ . We call $S$ normalizing if it normalizes every term that has a normal form.

In the next section we present several rewrite strategies and summarize their normaliza-
tion behaviour.
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2 Normalizing Reduction Strategies
In the following we are mostly dealing with the class of left-linear TRSs without critical
pairs, the so-called orthogonal TRSs. Orthogonality is a syntactic condition that ensures
that redexes cannot eliminate each other in a harmful way. Orthogonal TRSs have the nice
property that every term has at most one normal form. More information on orthogonal
TRSs and term rewriting in general can be found in $[1, 10]$ .

Most rewrite strategies are defined by selecting the redexes which are to be cont.racted
in each step. Below four such strategies are defined.

Definition 2.1 The leflmost-outermost rewrite strategy $S_{10}$ always selects the leftmost of
the outermost redexes, i.e., $s\prec^{s_{\iota\circ}}t$ if $t$ is obtained from $s$ by contracting its leftmost-
outermost redex. The parallel-outermost rewrite strategy $S_{\mathrm{p}\mathrm{o}}$ contracts all outermost redexes
in parallel. Likewise, the leflmost-innermost rewrite strategy $S_{1\mathrm{i}}$ contracts the leftmost of
the innermost redexes and the parallel-innermost rewrite strategy $S_{\mathrm{p}\mathrm{i}}$ contracts all innermost
red.exes in parallel.

The above strategies are defined for arbitrary TRSs, but for non-orthogonal TRSs they
need not be deterministic. The following strategy is only defined for orthogonal TRSs.
Its well-definedness is a consequence of the complete developments theorem. A complete
development of a set of redexes in a term $t$ is a rewrite sequence starting from $t$ in which all
these redexes are contracted.

Definition 2.2 The full substitution rewrite strategy $S_{\mathrm{f}\mathrm{s}}$ assigns to every term $t$ not in
normal form a complete development of the set of all redexes in $t$ .

Let us illustrate the different strategies on a small example. Consider the TRS $\mathcal{R}_{1}$ of
Section 1 and the term $t=\mathrm{s}(0+0)\cross(0+\mathrm{s}(0))$ . We have

$tarrow^{S_{1\mathrm{i}}}\mathrm{s}(0)\cross(0+\mathrm{s}(0))arrow^{S_{1\mathrm{i}}}\mathrm{s}(0)\mathrm{x}\mathrm{s}(0)arrow^{S_{1\mathrm{i}}}0\cross \mathrm{s}(0)+\mathrm{s}(0)arrow^{S_{1\mathrm{i}}}0+\mathrm{s}(0)$

$arrow^{S_{1\mathrm{i}}}\mathrm{s}(0)$

$tarrow^{S_{\mathrm{p}\mathrm{i}}}\mathrm{s}(0)\cross \mathrm{s}(0)arrow^{S_{\mathrm{p}\mathrm{i}}}0\cross \mathrm{s}(0)+\mathrm{s}(0)arrow^{S_{\mathrm{p}\mathrm{i}}}0+\mathrm{s}(0)arrow^{S_{\mathrm{p}\mathrm{i}}}\mathrm{s}(0)$

$tarrow^{S_{10}}(0+0)\cross(0+\mathrm{s}(0))+(0+\mathrm{s}(0))arrow^{S_{10}}0\cross(0+\mathrm{s}(0))+(0+\mathrm{s}(0))$

$arrow^{S_{10}}0+(0+\mathrm{s}(0))arrow^{S_{10}}0+\mathrm{s}(0)arrow^{S_{10}}\mathrm{s}(0)$

$tarrow^{S_{\mathrm{p}\mathrm{o}}}(0+0)\mathrm{x}(0+\mathrm{s}(0))+(0+\mathrm{s}(0))arrow^{S_{\mathrm{p}\mathrm{o}}}0\cross \mathrm{s}(0)+\mathrm{s}(0)arrow^{S_{\mathrm{p}\mathrm{o}}}0+\mathrm{s}(0)$

