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Abstract

This paper contains an attempt to discuss some properties of relations induced by transla-

tions, including distribution of idempotents. We will begin with start two equivalence relations,

give some results to be used frequently and show a distribution of idempotents. In fact it will

be shown in ” l.Introduction and Preliminaries” that the two relations are relations including

Green’s relations. Using the relations, we will discuss idempotents which behave as left or right

identities in equivalence classes induced by the relations. In the last section, as an application

of the properties of idempotent and a semigroup extended by translations shown here, some

special class of semigroups, abundand semigroups, will be discussed, which is closely related

with the distribution of idempotents.

1 Introduction and Preliminaries

Throughout this paper, $\Psi_{L}(g)$ will denote the semigroup of all left translations of a semi-

group $S$ , and $\Psi_{R}(S)$ will denot.$\mathrm{e}$ the semigroup of all right translations of $S$ .
If $S$ is any semigroup and $a,$ $b\in S$ , we say that $x\prec_{L}y$ if and only if for any $\psi,$ $\phi\in$

$\Psi_{L}(S),$ $\psi(x)=\phi(x)$ implies $\psi(y)=\phi(y)$ , and $x\prec_{R}y$ if and only if for any $\mu,$ $\gamma\in\Psi_{R}(S),\mu(x)=$

$\gamma(x)$ implies $\mu(y)=\gamma(y)$ . Let us also define two equivalence relations $\Pi_{L}$ and $\Pi_{R}$ as follows:
$x$ II$Ly$ if and only if $x\prec_{L}y$ and $y\prec_{L}X$ , and $x\square _{Ry}$ if and only if $x\prec_{R}y$ and $y\prec_{R}X$ .

We define II$H$ as the intersection of II$L$ and $\Pi_{R}$ , and II$D$ as the union of $\Pi_{L}$ and $\Pi_{R}$ .
Now $S= \bigcup_{a\in S}\Pi_{L}(a),$ $S= \bigcup_{b\in S}\Pi_{R}(b)$ , and $S= \bigcup_{a,b\in S}$ II$H(a, b)$ stand for the partitions

induced by the equivalence relations II$L,$ $\Pi_{R}$ and $\Pi_{H}$ , and $\Pi_{L}(a),$ $\Pi_{R}(b)$ and $\Pi_{H}(a, b)$ will

be called $\Pi_{L}$ –dass including $a,$ $\Pi_{R}$ –dass including $b$ and II$H$ –class including $a$ and $b$ ,

respectively.
Now we can define two semigroups, $T_{R}=S\cup\Psi_{R}(S)$ and $T_{L}=S\cup\Psi_{L}(S)$ with $S$ as right

and left ideals, respectively.
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(1) Let $x,$ $y$ be any elements of $S$ and $\psi,$ $\phi$ be any elements of $\Psi_{R}(S)$ , and the operation ${ }$ on
$T_{R}$ will be defined as follows: $xy=x\cdot y,$ $x\psi_{=}\psi(X),$ $\psi x=\psi_{\mathrm{o}f}x’\psi\phi=\psi 0\phi,$ where .
is the operation on the semigroup $S,$ $\psi_{0}\phi$ is defined by $\psi 0\phi(z)=\phi(\psi(z))$ and $r_{x}$ is the right
translation on $S$ defined by $r_{x}(z)=z\cdot x$ for all $z\in S$ .
(2) Let $x,$ $y$ be any elements of $S$ and $\mu,$ $\gamma$ be any elements of $\Psi_{L}(S)$ , and the operation ${ }$ on
$T_{L}$ will be defined as follows: $xy=x\cdot y,$ $x\mu=l_{x}\mathrm{o}\mu,\mu _{x}=\mu(x),\mu\gamma=mu\mathrm{o}\gamma$, where
. is the operation on the semigroup $S\mu 0\gamma$ is defined by $\mu 0\gamma(z)=\mu(\gamma(z))$ and $l_{x}$ is the left
translation on $S$ defined by $l_{x}(z)=x\cdot z$ for all $z\in S$ .

