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Left Regular Bands and Semilattices in Flnlte
Transformations! |

- Tatsuhiko Saito
Introduction

Let X be a finite set and let 7(X) denote the full transformation semigroup
on X, i.e., the semigroup of all maps from X into itself (under composition of
maps). Let G(X) be the symmetric group on X which is the biggest subgroup
in T(X). The set of all subsemigroups of T'(X) is denoted by ST'(X).

To investigate finite transformation semigroups is important for not only
semigroup theory but automata theory. All semigroups treated here are finite.

Let V be a variety of semigroups (a class of semigroups closed under the
formation of subsemigroups, homomorphic images and direct products). There
arise the following questions: ‘

(Q1) Determine all semigroups in V N ST(X), especially all maximal semi-
groups in it.

(Q2) Let S,T € VN ST(X). Is there v € G(X) such that § = y~'T'y if
S=T?

In consequencs of (Q2), _

(Q2’) Is T maximal if § is maximal and S = T7?

A semigroup B is called a band if every element in B is an idempotent. A
commutative band is called a semilattice. A band B is said to be left regular
if afa = ap for every a,3 € B. The classes of left regular bands and semi-
lattices are varieties, which are denoted by LR and SL, respectively.

The purpose of this paper is to solve the above quetions for LR and SL.

The quetion (Q1) for SL has been solved by M. Kunze and S. Crvenkovié
(1989) (see [3], [4]). We here solve it by induction on |X|, that is, we give an
algorithm to determine SL N ST(X41) from SL N ST(Xy), where | X| denotes
the cardinal number of X and k = |Xi|. Then (Q1) for SL, can be solved,
since SL N ST(X;) = T(Xy).

1. Left regular bands

1 This is an abstract and the details will be published elsewhere.



For a € T(X), let im(a) = {z € X|ya = z for some y € X} and fiz(a) =
{z € X|za = z}. The identity map (fiz(a) = X) and the constant map to
z (im(a) = {z}) on X are denoted by idx and c(z), respectwely The set of
constant maps in T'(X) is denoted by C(X).
A semigroup S is called a left zero semigroup if o8 = a for every a, § € S.
Hereafter every semigroup is a subsemigroup of T'(X). The following facts
are known:

Fact 1. (1) o € T(X) is an idempotent if and only if fiz(a) = im(a).

(2) Sisaleft zero semigroup if and only if fiz(a) = im(a) and fiz(a) =
fiz(B) for every a,B € S.

(3) Let B be a band. Then B € LR zf and only if fiz(aB) = fiz(a) N
fiz(B) for every o, € B.

(4) Let B € LR. Then af =aif and only if fiz(a) C fiz(B) for every
o, € B.

Let (X, <) be the partially ordered set X under an order relation <. The
set of minimal elements in (X, <) is denoted by Min(<). A subset I of X is
called an o-ideal if (1) Min(<) C I and (2) z € [ and y < z imply y € I.
For z € X, let Ib(z) = {y € X|y < z} and I(z) = Ib(z) U Min(<). Then
I(z) is an o-ideal which is called the principal ideal generated by z. If (X, <)
has the least element, then I(z) = Ib(z). The set of o-ideals and principal
~ ideals in (X, <) denoted by I(X, <) and PI(X, <) or simply I(<) and PI(<),
respectively. We state some properties of o-ideals in (X, <).

Fact 2 (1) I(<) forms a lattice under U and N, and
I(z) = P{I € I(<)|T ).

(2) Let | X| =n and [Min(<)| = m. For any I € I(<), there exists a
mazimal chain including I of the length n — m + 1:

Min() =In CInt1 C...CI=5L C...CI, =X, where |I}] =
k, and where J C I means J C I and J # I.

(3) Let I € I(<) with I # Min(<).Then I is principal ideal if and only if
there exists a unique J € I(<) such that J C I and |J| = |I| - 1.

Proposition 1.1. Let J(<) be a N-closed subset of I(<). For I €
J(L), let LZ(I) = {o € T(X)|fiz(a) = I and za € I NIb(z) if = ¢
I for every x € X}, and let LR(J(L)) =U{LZ(I)|I € J(L)}. Then:

(1) LR(<L) is a left regular band and each LZ(I) is a left zero semigroup.
In this case, |LZ(I)| = [.g; [ N 1b(2)].
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(2) LR(L) is mazimal if and only if (X,<) has the least element and
J(<) = I(<). | |

Let B € LR which contains idy. Define a relation <p on X by ¢ <p ¥
if and only if yoo = z for some o € B. Then <p is an order relation on X.
Let « € B and let z € fiz(a) and y € X with y <p z. Then zf8 = y for
some 3 € B, so that ya = zfa = zafa = zaf =y. Thus y € fiz(a). Since
za <p z for all z € X, we have that Min(<p) C fiz(a). We conclude that
fiz(a) is an o-ideal in (X, <p) for every o € B. Let J(<p) = {fiz(a)|a € B}.
By (3) of Fact 1, J(<p) is N-closed, so that we can construct LR(J(<3)) as
in Proposition 1.1. Then clearly B C LR(J(<g)). It is clear that (X, <p) has
the least element n if and only if c(n) € B.