$arrow^{S_{\mathrm{p}\mathrm{o}}}\mathrm{s}(0)$

$tarrow^{S_{\mathrm{f}\mathrm{s}}}0\mathrm{x}\mathrm{s}(0)+\mathrm{s}(0)arrow^{S_{\mathrm{f}\mathrm{s}}}0+\mathrm{s}(0)arrow^{S_{\mathrm{f}\mathrm{s}}}\mathrm{s}(0)$

All five strategies succeed in computing the normal form $\mathrm{s}(\mathrm{O})$ , which is not surprising as $R_{1}$

is terminating. In the presence of infinite rewrite sequences, however, innermost strategies
are best avoided because of the following result of O’Donnell [14].
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Theorem 2.3 A term $t$ in an orthogonal $TRS$ admits a rewrite sequence to normal form in

which only innermost redexes are contracted if and only if $t$ does not admit infinite rewrite
$\square$sequences.

Corollary 2.4 An innermost strategy $S$ is normalizing for an orthogonal $TRS\mathcal{R}$ if and

only if $\mathcal{R}$ is terminating. $\square$

Gramlich [6] showed that these results remain true for the larger class of locally confluent

overlay systems.
The following theorem is intuitively clear: by repeatedly contracting all redexes it is

impossible to miss the normal form.

Theorem 2.5 The full substitution strategy is normalizing for orthogonal TRSs.

O’Donnell [14] also showed that parallel-outermost is a normalizing strategy for orthogo-

nal TRSs. As a matter of fact, he showed a stronger result: if a term in an orthogonal TRS

has a normal form then it does not admit outermost-fair rewrite sequences.

Definition 2.6 An infinite rewrite sequence $t_{1}arrow t_{2}arrow t_{3}arrow\cdots$ is called outermost-fair if

there do not exist a position $p$ and an index $n\geq 1$ such that for all $i\geq n,$ $t_{i|p}$ is an outermost

redex in $t_{i}$ which is not contracted in the step from $t_{i}$ to $t_{i+1}$ .

Let us illustrate the concept of $01\iota \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}$ -fairness by means of two examples. The

infinite rewrite sequence $\mathrm{A}:\mathrm{f}(\mathrm{a})arrow \mathrm{g}(\mathrm{f}(\mathrm{a}))arrow \mathrm{g}(\mathrm{g}(\mathrm{f}(\mathrm{a})))arrow\cdots$ with respect to the TRS
$\{\mathrm{a}arrow \mathrm{b}, \mathrm{f}(x)arrow \mathrm{g}(\mathrm{f}(x))\}$ is outermost-fair since every term in $A$ contains a single outermost
redex which is immediately contracted. The infinite rewrite sequence $B:\mathrm{f}(\mathrm{a}, \mathrm{c})arrow \mathrm{f}(\mathrm{a}, \mathrm{d})$

$arrow \mathrm{f}(\mathrm{a}, \mathrm{c})arrow \mathrm{f}(\mathrm{a}, \mathrm{d})arrow\cdots$ with respect to the TRS $\{\mathrm{a}arrow \mathrm{b}, \mathrm{c}arrow \mathrm{d}, \mathrm{f}(x, \mathrm{d})arrow \mathrm{f}(x, \mathrm{c})\}$ is also

outermost-fair. Observe that redex a in $B$ is only half of the time an outermost redex, even
though it is never contracted.

Theorem 2.7 If a term in an orthogonal $TRS$ admits an outermost-fair rewrite sequence

then it does not have a normal form. $\square$

Since infinite rewrite sequences produced by the parallel-outermost strategy are trivially
outermost-fair, we obtain the following result.