To show that $T_{R}$ and $T_{L}$ are semigroups, it is necessary that the following eight equations
hold for all $x,$ $y\in S$ and $f,g\in\Psi_{R}(S)$ and $\Psi_{L}(S)$ , respectively.

(1) $(xy)Z=x(yz)$ (5) $(f_{g})h=f(gh)$
(2) $(xf)_{g=}x(f_{g})$ (6) $(fX)y=f(_{Xy})$
(3) $(xf)_{y=}x(f_{y})$ (7) $(fg)X=f(gX)$
(4) $(xy)g=x(yg)$ (8) $(fX)g=f(x_{g})$

It will be shown that equations (1) to (8) hold on $T_{R}$ as follows:
Let $f=\psi\in\Psi_{R}$ and $g=\phi\in\Psi_{R}$ .
(1) and (5) $:\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}S$ and $\Psi_{R}(S)$ are semigroups, it is obvious that $(xy)z=x(y_{Z})$ and
$(fg)h=f(gh)$ .
(2): $(_{X}\psi)\phi=\psi(X)\phi=\phi(\psi(_{X}))=\psi\circ\phi(X)--x$ (th $\phi$)
(3): $(x\psi)y=\psi(X)y=\psi(x)\cdot y$ and $x(\phi y)=x(\psi \mathrm{o}r)y=r(y\psi(X))=\psi(X)\cdot y$ .
(4) $:(xy)\phi=\phi(x\cdot y)=x\cdot\phi(y)$ and $x(y\phi)=x\phi(y)=x\cdot\phi(y)$ .
(6) $:(\psi X)y=(\psi\circ r_{x})y=(\psi\circ r_{x})\cdot y=\psi\circ r_{xy}\circ r$ and $\psi(xy)=\psi(x\cdot y)=\psi \mathrm{o}r_{x\cdot y}$ .
Since $r_{x\cdot y}(z)=z\cdot(x\cdot y)=(z\cdot X)\cdot y=r(yrx(Z))=(r_{x}\mathrm{o}r_{y})(Z),$ $\psi\circ\gamma_{x}.=\psi y\circ\Gamma x\circ ry$.
(7): $(\psi\phi)X=(\psi_{0}\phi)X=\psi_{0}\phi \mathrm{o}kx\psi\circ=(\phi\circ r_{x})=\psi \mathrm{o}(\phi _{X})=\psi(\phi _{X})$.
(8) $:(\psi x)\phi=(\psi_{\circ r_{x}})\phi=(\psi\circ r_{x})\circ\phi$ and $\psi(x\phi)=\psi\phi(x)=\psi \mathrm{o}k_{\emptyset}(x)$ . Since
for any $z\in S,$ $((\psi_{\mathrm{o}r}x)0\phi)(z)=\phi((\psi \mathrm{o}r_{x})(z))=\phi(r_{x}(\psi(z)))=\phi(\psi(z)\cdot x)=\psi(z)\cdot\phi(x)$ and
$(\psi\circ r_{\phi(x)})(z)=r\phi(x)(\psi(z))=\psi(z)\cdot\phi(x)$ , we have $(\psi_{\mathrm{o}r_{x}})0\phi=\psi \mathrm{o}r_{\emptyset(x)}$ .
It is also shown that equations (1) to (8) hold on $T_{L}$ similarily.

In fact, from the definition of the operation on $T_{R},$ $xy=x\cdot y\in S$ and $x\psi=\psi(x)\in S$

for any $x,$ $y\in S$ and $\psi\in\Psi_{R}(S)$ imply that $S$ is a right ideal of $T_{R}$ . $\psi x=\psi \mathrm{o}r_{x}\in\Psi_{R}$ and
$\psi\phi=\psi\circ\phi\in\Psi_{R}$ for any $x\in S$ and $\psi,$ $\phi\in\Psi_{R}$ imply that $\Psi_{R}$ is a right ideal of $T_{R}$ .
It is $\mathrm{s}\mathrm{h},0$wn that $S$ is a left ideal of $T_{L}$ and $\Psi_{L}$ is a left ideal of $T_{L}$ .
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We begin with a brief list of some basic results without proof, which will be used throughout

the paper.

