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ABSTRACT. In Game $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{y}$ with it\S applications to Economics, the interpretation
problem of a mixd stratey Nash equilibrium has been known to be important and
a number of the interpretations has been proposed.

Aumann and Brandenburger [Econometrica, $\mathrm{V}\mathrm{o}\mathrm{l}.63(1995)$ , No.5, 1161-1180] has
succaedd in giving an epistemic interpretation of a mixed strategy Naeh equilibrium
as conjectures on the part of other $\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\epsilon$: When there is a common-prior, mutual
knowledge of the payoff-functions and of rationality, and common-knowledge of the
conjecturae, imply that the conjecturae form a mixed strategy Nash equilibrium.
Where common-knowledge of something is the infinite $\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\epsilon \mathrm{i}\mathrm{o}\mathrm{n}$ of mutual knowledge
of it; that is, all players know it and they know that they know it and they know
that they know that they know it and so on.

In the standard model of knowledge as like ae the Aumann and Brandenburger
model, the players are implicitly assumed to have $lo\dot{\varphi}\mathrm{c}ally$ omniscient abihty; that
is, they know every tautoloy and know all the implications of their knowledge. The
assumptions about common-knowledge and about logicaly omniscient ability are
evidently problematic in the sense that thaee are not realistic at all.

In this laeture praeentation I propose a new model of awareness and beliefwith all
players having no logicaly omniscient ability, where awarenaes and belief are weaker
notions of knowledge. I say that an event is pubhc belief if every player believae the
event whenever it occurs. Rationality is the requirement that a mixed strategy of
each player is optimal against a perturbation of his conjecture on the part of other
players. I give the epistemic condition for a mixed strategy Naeh equilibrium:

Theorem. When there is a $commor\triangleright p\dot{n}or$, pubbc bekef of $payofffi_{l}nctions$, of $ra-$

tionakty and of a pefturbation of conjectures imply that the conjectures induce a
mixd stmtegy Nash $q\tau\iota ihb\mathrm{r}ium$ .

I emphasize that I make no assumption about either common-belief or logicaUy
omniscient ability for players.
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1 INTRODUCTION

When a given game in strategic form is transformed into a decision problem,
the uncertainty that a player facs in a game is the strategic choice of the other
players’ actions. Each player has therefore knowledge (or belief) of the other players’
actions. In addition, each player is also uncertain about the knowledge of the
other players’ actions and must have knowledge of their knowledge, and so on.
Hence, beginning with a game, the decision $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ approach lea&to the study
of infinite recursion of knowledge (or belief) for the players; e.g., the study of
common-knowledge (or common-belief) for the players. Once the transformation
of a game into a decision problem has baen completed, solution c.oncepts may be
$\mathrm{e})\varphi \mathrm{l}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{h}\mathrm{o}\mathrm{m}$ an epistemic point of view.

Since the pionaering contribution of Aumann(1976), game $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}$ and math-
ematical economists have invaetigated the concepts of common-knowledge (or
common-belief) and the foundation of solution-concepts of games in different kinds
of epistemic modek. There are two important approaches among others: The first
is the axiomatic approach; the syntactic modek of knowledge and belief, and the
second is the Bayaeian approach of knowledge; the model of belief with proba-
bihty 1. Bacharach(1985) and Samet(1990) adopted the first approach and ex-
tended the ‘Agreeing to disagroe’ theorem of Aumann(1976). Aumann and Bran-
denburger(1995) adopted the second approach and succeeded in giving epistemic
conditions for Nash equilibrium of a game as conjecturae on the part of other play-
ers using mutual knowledge of players’ rationality and common-knowledge of their
conjecturae.

In every approach, the players in model have been explicitly or implicitly required
to be $lo$.qicdly omniscieni, that is, they can deduce $\mathrm{a}\mathrm{U}$ the logical implications of
their knowledge (or belief) and they know (or believe) every tautology. However
real people are not complete reasonexs and the recent idea of ‘bounded rationality’
suggests dropping the problematic assumption. In regard to this Dekel, Lipman and
Rustichini(1998) introduced a unawareness operator with axiom of plausibility and
investigated the relation between the unawarenaes operator model and a possibility
operator model.

The purpose of this lecture is to present a new model of awareness and belief
in which the players are required neither to be men of complete perception nor to
have the complete ability of logical reasoning.

