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An MR-complete system S
and its functional interpretation

Osamu Takaki (FK #) ! and Mariko Yasugi (/\i% #iflF) 2

1 Introduction

In a previous work [5], Yasugi and Hayashi formulated a system of constructive
arithmetic with transfinite recursion and bar induction. This system was called
TRDB, which is a streamlined version of the system used by Yasugi in [4] to
prove the accessibility of an order system.

TRDB is, however, a mathematically interesting system on its own right.
For this reason, it has been studied from various aspects (see [4], [5], [6], [1] and
[2]). The present article is a sequel to these preceding works. In this paper,
we deal with the modified realizability (abbreviated to MR) interpretation of a
constructive arithmetic corresponding to the interpretation of TRDB in TRM
obtained in [5].

A system S is said to be complete with respect to an interpretation R if S
interprets itself with respect to R. As for the first order constructive arithmetic,
its extensions which are complete with regards to some interpretations are al-
ready known (see, for example, Theorem 3.4.8. of [3]). We questioned if there be
an extension of TRDB which is complete with respect to MR-interpretation,
and have reached a conclusion.

' It is also mentioned that TRM interprets S, that is, an algorithm inherent
in a proof of S is realized as a functional in TRM. This implies that S is of the
same algorithmic strength as TRDB.

In this paper, we omit proofs of all theorems. The details will be published
elsewhere. '

2 Preliminaries

In order to facilitate the reader to understand this article, we first give a concise
presentation of the system TRDB, as well as of the notion called type-form.
The definitions are quoted mostly from the article [5] written by Yasugi and
Hayashi.

Our theory depends on a pre-supplied, primitive recursive well-ordered struc-
ture T = (I, <r) on natural numbers. For the sake of simplicity, we assume the
order type of I is less than .
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Definition 2.1 (Basic language BL)

(1) The language BL consists of the following.

(1. 1) Propositional connectives A (and), > (imply).

(1. 2) n-ary variables 23,27, 2%, +,2p, . For n =0, 27 is a variable which
ranges over natural numbers. It will be ca.lled a number variable.

(1. 3) Constant symbols for all the number-theoretic functions which are prim-
itive recursive in function parameters.

(1. 4) Predicate constant symbol =

(2) BL-terms are defined by (2.1) ~ (2.4) below.

(2. 1) A constant or a variable of BL is a term of its arity.

(2. 2) If f is an n-ary term, and if ¢;,- - -, ¢, are number terms, then F(ti--ts)
is a number term.

(3) Every atomic formula of BL-language is of the form s = t, where s and-

t are number terms. The BL-formulas are defined from atomic formulas by
applications of the propositional connectives.

Let ¢ be a new, unary function constant symbol. We can extend BL to BL(c)
adding c to it.

Using BL(c)-language, one can define the system TRDB, as in Takaki [1].

TRDB may be considered to be HA (Heyting arithmetic) with definition
by transfinite recursion and bar induction.

Definition 2.2 (System TRDB)

Symbols and Terms

(1) All symbols and terms of BL(c)-language serve as those of TRDB.

(2) Special predicate constants H and X g.

(3) Logical symbols A, D, V and 3.

Formulas

(1) s =t is an atomic formula of TRDB, where s and ¢ are number terms.

(2) H(s, t) and Zg(s, ', t) are atomic formulas of TRDB, where L2 s’ and t
are number terms.

(3) If A and B are formulas, then AAB, A D B and VzA are formulas, where
z is a variable.

(4) If A is a formula, then 3z A is a formula, where z is a number variable and
& does not occur in any subformula of A which is of the form either H(s, ) or
Yu(j, 1, t). This restriction on the application of 3 is called the adm1ss1b111ty

Axioms and inference rules

(1) TRDB contains inference rules of constructive logic formulated in natural
deductions as usual.