Lemma 1.

(1) If $x\in\Pi_{R}(y)$ , then $xt\in\Pi_{Ry}$ $()$ $t$ for all $t\in T_{R;}$

(2) If $x\in\Pi_{L}(y)$ , then $tx\in\Pi_{L}ty$ for all $t\in T_{L}$ .

Lemma 2.

(1) $x\prec_{L}xu$ for all $x,$ $u\in S$ ;

(2) $x\prec_{R}vx$ for all $x,$ $v\in S$ .

It is also easily shown that $\mathcal{R}\subseteq\Pi_{L}\subseteq R^{*},$ $\mathcal{L}\subseteq\Pi_{R}\subseteq L^{*}$ and $\mathcal{H}\subseteq\Pi_{H}\subseteq H^{*}$ for the Green’s

relations $\mathcal{R},$
$\mathcal{L}$ and $\mathcal{H}$ , and the relations $R^{*},$ $L^{*}$ and $H^{*}$ defined by J. Fountain and others. They

called that a semigroup in which each $R^{*}$ –class and each $L^{*}$ –class contains an idempotent

is an abundant semigroup. In particular, if a semigroup is regular, then $\mathcal{R}=\Pi_{L}=R^{*}$ ,

$\mathcal{L}=\Pi_{R}=L^{*}$ and $H=\Pi_{H}=H^{*}$

2 Idempotent As a Local Identity

Let $S$ be an semigroup, then we have the following lemmas which show that idempotent

behaves as left or right identity elements in $\Pi_{L}$ –class or $\Pi_{R}$ –class, respectively.

Lemma 3. Let $e$ be any element of $S$ , then

(1) $e$ is an idempotent if and only if $e\cdot t=t$ for all $t\in\Pi_{L}(e)$ ;

(2) $e$ is an idempotent if and only if $s\cdot e=s$ for all $s\in\Pi_{R}(e)$ .

Proof. (1) It is trivial that $e\cdot e=e$ , since $e\in\Pi_{L}(e)$ . Conversely, assume that $\mathrm{e}$ is an idempotent,

that is, $e\cdot e=e$ , then from the definition of the inner left translation, $e\cdot e=f_{e}(e)=e=I(e)$

implies that $e\cdot t=f_{e}(t)=I(t)=t$ for all $t\in\Pi_{L}(e)$ , where I is the identity mapping and $f_{e}$ is

the inner left translation.
(2) is shown similarly. $\mathrm{Q}.\mathrm{E}$.D.

Lemma 4. Let $\mathrm{e}$ be any idempotent of $\mathrm{S}$ , then

(1) For any element $t\in T_{L}$ and any element $s\in\Pi_{L}(e)$ , there exist an element $u\in\Pi_{L}(ts))$

such that $ts=u\cdot s$ ;

(2) For any element $t\in T_{R}$ and any element $s\in\square _{R}(e)$ , there exists an element $v\in\Pi_{R}(st)$

such that $st=s\cdot t$ .
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Proof. (1) It is sufficient to show that for any $\psi\in\Psi_{L}(S)$ on $S$ and any $s\in\Pi_{L}(e),$ $\psi(s)=u\cdot s$

for some $u\in\Pi_{L}(\psi(S))$ . It follows from the fact that $\psi(s)=\psi(es)=\psi(e)\cdot s$ for any element
$s\in\Pi_{L}(e)$ (from Lemma 3) and $u=\psi(e)\in\Pi_{L}(\psi(s))$ (from Lemma 2).
(2) is shown similarly. $\mathrm{Q}.\mathrm{E}$ .D.