Corollary 2.8 The parallel-outermost strategy is normalizing for orthogonal TRSs. $\square$

Very recently van Oostrom [15] extended Theorem 2.7 to the class of weakly orthogonal

higher-order rewrite systems.
The leftmost-outermost strategy is not normalizing for orthogonal TRSs. A simple coun-

terexample is provided by the TRS $\mathcal{R}=\{\mathrm{a}arrow \mathrm{b}, \mathrm{c}arrow \mathrm{c}, \mathrm{f}(x, \mathrm{b})arrow \mathrm{b}\}$ and the term $\mathrm{f}(\mathrm{c}, \mathrm{a})$ .
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The leftmost-outermost strategy selects redex $\mathrm{c}$ and hence will produce the infinite rewrite
sequence $\mathrm{f}(\mathrm{c}, \mathrm{a})\prec^{S_{1\circ}}\mathrm{f}(\mathrm{c}, \mathrm{a})\prec^{S_{1\circ}}\cdots$ whereas the parallel-outermost strategy normalizes
$\mathrm{f}(\mathrm{c}, \mathrm{a})$ in two steps: $\mathrm{f}(\mathrm{c}, \mathrm{a})arrow^{S_{\mathrm{p}\circ}}\mathrm{f}(\mathrm{c}, \mathrm{b})\prec^{S_{\mathrm{p}\circ}}\mathrm{b}$. Nevertheless, there is an important subclass
of the orthogonal TRSs for which $S_{10}$ is normalizing.

Definition 2.9 A TRS is called lefl-normal if variables do not precede function symbols in
the left-hand sides of the rewrite rules.

Note that the above $\mathcal{R}$ is not left-normal as the variable $x$ in the left-hand side $\mathrm{f}(x, \mathrm{b})$ of
the third rewrite rule precedes the constant $\mathrm{b}$ . The prime example of a left-normal orthogonal
TRS is combinatory logic.

Theorem 2.10 (O’Donnell [14]) The leftmost-outermost rewrite strategy is normalizing for
lefl-normal orthogonal TRSs. $\square$

3 Optimal Rewrite Strategies
In the previous section we have seen that the parallel-outermost rewrite strategy is normaliz-
ing for orthogonal TRSs. However, it is not optimal. Consider the TRS $\mathcal{R}_{1}$ of Section 1 and
the term $(\mathrm{O}\cross \mathrm{s}(\mathrm{O}))\cross(0+\mathrm{s}(0))$ . In the sequence $(0\mathrm{x}\mathrm{s}(0))\cross(0+\mathrm{s}(0))arrow^{S_{\mathrm{p}\circ}}\underline{0\cross \mathrm{s}(0)}\prec^{S_{\mathrm{p}\circ}}0$

the three underlined redexes are contracted. Without contracting the redex $0+\mathrm{s}(0)$ the
normal form $0$ can still be reached: $(0\cross \mathrm{s}(0))\vee\cross(0+\mathrm{s}(0))arrow\underline{0\cross(0+\mathrm{s}(0))}arrow 0$. So redex
O+s(O) is not needed to reach the normal form. An optimal rewrite strategy selects only
needed redexes. The formal definition of neededness is given below.

Definition 3.1 A redex $\triangle$ in a term $t$ is needed if in every rewrite sequence from $t$ to normal
form a descendant of $\triangle$ is contracted.

Let $\mathcal{R}$ be a TRS over a signature $\mathcal{F}$ . We assume the existence of a constant $\bullet$ not
appearing in $\mathcal{F}$ and we view $\mathcal{R}$ as a TRS over the extended signature $F$. $=\mathcal{F}\cup\{\bullet\}$ . So
$\mathrm{N}\mathrm{F}_{\mathcal{R}}$ , the set of ground normal forms of $\mathcal{R}$ , consists of all terms in $\mathcal{T}(\mathcal{F}.)$ that are in normal
form. Let $\mathcal{R}$. be the TRS $\mathcal{R}\cup\{\bulletarrow\bullet\}$ . Note that $\mathrm{N}\mathrm{F}_{\mathcal{R}}$ . coincides with $\mathrm{N}\mathrm{F}_{\mathcal{R}}\cap \mathcal{T}(F)$ , the set
of ground normal forms that do not contain the symbol $\bullet$ . The following easy lemma gives
an alternative definition of neededness, not depending on the notion of descendant.