(2) TRDB contains axioms and inference rules on constants of PRAZ? (primi-

tive recursive arithmetic with function variables).
(3) TRDB contains monotone bar induction as explained below. Let Ria] be a
formula with a number variable a free, and suppose Ra] contains neither any
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quantifier, H, g, nor any variable except a. Such a formula will be called
elementary. '

Let R[a] be an elementary formula. Then R[a] is said to be monotone if
Rla] satisfies Vf3n R[f[n] and Vf Vm < n (R[f[m] = R[f[n]). Now, our bar
induction can be expressed as follows:

Vz(R[z]:D Alz]) Vz(VzAlz * z] O Al2])
Alt] ' BI,

where Ala] is an arbitrary formula, R[a] is an arbitrary monotone formula and
t is an arbitrary number term.

(4) TRDB contains definition by transfinite recursion TRD(G,I). We fix a
formula Gla, b], where a and b are free number variables and G satisfies the
following conditions.

(1) No free variable occurs of G except a or b.
(ii) Predicate constant H does not occur in G, and every g in G occurs in the

form X g (j, a, s), where j and s are some terms.
The axiom TRD(G,T) stands as follows:

VaVy (H(z, y) © G(z, y)).

~_ Type-forms are types with parametric variables. They are briefly described
below. See Section 2 and Section 4 of [5] for detail.

Definition 2.3 (Type-form)

Type-forms are defined below, based on the language BL.

(1) Symbols N and 1 are (atomic) type-forms.

(2) If @ and B are type-forms, then so are a — B (function space), {z}a (para-
metric abstraction), w(o; t) (projection) and cond[A; a, B] (case definition),
where z is a variable of BL, t is a BL-term and A is a BL-formula.

(8) R[i, t] (transfinite recursion) is a type-form, where R is a special letter
denoting recursion operator, and ¢ and ¢ are number BL-terms. (R[i, ] is
characterized by a fixed type-form 7. See (1. 4) of Definition 2.4 below.)

(4) pli <r#; R[j, s]] (restriction) is a type-form, where 4, j and s are number
BL-terms. : '

Definition 2.4 (Conversion of type-form)
(1) Conversion rules of type-forms, say a to 8, denoted by a = S, are the
following.

(1. 1) 7({z}a;t) = oft/z], where o[t/z] represents the substitution of ¢ for z in
a. ‘
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(1. 2) cond[A; ay, 3] = B, where § is o if A is a true sentence in the standard
interpretation of the symbols, and S is a3 if A is a false sentence.

(1. 3) p[j <r 4;R[j, 8] = B, where B is R[j, s] if j <1 is a true sentence, and

it is 1 if § < ¢ is a false sentence.

(1. 4) Let E be a designated symbol which is temporarily regarded as an atomic

type. Let n be a type-form with = but without R, whose free variables are k

and w, where k and w are of arity 0 and E contains only k as its free variable.

' nfé/k, t/w] will denote simultaneous substitution of ¢ for k and ¢ for w, and R(7)
will abbreviate {j}{z}pls <1 % R[], z]].

Rli, 1] = nfi/k, t/w][R()/E],

where X[Y/E] represents the substitution of Y for E in X.

(2) « is said to be 1-reduced to 8 if B is obtained from a by one conversion
applied to a subtype of a (called a reduction of a to B), with the strategy
that the conversions (1. 3) enjoys a following property: one does not go inside
plj <ri; R[4, t]]. We call this p-strategy. ‘

(3) A type-form is said to be normal if no conversion rule applies to it.

Remark 2.5 The conversion rule of R[i, t] is determined by a type-form 7 in
Definition 2.4 (1. 4). We call such a type-form 5 a central type-form.

Theorem 2.6 (Strong normalizability of type-forms: Yasugi and Hayashi,
Theorem 1 in [5])

Every type-form is strongly normalizable to a unique normal form (under the
p-strategy), that is, any process of reductions ends up with a normal type-form.
Furthermore, there is a unique such normal type-form for every type-form.

In what follows, we let & ~ B mean that @ and 8 have the same normal
form. We abbreviate app(e; t) to at, {I}cond[l = 0; e, cond[l = 1; B, 1]] to
a x 3, and w(vy; i) to w4y for i = 0 or 1. @ x B represents the product types.

We define a mapping [ ] of admissible formulas (of TRDB) into type-forms
as well as specify the central type-form. This mapping is introduced by Yasugi
and Hayashi in Definition 8.1 of [5].

Definition 2.7 (Interpretation [ ])

To each (admissible) formula A (cf. Definition 2.2), we associate a type-form
[A], as follows.