Lemma 5. Let $\mathrm{e}$ and $\mathrm{f}$ be any idempotents of S.

(1) If $e\in\Pi_{L}(f)$ then $e$ is an inverse of $f$ ;
(2) If $e\in\Pi_{R}(f)$ then $e$ is an inverse of $f$ .

Proof. (1) We have $e\cdot f\cdot e=e\cdot(f\cdot e)=e\cdot e=e$ from Lemma 3 and that $f$ is an idempotent
in $\Pi_{L}(e)(=\Pi_{L}(f))$ . Similarly it is shown that $f\cdot e\cdot f=f\cdot(e\cdot f)=f\cdot f=f$ . Q.E.D.

From above lemmas, it is shown that each $\Pi_{H}$ –class contains a unique idempotent if it
has.

Theorem 1. For any elements $a,$ $b\in S$ , the $\Pi_{H}$ –dass, $\Pi_{L}(a)\cap\Pi_{R}(b)$ , cannot have more
than one idempotent.

Proof. Assume that $e$ and $f$ be idempotents in a $\Pi_{H}$ –class, $\Pi_{L}(a)\cap\Pi_{R}(b)$ , that is, $e,$ $f\in$

$\Pi_{L}(f)\cap\Pi_{R}(f)=\Pi_{L}(e)\cap\Pi_{R}(e)$ . Then $f=f\cdot e\cdot f=f\cdot(e\cdot f)=e\cdot f=e$ from Lemma
3. Q.E.D.

Lemma 6. For any elements $a,$ $b\in S$ , if $\Pi_{R}(a)\cap\Pi_{L}(b)$ contains an idempotent then $ab\in$

$\Pi_{L}(a)\cap\Pi_{R}(b)$ .

Proof. Assume that $e$ is an idempotent in a $\Pi_{H}$ –class such that $e\in\Pi_{R}(a)\cap\Pi_{L}(b)$ , that is,
$a\in\Pi_{R}(e)$ and $b\in\Pi_{L}(e)$ . Then from Lemma 2 and Lemma 3, we have that $r_{b}(a)\in\Pi_{R(r_{b}(e))}$

for the inner right translation $r_{b}$ such that $r_{b}(a)=a\cdot b$ and $r_{b}(e)=e\cdot b=b$ , since $e\in\Pi_{L}(b)$ .
Thus $a\cdot b\in\Pi_{R}(b)$ . Similarly, we have that $l_{a}(b)\in\Pi_{L}(l_{a}(e))$ for the inner left translation $l_{a}$

such that $l_{a}(b)=a\cdot b$ and $l_{a}(e)=a\cdot e=a$ , since $e\in\Pi_{R}(a)$ . Thus $a\cdot b\in\Pi_{L}(a)$ . Q.E.D.

Lemma 7. For any element $a\in S$ , the following conditions are equivalent:

(1) $\Pi_{R}(a)$ contains an idempotent;
(2) For elemnt $t\in T_{R}$ , there exist an element $u\in\Pi_{R}(at)$ such that $at=a\cdot u$ .

Proof. (1) $arrow(2)$ : Let $\mathrm{e}$ be an idempotent in $\Pi_{R}(a)$ , then from Lemma 4, we have that for any
element $t\in T_{R}$ , there exists an element $u\in\Pi_{R}(at)$ such that $at=a\cdot t$ .
(2) $arrow(1)$ : Let $I$ be the identity translation (which is also in $T_{R}$), then there exists an element
$u\in\Pi_{R}(I(a))=\Pi_{R}(a)$ such that $I(a)=a\cdot u$ . From the fact that $u\in\Pi_{R}(a),$ $a\cdot u=r_{u}(a)=I(a)$

implies that $u\cdot u=r_{u}(u)=I(u)=u$ . Thus $u$ is an idempotent in $\Pi_{R}(a)$ . Q.E.D.