Lemma 3.2 Let $\prime \mathcal{R}$ be an orthogonal $TRS$ over a signature $\mathcal{F}$ . Redex $\triangle$ in term $C[\triangle]\in$

$\mathcal{T}(\mathcal{F})$ is needed if and only if there is no term $t\in \mathrm{N}\mathrm{F}_{\mathcal{R}}$ . such ihat $C[\bullet]arrow_{\mathcal{R}}^{*}t$ . $\square$

Note that the above lemma implies that needed redexes are uniform, which means that
only the position of a redex in a term is important for determining neededness. So if redex
$\triangle$ in term $C[\triangle]$ is needed then so is redex $\triangle’$ in $C[\Delta’]$ .
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The following theorem of Huet and L\’evy [7] forms the basis of all results on optimal

normalizing rewrite strategies for orthogonal TRSs.

Theorem 3.3 Let $\mathcal{R}$ be an orthogonal $TRS$.

1. Every reducible ierm contains a needed redex.

2. Repeated contraction of needed redexes results in a normal form, whenever the term

under consideration has a normal form.
$\square$

Unfortunately, needed redexes are not computable in general. Hence, in order to obtain

a computable optimal rewrite strategy, we are left to find (1) decidable approximations of

neededness and (2) decidable properties of TRSs which ensure that every reducible term

has a needed redex identified by (1). Starting with the seminal work of Huet and L\’evy [7]

on strong sequentiality, these issues have been extensively investigated in the literature

[2, 8, 9, 11, 12, 16, 18]. In all these works Huet and L\’evy’s notions of index, $\omega$-reduction,

and sequentiality figure prominently. Recently, Durand and Middeldorp [5] presented an

approach to decidable call by need computations to normal form in which issues (1) and

(2) above are addressed directly. Besides facilitating understanding, much larger classes of

TRSs are shown to admit a computable optimal normalizing strategy. In the remainder of

this paper we recall the framework of [5]. Due to lack of space, we omit most proofs.

4 Approximations

In the remaining part of the paper we are dealing with finite TRSs only. Moreover, we
consider rewriting on ground terms only. So we assume that the set of ground terms is

non-empty. This requirement entails no loss of generality. It is undecidable whether a redex

in a term is needed with respect to a given (orthogonal) TRS. In this section we present

decidable sufficient conditions for a redex to be needed.
Because the $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}arrow^{*}\mathcal{R}$ is in general not computable, neededness is undecidable. In

order to obtain decidable sufficient conditions, the idea is now to $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}arrow^{*}\mathcal{R}\mathrm{b}\mathrm{y}\prec_{S}^{*}$

for some suitable TRS $S$ such that it is decidable whether a term admits an S-rewrite
sequence to a term in $\mathrm{N}\mathrm{F}_{\mathcal{R}}.$ .

Definition 4.1 Let $\mathcal{R}$ and $S$ be TRSs over the same signature. We say that $S$ approximates
$\mathcal{R}\mathrm{i}\mathrm{f}arrow^{*}\mathcal{R}\subseteqarrow_{S}^{*}$ and $\mathrm{N}\mathrm{F}_{\mathcal{R}}=\mathrm{N}\mathrm{F}_{S}$ . We say that redex $\triangle$ in $C[\triangle]\in \mathcal{T}(F)$ is $\mathcal{R}$-needed if there

is no term $t\in \mathrm{N}\mathrm{F}_{\mathcal{R}}$ . such that $C[\bullet]\prec_{\mathcal{R}}^{*}t$ . The set of all such $C$ [$\bullet$] is denoted by $\mathcal{R}$-NEEDED.