(1) If A is free of 3 and H, then [A] = 1.

(2) Suppose A is free of H but contains 3.

(2. 1) [3zB] = N if [B] = 1; [3zB] = N x [B] otherwise.

(2. 2) [VzB] = 1 if [B] = 1; [VzB] = {z}[B] otherwise.

(2.3) [BoC]=[Clif [B]=1e0r [C] =1; [B D C] = [B] — [C] otherwise.
(2. 4) [BAC] = [C]if [B] = 1; [BAC] = [B]if [C] =1; [BAC] = [B] x [C]

otherwise,
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(3) Let A be any admissible formula. We define [A] as follows.

(3.1) [H(, a)l =R[i, a]. [Zr(j, 3, b)] = plj <r % R[4, b]].

(3. 2) For ¥, D and A, follow (2) above.

(4) When reductions of type-forms are concerned, we need to specify the central
type-form 7 in Definition 2.4 (1. 4). Let G be the formula used in TRD(G,I),
and let G’ be a formula-like expression obtained from G by replacing H and
Yg with new symbols = and Dz respectively. Define [E(i, a)] = E(3, a) and
[2=2(4, 4, a)] = plj <14 E(j, b)]. Now apply (2) above to G/, and put n = [G].

3 An extended system S

In this section, we introduce a system which is an extension of TRDB. This

system, called S, was first considered in [2] so that S be complete with respect

to an extended modified realizability interpretation. '
Preceding the definition of S, we define a notation of certain type-forms.

Definition 3.1 (Number-theoretic type-form N(n))

For a natural number n, we define an expression N(n) of a type-form, which is
defined by: (i) N(0) = N; (ii) N(n+1) = N — N(n).

The system S is defined by the following Definitions 3.2 and 3.5.

Definition 3.2 (Language of S(G,T))

Given a system TRDB(G,ZI), we define a language of an extended system
' 8(@G,I) (often abbreviated to S) as follows.

(1) Symbols :

(1. 1) All'symbols of BL(c)-language are those of S.

(1. 2) For each type-form a, we prepare variables (called variable-forms) X§, Xg,

(1. 3) *, app, cond, () and [ ] are operational symbols, which are used in order
to construct terms of S.
(1. 4) H and Ty are special predicate constants of S.
(2) Terms
We induce terms of S in the following (2. 1)~(2. 8). We fix a central type-form
7 as in Definition 2.7 (4). (See also Definition 2.4 and Remark 2.5.)

By ¢ : a, we express the fact that ¢ is a term of a type-form .
(2.1) *:1.
(2. 2) For any variable-form X2, X2 : a.
Note. We distinguish “BL(c)-variables” and “variable-forms.” In S, Variable-
forms rule on usual variables, and BL(c)-variables rule on parameters in S-terms.
(2. 3) For every natural number n, id, : {z"}N(n), where z" is an n-ary
BL(c)-variable. We use this term in order to construct S-terms corresponding
to BL(c)-terms. See also Remark 3.3 (1) below.
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(2. 4) ¢ : B, whenever ¢ :  and 3 is a type-form with & ~ f (o and 8 have the
same normal form). ‘

(2. 5) app(#; t) : a[t/z], whenever ¢ : {z}c and t is a BL(c)-term whose arity
is the same as that of the BL(c)-variable z.

(2. 6) app(¢; ) : B, whenever ¢ : @ —  and ¥ : o

(2. 7) cond[A; ¢, P]: cond[A; o, B],ifp:a,P:Bandif Aisa BL(c)-formula.
(2. 8) A\z.¢: {z}aif ¢ : a. :

We call ¢ a number term if ¢ : N.

(3) Formulas

(3. 1) ¢ = 9 is an atomic formula of S, where ¢ and 9 are number terms.

(3. 2) H(i, t, ¢) is a formula of S, if i and ¢ are number BL(c)-terms and if ¢
is an S-term with the type-form « satisfying a ~ R[z, ).

(3. 3) Zx(j, 4, t, ¢)is aformula of S, where ¢, j and ¢ are number BL(c)-terms,
and ¢ is an S-term with the type-form a satisfying a ~ p[j <11; R[4, t]].
(3.4) AA B and A D B are formulas if A and B are formulas of S.