91



Similarly, we also have

Lemma 8. For any element $b\in S$ , the following conditions are equivalent:

(1) $\Pi_{L}(b)$ contains an idempotent;

(2) For any element $t\in T_{L}$ , there exist an element $v\in\Pi_{L}(tb))$ such that $tb=u\cdot b$ .

3 Strictly Abundant Semigroup

From Lemma 4, it will be easily shown that a semigroup is abundant if and only if each
$\Pi_{R}$ –dass and each $\Pi_{L}$ –class contains an idempotent. We will call a semigroup strictly

abundant if each $\Pi_{H}$ –class contains an idempotent. The following theorem is also a direct

result from above lemmas, which shows that strictly abundant semigroup is a disjoint union of

semigroups.

Lemma 9. Let $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are any $\Pi_{H}$ –classes which contain idempotents $e$ and $f$ .

(1) If the $\Pi_{H}$ -classes, $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are included in a same $\Pi_{R}-cla\mathit{8}s$ , then there exists

a homomorphism from $\Pi_{H}(e)$ onto $\Pi_{H}(f)$ ;

(2) If the $\Pi_{H}$ -classes, $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are included in a same $\Pi_{L}$ -class, then there exists

a homomorphism from $\Pi_{H}(e)$ onto $\Pi_{H}(f)$ .

Proof. (l)The mapping $\rho$ : $\Pi_{H}(e)arrow\Pi_{H}(f)$ is defined by $\rho(s)=f\cdot s\cdot f$ , for $s\in\Pi_{H}(e)$ .
Assume that $s,t\in\Pi_{H}(e)$ , then $\rho(s)\cdot\rho(t)=(f\cdot s\cdot f)\cdot(f\cdot t\cdot f)=f\cdot s\cdot f\cdot f\cdot t\cdot f=$

$f\cdot s\cdot f\cdot t\cdot f=f\cdot s\cdot t\cdot f=\rho(s\cdot t)$ , since $s\in\Pi_{R}(f)$ . Thus the $\mathrm{m}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{g}\rho:\Pi H(e)arrow\Pi_{H}(f)$ is a
homomorphism. Let $t$ be any element in $\Pi_{H}(f)$ , that is, $t\in\Pi_{L}(b)$ . Since $e\in\Pi_{R}(e)\cap\Pi_{L}(t)$ ,

we have $e\cdot t\cdot e=e\cdot t\in\Pi_{R}(t)\cap\Pi_{L}(e)=\Pi_{R}(e)\cap\Pi_{L}(e)\in\Pi_{H}(e)\mathrm{f}\mathrm{r}\mathrm{o}^{\mathrm{J}}\mathrm{m}$ Lemma 3 and Lemma

6. And $\rho(e\cdot t\cdot e)=f\cdot e\cdot t\cdot e\cdot f=(f\cdot e)\cdot t\cdot(e\cdot f)=f\cdot t*e=f\cdot(t\cdot e)=f\cdot t=t$ .
(2) is similarly shown. $\mathrm{Q}.\mathrm{E}$ .D.

Corollary 1. For any elements $a,$ $b\in S,$ $\Pi_{R}(a)\cap\Pi_{L}(b)$ contains an idempotent if and only if
$\Pi_{R}(a)\cap\Pi_{L}(b)$ is a monoid.

Theorem 2. Let $S$ be any strictly abundant semigroup, the $S$ is a disjoint union of monoids.

$\mathrm{C}o$rollary 2. Let $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are any $\Pi_{H}$ –classes which have idempotents, $e$ and $f$ ,

respectively.

(1) If two $\Pi_{H}$ –dasses, $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are included in a same $\Pi_{R}$ -dass,

then II$H(e)\Pi_{H}(f)\subseteq\Pi_{H}(e)$ ;

(2) If two $\Pi_{H}$ –dasses, $\Pi_{H}(e)$ and $\Pi_{H}(f)$ are included in a same $\Pi_{L}$ –class,

then $\Pi_{H}(e)\Pi H(f)\subseteq\Pi_{H}(f)$ .
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