So redex $\Delta$ in $C[\triangle]\in \mathcal{T}(F)$ is $\mathcal{R}$-needed if and only if $C[\bullet]\in \mathcal{R}$-NEEDED. The following

lemma is immediate from the definitions.
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Lemma 4.2 Let $\mathcal{R}$ be a $TRS$ and let $S$ be an approximation of $\mathcal{R}$ . Every $S$ -needed redex is
$\mathcal{R}$-needed. $\square$

Definition 4.3 An approximation map is a map $\alpha$ from TRSs to TRSs with the property
that $\alpha(\mathcal{R})$ approximates $\prime \mathcal{R}$ , for every TRS $\prime \mathcal{R}$ . In the following we write $\mathcal{R}_{\alpha}$ instead of $\alpha(\mathcal{R})$ .
We define a partial order $\leq$ on approximation maps as follows: $\alpha\leq\beta$ if and only if $\mathcal{R}_{\beta}$

approximates $R_{\alpha}$ , for every TRS $\mathcal{R}$ .

In the literature several approximations have been studied. These approximations$\cdot$ have
the same left-hand sides as the original TRS $\mathcal{R}$ , hence the second requirement in the definition
of approximation is trivially satisfied, but differ in the way they treat the right-hand sides
of the rewrite rules of $\mathcal{R}$ .

Definition 4.4 Let $\mathcal{R}$ be a TRS. The TRS $\mathcal{R}_{\mathrm{s}}$ is obtained from $\mathcal{R}$ by replacing the right-
hand side of every rewrite rule by a variable that does not occur in the corresponding
left-hand side.

The idea of approximating a TRS by ignoring the right-hand sides of its rewrite rules
is due to Huet and L\’evy [7]. Our $\mathcal{R}_{\mathrm{s}}$-needed redexes coincide with their strongly needed
redexes. A better approximation is obtained by preserving the non-variable parts of the
right-hand sides of the rewrite rules.

Definition 4.5 Let $\mathcal{R}$ be a TRS. The TRS $\mathcal{R}_{\mathrm{n}\mathrm{v}}$ is obtained from $R$ by replacing the variables
in the right-hand sides of the rewrite rules by pairwise distinct variables that do not occur
in the corresponding left-hand sides.

The idea of approximating a TRS by ignoring the variables in the right-hand sides of
the rewrite rules is due to Oyamaguchi [16]. Note that $\mathcal{R}_{\mathrm{n}\mathrm{v}}=\mathcal{R}$ whenever $\mathcal{R}$ is right-
ground. Hence for every orthogonal right-ground TRS $\mathcal{R}$ , a redex is needed if and only if it
is $\mathcal{R}_{\mathrm{n}\mathrm{v}}$ -needed.

Definition 4.6 A TRS $\mathcal{R}$ is called growing if for every rewrite rule $larrow r\in \mathcal{R}$ the common
variables in $l$ and $r$ occur at depth 1 in $l$ . (The depth of a subterm occurrence is the number
of function symbols along the path to the root of the term.) We define $R_{\mathrm{g}}$ as the growing
TRS that is obtained from $\mathcal{R}$ by renaming those variables in the right-hand sides of the
rewrite rules that violate the restrictions imposed on growing TRSs.

Growing TRSs, introduced by Jacquemard [8], are a proper extension of the shallow TRSs
considered by Comon [2]. The growing approximation defined above stems from Nagaya
and Toyama [13]. It extends the growing approximation in [8] in that the right-linearity
requirement is dropped.
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Let us illustrate the difference between the three approximations on a small example.
Consider the TRS $\mathcal{R}$ consisting of the two rules