(3. 5) Let A be a formula of S and z is a BL(c)-variable. Then, VzA is a formula
of S. '

(3. 6) Let A be a formula of S, and let X* be a variable-form. Then, VX*4 and
3X*A are formulas of S if X* in A satisfies the following condition I'(X %, A):

T(X“, A): If there is a free occurrence of X in A, then all BL(c)-variables
occurring in « freely are free in A. (That is, if z is a free BL(c)-variable

occurring in o, then such an occurrence of X is not in the scope of any
Vz in A.) ‘

Note that 3::: is not admitted in S-formulas. This is because, we do not need
to bound BL-variables by 3-quantifier due to the admissibility of S- (TRDB-)
formulas (cf. Definition 2.2 and Remark 4.2 of [2]).

Remark 3.3 For an n-ary BL(c)-term t, the intended meaning of the S-term

app(idn; t) is t. Note that app(idn; t) has the type-form N (n) defined in
Definition 3.1. In what follows, we abbreviate app(id,; t) to t.

Definition 3.4 (Morphism *)
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We define a morphism * which sends a formula of TRDB to a certain formula

of S in the following (1) and (2).

(1) Let A be a formula of TRDB, and let ¢ be a BL(c)-term in A. We define
an S-term S(¢; A) by induction on the construction of ¢ as follows.

(1. 1) Let t be an n-ary BL(c)-variable z[.

(i) If = is bound by an 3-quantifier in A, then S(z}; A) = X;¥. Note that, in
this case, the arity n of z?* is 0 by the admissibility of TRDB-formula.

(ii) Otherwise, S(z?; A) = app(ids; 7).

(1. 2) If t is an n-ary function constant f, then S(f; A) = app(idn; f).



(1. 3) If ¢ is a number BL(c)-term f(t;,+,t,) defined in Definition 2.1 (2. 2),
then S(f(t1,-+,tn); A) = app(app(---app(S(f; A); S(ts; A));++-); S(tn; A)).
(2) Let A be a formula of TRDB, and let B be a subformula of A. We define
an S-formula S(B; A) by induction on the construction of B, as follows.
(2. 1) If B is an atomic formula which is not an H-formula, then S(B; A)is
the formula obtained from B by replacing all terms t;,--,t, of B by the terms
S(ty; A),-++,8(tn; A).
(2. 2) S(H(3, a); A) =3XRE dH(5, q, XRl al), |
(2. 3) S(Ta(j, i, a); A) = IXPL<ri RUy allg, (5, 4, q, XPli<ri Rl ally,
(2. 4) S(BAC; A)=S(B; A)AS(C; A).
(2.5) (B> C; A)= S(B; A) D S(B; A).
(2. 6) S(VzBlz]; A) =VzS(Blz]; A).
(2. 7) S(3zBlz]; A) =3XNS(B[z]; A), where XV = S(z; A).

Now, for every TRDB-formula A, we define A* by: A* = 5(4; A).

In what follows, we abbreviate an S-term Az.cond[z = 0; ¢, cond[z = 1;
¥, ] (pairing) to (4, ¥), and app(s, i) (projection) to w1 () for i = 0,1.

Definition 3.5 (Axioms and inference rules of S) .

(1) Axioms and inference rule of S as constructive logic are defined similarly to
those of 2.2. '

(2) Axioms and inference rules with respect to elementary arithmetic are ob-
tained from those of TRDB by *-mapping.

(3) Bar induction of S is the same as that of TRDB.

(4) TRD*(G,I):

 Vavy (3XRE IH(z, y, X Y) & Gz, 9] ).