From the above facts and Proposition 1.1, we obtain:

Theorem 1.2. Let B € LR and <p defined above. Then B is mazimal
if and only if c(n) € B for some n € X and B = LR(I(<g))-

Let A and B be algebras and let ¢ be a homomorphism from A onto B.
Then ¢ is said to be split if there exists a homomorphism % from B to A such
that 9¢ = idp. In this case, z¢ for z € B is called the skeleton of oL,

Proposition 1.3. Let B € RL and let J(<g) = {fiz(a)|a € B}. Suppose
that B = LR(<p). Then the map ¢: B = J(<p),a > a¢ defined by ap =
fiz(a) € J(<B) for a € B is a splitting homomorphism from (B,-) onto
J(<B),N)- |

Theorem 1.4 Let B,C € LR with B = C. If B is mazimal, then sois C
and there exists v € G(X) such that C =~y 'By.

In Theorem 1.4, B is said to be strongly mazimal, that is, there are no
C,D € LR such that B & C C D. Therefore enery maximal left regular band
is strongly maximal.

2. Semilattices

We first state briefly the results of Kunze and Crvenkovié.

Let (X,<) be a partially ordered set. An o-ideal F' in (X, <) is called an
F-ideal if F N 1b(z) has the greatest element gp for every z € X. The set
of F-ideals in (X, <) is denoted by F(X,<) or simply F(<). Then F(<) is
N-closed. For F € F(<), define yp € T(X) by zyr = gr for every z € X,
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and let SL(F(L)) = {yr|F € F(S)} Then SL(F(X)) is a semilattice and
(S,) & (F(<),0).

On the other hand, let S be a semilattice. Define <5 on X by z <g y if and
only if yor = z for some o € SU{idx}. Then (1) (X, <s) is a partially ordered
set, (2) fiz(a) is an F-ideal for every a € S and F(<s) = {fiz(a)|a € S},
(3) S € SL(F(<s)) and (4) If S is a maximal semilattice, then (X, <5) has
the least element..

They determined all maximal semilattices by the types of ordered set (X, <).

Since F(<) C I(<) and it is M-closed, we can construct LR(F(<)). Then
SL(F (X)) is the skeletons of the homomorphism ¢ : (LR(F(<),-) =+
(F(<),N),a = fiz(a), since (SL(F(L)),-) = (F(L),N), so that it is iso-
morphic to the skeletons {a;|I € F(<)} defined in Proposition 1.3, which is
denoted by Ski(4).

An ordered set (X, <) is said to be simplest if it has the least element n
and every x € X \{n} covers n, i.e., there is no y such that n < y < z, which
is denoted by (X, <,im). Then all subsets of (X, <,,) containing n are o-
ideals and F-ideals, and LR(I(<,im)) = SL{I(<4im)). If (X, <) has the least
element n, then Sk;(¢) is a subsemilattice of SL(F(<ym)). Since (X, <g) has
the least element if S is a maximal semilattice, we obtain:

Proposition 2.1. Every mazimal semilattice S can be embedded in the
- semilattice SL(F(<qim)) determined by the simplest ordered set, that is,
S & Ski(4) C SL(F(Leim))-

Proposition 2.1 shows that SL N T'(X) has unique strongly maximal elemet
S L (I (Ssim))

Let X, be a finite set with |X,,| = n and let S € SL N ST(X,,). Let n be
any fixed element in Min(<s). Then SU{c(n)} U{idx,} is also a semilattice
in T'(X,). Hereafter we assume that every semilattice contains c(n) and idx,.
In this case, c(n) and idy, are the zero and the identity of S, respectively.
Therefore (X,,<s) has the least element n. Suppose that n covered with
m € X,. Then the principal ideals I(m) = {m,n} and I(n) = {n} are an
F-ideals in (Xp, <s). Let 7111y and yym) be as above, and let

X(m) = {z € Xnlevi(m) = m} and Xy = {z € Xo|oyi(m) = n}.