$\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ a
$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow x$

and the term $t=\mathrm{f}(\triangle_{1}, \triangle_{2}, \triangle_{3})$ with redexes $\triangle_{1}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{a})$ and $\triangle_{2}=\Delta_{3}=\mathrm{f}(\mathrm{b}, \mathrm{a}, \mathrm{a})$ . One
easily verifies that all redexes are needed. In particular, as $\triangle_{1}$ and $\triangle_{2}$ rewrite only to a,
$\triangle_{3}$ cannot be erased by the first rule. Since $\prime \mathcal{R}$ is orthogonal and $\mathcal{R}_{\mathrm{g}}=\mathcal{R}$ , all redexes are
$\mathcal{R}_{\mathrm{g}}$-needed. So using the growing approximation we are able to identify all needed redexes
in $t$ . The TRS $\mathcal{R}_{\mathrm{n}\mathrm{v}}$ consists of the rules

$\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ a
$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow$ $y$

We have $\triangle_{2}arrow \mathcal{R}_{\mathrm{n}\mathrm{v}}\mathrm{b}$ and thus $\mathrm{f}(\Delta_{1}, \triangle_{2}, \bullet)\prec_{\mathcal{R}_{\mathrm{n}\mathrm{v}}}^{+}\mathrm{f}(\mathrm{a}, \mathrm{b}, \bullet)arrow \mathcal{R}_{\mathrm{n}\mathrm{v}}$ a, showing that $\triangle s$ is not
$\mathcal{R}_{\mathrm{n}\mathrm{v}}$ -needed. Redexes $\triangle_{1}$ and $\triangle_{2}$ are $\mathcal{R}_{\mathrm{n}\mathrm{v}}$-needed. Finally, consider the TRS $\mathcal{R}_{\mathrm{s}}$ which
consists of the rules

$\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ $y$

$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ -a $y$

In $\mathcal{R}_{\mathrm{s}}$ a redex rewrites to every term. Hence $\mathrm{f}(\triangle_{1}, \bullet, \triangle_{3})\prec_{\mathcal{R}_{8}}^{+}\mathrm{f}(\mathrm{b}, \bullet, \mathrm{a})\prec_{\mathcal{R}_{\mathrm{S}}}$ a, showing that
$\triangle_{2}$ is not $\mathcal{R}_{\mathrm{s}}$-needed. Redex $\triangle_{3}$ is also not $\mathcal{R}_{8}$-needed (since it is not $\mathcal{R}_{\mathrm{n}\mathrm{v}}$-needed), but $\triangle_{1}$

is $\mathcal{R}_{\mathrm{s}}$-needed.
The above example confirms the intuition that with a better approximation, i.e., an

approximation which is closer to the original rewrite system, more needed redexes can be
identified.

A set of terms is regular if it is accepted by a finite tree automaton. We refer the reader
to [3] for a comprehensive survey of tree automata techniques.

Theorem 4.7 The set $\mathcal{R}_{\alpha}$ -NEEDED is a regular tree language for lefl-linear $\mathcal{R}$ and $\alpha\in$

$\{\mathrm{s}, \mathrm{n}\mathrm{v}, \mathrm{g}\}$ . $\square$

For $\alpha\in\{\mathrm{s}, \mathrm{n}\mathrm{v}\}$ an easy proof using ground tree transducers is given in [5]. Nagaya and
Toyama [13] obtained the regularity of $\mathcal{R}_{\mathrm{g}}$-NEEDED by modifying the construction given in
Jacquemard [8] for right-linear $\mathcal{R}_{\mathrm{g}}$ .

Since membership is decidable for regular tree languages, we obtain the following result.

Corollary 4.8 Let $\mathcal{R}$ be a lefl-linear $TRS$ and $\alpha\in\{\mathrm{s}, \mathrm{n}\mathrm{v}, \mathrm{g}\}$ . It is decidable whether a redex
in a term is $\mathcal{R}_{\alpha}$ -needed.
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5Decidable Call by Need Computations
A TRS $\mathcal{R}$ admits a computable call by need strategy if it has an approximation $S$ such that
(1) S-needed redexes are computable and (2) every term not in normal form has an S-needed
redex. In the previous section we addressed the first issue. In this section we deal with the
second issue.