Here, Gla, b] is the formula defined in-TRD(G’,I) of TRDB (cf. Definition
2.2), and G*[a, b] is the formula obtained from GJa, b] by the morphism *.
(5) Implication axiom:

(AD aYﬁB[Yﬂ]) = 3YP(A > B[Y#)),

where A is 3-free and B is any formula.
(6) Axiom of choice: '

VX3YPA[X, YP] = 3Z'VXAX, 27X,

where A is an 3-free formula, X is either a BL(c)-variable z (in which case 7 is
{z}B) or a variable-form X* (in which case v is @ — ).
(7) Product axiom:

AX2IYPA[X®, YP) = 32976 Alry (278) ) X2, my(2°°P))YP),

where A is 3-free.
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Remark 3.6 (1) Note that we restrict the axioms for equality of term-forms
with type-form N. For example, S contains the axiom of the form t = t, but
does not contain XV = XV,

(2) In what follows, the bold-scnpt upper case alphabet X expresses a variable-
form X with the type-form a or a BL(c)-variable z. Similarly with Y and Z.

Proposition 3.7 (Embedding of TRDB into S)
TRDB I A implies S - A* for any formula A. (See Definition 3.4 for *.)

- Next we define an interpretation MR on formulas of S.

Definition 3.8 (Modified realizability interpretation M R)

We define the modified realizability interpretation MR, which translates S-
formulas to certain S-formulas. Given a formula A, we define M R(A) by induc-
tion on the construction of A. MR(A) will be of the form IWSA[W?), where
A[W?] is an 3-free formula. (In the case (1. 1) below, 3X is vacuous.)

(1) Suppose that A does not contain H.

(1. 1) If A does not contain 3-quantifier, then MR(A) =

In (1. 2)~(1. 5) below, A is assumed to contain an 3-qua.nt1ﬁer We assume

the induction hypotheses M R(B) = 3YPB[YP] and MR(C) = 3Z7C[Z"], where
B and C do not contain 3-quantifiers.
-(1.2)If A = 3X*B, then MR(AX*B) = IW**PB[m, W | X, m;W**F [YF].
If MR(B) is an 3-free formula B, then MR(A) = 3X*B.

(1.3)If A= BAC, then MR(B/\C) EIWﬁx"(B[7r1Wﬁ"'Y/Yﬁ]/\C[szﬁx’Y/Z’Y])
In the case where MR(B) is 3-free, MR(A) = 3Z7(B AC[Z"]). If MR(C) is
J-free, then M R(A) = IYP(B[YP] A C).

(1.4)If A= B D C, then MR(B D C) = IWP~VYF(B[Y?] O C[Wﬁ‘*'VYﬂ/Z'Y]).
If MR(B) is 3-free, then MR(A) =3Z7(B D C[Z7]). If MR(C) is 3-free, then
MR(A) =VYP(B[Y?] D C).

(1. 5) If A = VXB, then MR(VXB) = IW’VXB[X, W6X/Yﬁ] Here § is
determined as follows: & is {z}8 if X is a BL(c)-variable z; § is o — S if
X = X©. If MR(B) is 3-free, then MR(A) =

(2) A contains H as its subformula, that is, A is an H-formula.

(2. 1) We define the MR-interpretation of basic H-formulas as follows:

MR(H(, t, X)) =H(, t, X).
MR(Z(5, i, t, X%, H)) =2(, i, t, X%, H).

(2. 2) For the general cases of formulas which contain #, the MR-interpretations
can be defined from (2. 1) by applying (1. 1)~(1. 5).

In [2], we investigated the following theorem.

Theorem 3.9 (Completeness theorem for MR-interpretation.)
Let A be a formula in S. Then

S+ MR(A) & A.



4 Term-forms: review

In this section, we present the definition of term-forms (terms with parame-
ter types) and reduction rules of them, which were introduced by Yasugi and
Hayashi in [5] and [6]. We repeat the definitions in some detail for the reader’s
convenience.

Definition 4.1 (Term-forms: See also Definition 4.1 of [5].)

Term-forms are defined below. ¢ : a will express that term-form ¢ is of type-
form a. If @ ~ B (cf Theorem 2.6), then we let ¢ : a imply ¢ : 3.

(1) * is an atomic term-form whose type-form is 1.

(2) For a natural number n, id, is an atomic term-form whose type-form
{z"}7(n). Here z™ is an n-ary BL(c)-variable.

(3) For each natural number n and for each type-form 8, X? (the nth variable-
form of type-form f) is an atomic term-form.

(4)If ¢ : v, then Az.¢: {z}y. If ¢ : v, then AXP.¢ : B — ~, where the condition
I'*(¢, B) below is assumed.