Since za < z for every £ € X, and every @ € S, we have that either
ma = na = n or ma = m,no = n for every o € S.
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Let Scom(mn) = {@ € Slma = na = n} and Ssepimn) = {0 € S|ma =
m,na = n}. |
Then they are subsemilattices of S. In particular, Seom(m,n) is an ideal of S.

Lemma 2.1. Seom(myn) = {a € S|fiz(a) C X(n)} and
Ssep(m,n) = {oz € SIX(n)CV Cc X(n) and X(m)a - X(m)}.

Lemma 2.2. Let S and X(my, X(n) be as above and let U € SLNT(X,,) with
S C U. Then n is the least element covered with m in (X,,<y) and

Ucom(m,n) = {04 € Utfzm(a) c X(n)},

Usep(mn) = {a € UIX(m)a C X(m) and Xmya C X(n)}.

Define ¢ € T(X,) by 2¢ = z if  # n and n¢ = m. Then it is easy to see
that (a3)d=(ad)(B¢), so that ¢ is a homomorphism of S to S¢. Since SL is a
variety, S¢ is a semilattice. For o € S, let ad|x,_, be the restriction of a¢ to
Xp-1 = X,\{n}. Then S¢ = {ad|x,_,|a € S}. Therefore we regard S¢ as a
semilattice in T'(X,_1). In this case, S¢ is called the ¢-contraction of S, and
S is called a ¢-extension of S¢. '

Let T = S, M = X(m), N = (X(\{n}) U {m} and let Ty = {a €
T|fiz(a) € N}, Ty = {a € T|Ma C M and Na C N}. Then it is easy
to see that (1) T € SL N T(X,—1) and m is the least element in (X,_,, <r),
(2) (Scom(m,n))¢ =Ty and (Ssep(m,n))¢ =Ty.

Lemma 2.3. The maps : Ssepmm) — Tr, o > a¢ and Secom(mn) = T,
B +— B¢ are isomorphisms.

We now construct a semilattice in T(X,,) from any semilattice in T'(X,—1).
Let T € SL N ST(X,—1). Suppose that (X,_1,<r) has the least element m.

Let M, N be any subsets of X,_; such that X,_; = NUM and MNN = {m}
and let Ty = {a € T|fiz(a) C N}, Ty = {@ € T|Na C N,Ma C M} and
let Tyyy =T UTy.

Then Ty is a subsemilattice of T, but Ty N Ty # (l). In particular, if
M = X,_; and N = {m}, then Tyy =T and Ty = {c(m)}, and if M = {m}
and N = Xn-—l, then TM = TN =T, :

Let T € SLNT(X,-;) and let M,N be as above. Then T is said to
be (M, N)-mazimal if T = Tyx and Ty = Uy and Sy = Uy for every
U € SLNST(X,-,) with T C U.

Lemma 2.4 Let T,U € SL N T(Xn_y) with T C U. Then T s (M, N)-
maximal if and only if, for everya € U\T, fiz(a)NM\{m} # 0, and za €
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N\{m} for some z € M or ya € M\{m} for some y € N.

For a € T, define a,y € T(X,,) by za; = n if za = m, otherwise za,; = za
for every xr € X,,_; and na.; = n.

For a0 € Ty, define apy € T(X,) by zae, = n if zta = m and ¢ € N,
otherwise za.; = za for every r € X,,_; and na., =n.

Let (TN)el = {aelja - TN}, (TN)eg = {ae2|a & TM} and (TM,N)e = (SN)E:[U '
(Sm)e2-

Theorem 2.2. Let (Ty ). be as above. Then:

(1) (Tm,n)e is a semilattice in T(X,) and n is the least element covered
with m in (X,,<r,). .

(2) (Tr,N)e)comm,m) = (T )er and (Tag,w)e)sepimm) = (Tag ea-

(3) Let S € SL NT(X,.) and let X(m), X(n) be as above. If S¢ =T, then
S C (Tun)e, where M = X(my and N = (X \{n}) U {m}.

(4) In (3),S is mazimal in T(X,) if and only if S = (Tyn). and T is
(M, N) — mazimal in T(M,_,.

In Theorem 2.2, T, is not a ¢-extension of T, but it is a ¢-extension of Tun.

Suppose that all maximal semilattices in T'(X,,_;) have been determined.
Then by Lemma 2.4, all (M, N)-maximal semilattices in T(X,,_;) can be deter-
muned. for any subsets M, N of X,,_; with MUN = X,,_; and NN M = {m}.
- Thus by Theorem 2.2, all maximal semilattices in 7'(X,,) can be constructed.
Since T'(X;) is trivially a maximal semilattice in T'(X;), we conclude that all
maximal semilattices in finite transformations can be obtained by induction
on n = |X,|.
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