Definition 5.1 Let $\alpha$ be an approximation map. The class of TRSs $\mathcal{R}$ such that every
reducible ground term has an $\mathcal{R}_{\alpha}$ -needed redex is denoted by $\mathrm{C}\mathrm{B}\mathrm{N}_{\alpha}$ .

The next lemma is an easy consequence of Lemma 4.2.

Lemma 5.2 Let $\alpha$ and $\beta$ be approximation maps. If $\alpha\leq\beta$ then $\mathrm{C}\mathrm{B}\mathrm{N}_{\beta}\subseteq \mathrm{C}\mathrm{B}\mathrm{N}_{\alpha}$ . $\square$

Lemma 5.3 Let $\mathcal{R}$ be an orihogonal $TRS$. If $\mathcal{R}$ is right-ground then $\mathcal{R}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}$ . If $\mathcal{R}$ is
growing then $\mathcal{R}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{g}}$ . $\square$

The proof of the following theorem relies on standard properties of regular tree languages
and ground tree transducers.

Theorem 5.4 (Durand and Middeldorp [5]) Let $\mathcal{R}$ be a lefl-linear $TRS$ and $\alpha$ an approxi-
maiion map such that $\mathcal{R}_{\alpha}$ -NEEDED is regular. It is decidable whether $\mathcal{R}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\alpha}$ . $\square$

Corollary 5.5 Let $\prime \mathcal{R}$ be a lefl-linear $TRS$ and $\alpha\in\{\mathrm{s}, \mathrm{n}\mathrm{v}, \mathrm{s}\mathrm{h}, \mathrm{g}\}$. It is decidable whether
$\prime \mathcal{R}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\alpha}$ .

$\square$

It should not come as a surprise that a better approximation covers a larger class of
TRSs. This is expressed formally in the next lemma.

Lemma 5.6 We have $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}\subset \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}\subset \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{g}}$ , even when these classes are restricted to
orthogonal TRSs.

Proof. According to Lemma 5.2 $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}\subseteq \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}\subseteq \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{g}}$ . Consider the orthogonal TRSs
$\mathcal{R}_{1}$ $R_{2}$

$\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ a $\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ a
$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow$ $\mathrm{b}$

$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow$ $\mathrm{b}$

$\mathrm{f}(x, \mathrm{a}, \mathrm{b})$ $arrow$ $\mathrm{c}$ $\mathrm{f}(x, \mathrm{a}, \mathrm{b})$ $arrow$ $x$

We have $\mathcal{R}_{1}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}$ and $\mathcal{R}_{2}\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{g}}$ by Lemma 5.3. So it remains to show that $\mathcal{R}_{1}\not\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}$

and $\mathcal{R}_{2}\not\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}$ . We have

$(R_{1})_{\mathrm{s}}$
$(\mathcal{R}_{2})_{\mathrm{n}\mathrm{v}}$

$\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ $y$ $\mathrm{f}(\mathrm{a}, \mathrm{b}, x)$ $arrow$ a
$\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow$ $y$ $\mathrm{f}(\mathrm{b}, x, \mathrm{a})$ $arrow$ $\mathrm{b}$

$\mathrm{f}(x, \mathrm{a}, \mathrm{b})$ $arrow$ $y$ $\mathrm{f}(x, \mathrm{a}, \mathrm{b})$ $arrow$ $y$
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Figure 1: Comparison.

Let $\triangle$ be the redex $\mathrm{f}(\mathrm{a}, \mathrm{a}, \mathrm{b})$ . The following rewrite sequences in $(\mathcal{R}_{1})_{\mathrm{s}}$ show that none of

the redexes in $\mathrm{f}(\triangle, \triangle, \triangle)$ is $(\mathcal{R}_{1})_{\mathrm{s}}$-needed:

$\mathrm{f}(\bullet, \triangle, \triangle)$ $arrow$ $\mathrm{f}(\bullet, \mathrm{a}, \Delta)$ $arrow$ $\mathrm{f}(\bullet, \mathrm{a}, \mathrm{b})$ $arrow$ a
$\mathrm{f}(\triangle, \bullet, \triangle)$ $arrow$ $\mathrm{f}(\mathrm{b}, \bullet, \triangle)$ $arrow$

$\mathrm{f}$ ( $\mathrm{b}$ , $\bullet$ , a) $arrow$ a
$\mathrm{f}(\triangle, \triangle, \bullet)$ $arrow$ $\mathrm{f}(\mathrm{a}, \triangle, \bullet)$ $arrow \mathrm{f}(\mathrm{a}, \mathrm{b}, \bullet)$ $arrow$ a

Hence $R_{1}\not\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}$ . In $(\mathcal{R}_{2})_{\mathrm{n}\mathrm{v}}$ we have $\Deltaarrow t$ for every term $t$ and thus

$\mathrm{f}(\bullet, \triangle, \triangle)$ $arrow$ $\mathrm{f}(\bullet, \mathrm{a}, \triangle)$ $arrow \mathrm{f}(\bullet, \mathrm{a}, \mathrm{b})$ $arrow$ a
$\mathrm{f}(\triangle, \bullet, \triangle)$ $arrow$ $\mathrm{f}(\mathrm{b}, \bullet, \triangle)$ $arrow$

$\mathrm{f}$ ( $\mathrm{b}$ , $\bullet$ , a) $arrow$ $\mathrm{b}$

$\mathrm{f}(\Delta, \triangle, \bullet)$ $arrow$ $\mathrm{f}(\mathrm{a}, \triangle, \bullet)$ $arrow \mathrm{f}(\mathrm{a}, \mathrm{b}, \bullet)$ $arrow$ a

Consequently, $R_{2}\not\in \mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}$ .

It can be shown that $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}$ coincides with the class of strongly sequential TRSs introduced
by Huet and L\’evy [7]. However, $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{n}\mathrm{v}}$ properly includes the class of $\mathrm{N}\mathrm{V}$-sequential TRSs
introduced by Oyamaguchi [16] as well as the extension to NVNF-sequential TRSs considered
by Nagaya et al. [12]. For instance, the TRS $\mathcal{R}_{1}$ defined in the above proof is neither NV-
sequential nor NVNF-sequential (because the term $\mathrm{f}(\Omega,$ $\Omega,$ $\Omega)$ does not have an index).

Figure 1 shows the relationship between several classes of TRSs that admit decidable call
by need computations to normal form. Areas (1), (2), and (3) consist of all $\mathrm{N}\mathrm{V}$ , NVNF, and
growing (Jacquemard [8]) sequential TRSs, respectively.
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It is not difficult to show that the leftmost-outermost redex is always $\mathcal{R}_{\mathrm{s}}$-needed for
left-normal TRSs $\mathcal{R}$ . Hence $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}$ includes the class of left-normal orthogonal TRSs and
Theorem 2.10 is a special case of Theorem 3.3.

6 Conclusion

In this paper we addressed normalization and optimality results for rewrite strategies. We
presented the framework of Durand and Middeldorp for the study of optimal rewrite strate-
gies. Let us conclude with some remarks about complexity. Not much is known about the
complexity of the problem of deciding membership in one of the classes that guarantees a
computable optimal strategy. Comon [2] showed that strong sequentiality (i.e., membership
in $\mathrm{C}\mathrm{B}\mathrm{N}_{\mathrm{s}}$ ) of a left-linear TRS can be decided in exponential time. Moreover, for left-linear
TRS satisfying the additional syntactic condition that whenever two proper subterms of
left-hand sides are unifiable one of them matches the other, strong sequentiality can be de-
cided in polynomial time. The class of forward-branching systems (Strandh [17]), a proper
subclass of the class of orthogonal strongly sequential systems, coincides with the class of
transitive systems (Toyama et al. [19]) and can be decided in quadratic time (Durand [4]).
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