I'*(¢, B): For each X¢, where § ~ 8 and X? occurs freely in ¢, no free BL(c)-
variable z in § is bound by Az in ¢.

(5) 1t ¢ : {a}, then app(gs ) :1[t/c). If §: B — 7 and 9 B, then app(ds ¥) -
7. We abbreviate these as ¢t and ¢ respectively.

(6) If ¢ : B and 9 : -, then cond[4; ¢, 9] : cond[4; B, 7).

(1) If ¢ : R[j, s], then ofj <1 4; ¢]: p[j <14 R, ).

- (8) A functional constant u of type {f}N, where f is a unary function BL(c)-

variable. (u represents a modulus of finiteness functional of the order <. See
the beginning of Preliminaries.) :

(9) Bar recursion. Let b stand for a continuous (bar recursive) functional for
a neighborhood function (see [5]). If ¢ : {2}y and 9 : {z}({s}v[z * 5/2] — =),
then Bb; ¢, ¥; m, f]: v[f[m/z], where m and f are BL-terms of arities
respectively 0 and 1, and f[m represents the restriction of f to the domain m.

Notice that the terms of S defined in Definition 3.2 form a subset of these
term-forms. The language of S is not extended to include these term-forms.

Definition 4.2 (Conversion of term-forms: See Definition 4.3 of [5].)

(1) Conversion rules of term-forms are the following.

(1. 1) (Az.¢)t = ¢[t/z].

(1. 2) (/\Xﬁ AVES ¢[¢/Xfl] where 8 ~ § and X is free in ¢. (3 is substltuted
for X? for any such X2.)

(1. 3) cond[A ¢, 9] = x, where x is ¢ if A is a true sentence and xisy if Ais
a false sentence.

(1 4) 0[1 <ri;¢] = x, where xy is ¢ if j <7 i is a true sentence and x is * if
J <rtis a false sentence.
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(1. 5) The conversion rule for B is as follows.

B[b; ¢,9,m, f] => app(¢; f[m),
if b(f) < m is a true sentence with b added to BL, and

Blb; ¢, 9, m, f] = app(app(¥; f[m); Ak.B[b; é,9,m + 1, (f[m)#k])

if b(f) > m is a true sentence. Here (f[m)#k is a unary term being an extension
of the finite sequence f[m of the form (f(0), f(1),---, f(m—1), k, 0, 0,--).
(1. 6) Let s and t be BL(c)-terms. If ¢ is the result of computation of s, then
t = s.

(2) We can define “¢ 1-reduces to 9” and “¢ is reducible to ¢” similarly to
Definition 2.4, with the strategies that the conversions of ¢ and B have priorities
of reduction. A term-form is said to be normal if it can not be reduced any
longer.

Definition 4.3 (Term system TRM)
TRM is the system consisting of type-forms and term-forms together with their
reductions. -

. Theorem 4.4 (Strong normalizability of TRM; see Theorem 3 in [5])
Every term-form is strongly normalizable to a unique normal form (under the
o- and B-strategies).

5 Semantics for S-formulas

In this section, we define a truth-value ET of S-formulas under certain term-
forms. As our main objective, we present the main theorem of this paper, which
assures validity of S with respect to the truth-value ET.

Definition 5.1 (Degree of S-formula)
(1) For a primitive recursive order structure I = (I, <r), which we assumed in
defining TRDB, we define Z* = (I*, <*) as in [5] and [1].

I={i~;iel}; I*=TUIYU{oo}; i <*i~ <™ j <" 0o when i <j .

Moreover, we put Z, = w? , where we identify Z* with its order type.
(2) Let A be either H(3, t, X*) or Zx(3, j, t, X*). We define the rank r(A)
of A as follows. A
() r(H(G, t, X*)) =1~ if ¢ is closed; r(H (i, t, X*)) = co otherwise.
(i) r(Ex(i, 4, t, X*)) = if j is closed; By (4, j, t, X)) = 0o otherwise.
(3) Let A be a formula. Then, we define the degree d(A) of A as follows.
(i) If A is an atomic formula except an H-formula, then d(4) =1.
(i) d(BA C) = d(BV C) = d(B > C) = max(d(B), d(C)) + 1.



(iii) d(VXB[X]) = d(3XB[X]) = d(B[X]) + 1, where X is a BL(c)-variable or a
variable-form. .
(iv) d(H(3, t, X)) = WM 8 X2, (8,6, §, t, X%)) = wr(Enl 4, t, X2),

Definition 5.2 (Semantics)
Let A[X{,.++, X%", Z1,-+-, Tsy] be an 3-free formula of S, where X7,-..,
X5~ are all free variable-forms of A and z;,- -+, z,, are all free BL(c)-variables
of A. We abbreviate A[X2*,.., X2, 21, -+, Zm] to A[X, 3.

Let 8y,-++, 8, be closed BL'.(c) terms, where each sj, has the same arity as
that of =, and let ¢;,--+, ¢, be only-Z-open term-forms, where each ¢; has a
type-form B; with ;[5/F] ~ B;[8/Z]. We define the truth-value of A[X, Z] under
environments of ¢y, -, ¢, for X7**, .-+, X3~ and s1,-+,8, for z1, -+, T,
which is denoted by ET(A[X, Z]; &, §), by transfinite induction on the degree
of A[X,#][5/7].

(1) A[X, #] does not contain H.

(1. 1) A[X, Z] is an atomic formula, that is, A[X,Z] is of the form ®[X,Z] =
U[X, Z]. We define the truth-value by: ET(A[X, Z]; &, §) =T (true)if &(¢[5/3),
5) and ¥(4[5/Z], 3) have the same normal form; ET(A[X, Z]; &, é’) F (false)
otherwise.

(1. 2) The connectives A, D and V are interpreted classically.

(2) A[X, 7] contains H.

(2. 1) A[X,&] is of the form H(i, t, X{*). Let G, t, X¢] be the formula
obtained from M R(G*[i, t]) = AXEG[i, t, X¢]. We define the truth-value by

ET(H(, t X2); ¢1,5) = ET(G[i, t, X¢]; ¢1,3).

(2. 2) A[X, 7] is of the form Sx(j, 4, t, X).
(i) If ET(j <r1; §) =T, that is, j[8/Z] <1 i[5/Z], then

ET(Sw(j, i, t,X2); ¢1,5) = ET(H(, T, XFUAy, ¢,(35/2)),

where j = j[5/%] and T = t[5/Z)].
(i) If ET(5 <1 ¢ 8) = F, then

‘ ET(ZH(ja i, t,Xfll); ¢19§) = F.

Note that z <; y is an H-free formula with the intended meaning of the order
of Z, which is a primitive recursive predicate. (See Definition 3.5 (2).)
(2. 3) If A is an H-formula which is not atomic, then we follow the cases in (1).

The following theorem can be proved in a manner similar to the proof of the
Main Theorem in Section 4 of [4], adding the new cases of implication axiom,
axiom of choice, and product axiom.
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Theorem 5.3 (Validity of S-theorem)

Let A (= A[Y,7]) be a theorem of S, where Y (= YP,.-.,YP) are all free
variable-forms of A and ¥ (-— Y1,° s Ym) are all BL(c) va.nables of A. If
MR(A[Y, #]) = 3X*A[X*,Y,7], then there emsts a term-form ® (= ®[Y, #])
satisfying the following:

(i) ® has no free variable (- form) except ¥, . (That is, P is only-g}‘ -open.)

(ii) For all closed BL(c)-terms £ (= t, -+, tm), where the arity of ¢; is the same
as' that of y;, and for all only-7-open term-forms ¥ (= ¥1,-+,%n), where 9;
has a type-form B} with BL[t/7] ~ Bi[t/#], it holds that

ET(AIX*,Y,3; 2[$/Y],9,8) =T.

As an immediate consequence of Theorem 5.3, we have the following result
with respect to the existence of a function.

Corollary 5.4 For any II}-sentence of arithmetic, say Vz3yAlz, y], if Vz3y
Alz, y] is a theorem of S, then there exists a closed term-form & such ET(VzAlz,
Yz]; ®) = T. That is, all functions which are provably total in S can be realized
in TRM.

Corollary 5.5 S is consistent.
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