I begin in Section 2 by. reviewing the standard model of knowledge. Section 3
devotes to establish a model of awareness and belief without logical omniscience
and to praeent the fundamental lemma. As consequence I extend the ‘Agreeing to
disagree’ theorem of Aumann(1976) to the model of awareness and belief with a
common-prior. In section 4 I give an epistemic condition for Nash equilibrium in
a finite strategic game without common-belief assumption. In Appendix I give a
proof of Fundamental Lemma.
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2 STANDARD MODEL OF KNOWLEDGE

Let $N$ be a set of finitely many players and $i$ denote an player. A state-space is
a finitely non-empty set, whose members are $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ states. An event is a subset of
the $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\triangleright \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$ . If $\Omega$ is a state-space we denote by $2^{\Omega}$ the field of $\mathrm{a}\mathrm{U}$ subsets of it.
We say that an event $F$ occurs at a state $\omega$ if $\omega$ belongs to $F$ .

An $info\tau mationpa\hslash ition(\Pi_{i})$ is a class of mappings $\Pi_{i}$ of $\Omega$ into $2^{\Omega}$ in which
$\{\Pi_{i}(\omega)|\omega\in\Omega\}$ makae a partition of $\Omega$ such that each image $\Gamma \mathrm{I}_{i}(\omega)$ contains $\omega$ which
is the set of statae that $i$ thinks are possible when $\omega$ occurs. The mapping $\Pi_{i}$ is
$\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ the $i’ \mathrm{s}$ information partition and $\Pi_{i}(\omega)$ the possibility set of $i$ at $\omega$ .

Given our interpretation of an information partition, an player $i$ for whom
$\mathrm{n}_{:}(\omega)\subseteq E$ knows, in the state $\omega$ , that some state in the event $E$ has occurred.
In this case we say that in the state $\omega$ the player $i$ knows $E$. An $i’ \mathrm{s}$ knowled.qe
operator is an operator $K_{1}$. on $2^{\Omega}$ such that $K_{i}E$ is the set of states of $\Omega$ in which $i$

knows that $E$ has occurred; that is,

$K_{i}E=\{\omega\in\Omega|\Pi_{i}(\omega)\subseteqq E\}$ .
I note that an $i’ \mathrm{s}$ knowledge operator satisfiae the following axioms: For every

$E,F$ of $2^{\Omega}$ ,
$\mathrm{N}$ $K_{i}\Omega=\Omega$ ;
$\mathrm{K}$ $K_{i}(E\cap F)=K_{i}E\cap K_{i}F$;

$\mathrm{T}$ $K_{i}F\subseteq F$ ;

4 $K_{i}F\subseteq K\dot{.}K\dot{.}F$;

5 $\Omega\backslash K_{i}F\subseteq K_{i}(\Omega\backslash K_{i}F)$ .

Definition. I $\mathrm{c}\mathrm{a}\mathrm{U}$ a pair $(\Omega, (K_{i})\rangle$ the standard model of knowled.$qe$ if $K_{i}$ satisfies
the five axioms $\mathrm{N},$ $\mathrm{K},$ $\mathrm{T},$ $4$ and 5.

The information partition $(\Pi_{i})$ is then uniquely determined by

$\mathrm{n}_{i}(\omega)=$ $\cap$ $E=$ $\cap$ $T$ .
$\omega\in K:E$ $u’\in T=K.T$

The common-knowled.$qe$ operator $K_{G}$ is defined by

$K_{C}X= \bigcap_{i_{1},:_{2},\ldots,i_{k}\in N,k=1,2},\ldots K_{i_{1}}K_{i_{2}}\cdots K_{i_{k}}X$
.

We say that an event $X$ is common-knowled.$qe$ at $\omega$ if $\omega$ belongs to $K_{C}X$ . That
is, when $\omega$ occurs then for all $k$ and for all players $i_{1},i_{2},$ $\ldots.i_{k}$ it ‘is true that

$i_{1}$ knows that [$i_{2}$ knows that [... $i_{k-1}$ knows that $[i_{k}$ knows $X]]\ldots$ ].

This is an iterated notion of comnon-knowledge. We note that $K_{C}$ satisfies the
fixed point property:

$K_{C}X\subseteq K_{E}(K_{C}X\cap X)$
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for every $X$ of $2^{\Omega}$ .
Let $\mu$ be a common-prior on $\Omega$ with $\mu(\omega)_{\neq}>0$ for $\mathrm{a}\mathrm{U}\omega\in\Omega$ and $X$ an event. We

denote by $q_{i}$ the $i’ \mathrm{s}$ posterior of $X$ at $\omega$ ; that is,

$q_{i}=\mu(X|\Pi_{i}(\omega))$ .
We set

$[q]= \bigcap_{i\in N}\{\xi\in\Omega|\mu(X|\Pi:(\xi))=q\dot{.}\}$ .

We say that all posteriors of the players are wmmon-knowled.$qe$ at $\omega$ if $\omega$ belongs
to $K_{C}([q])$ , and we say that the players cannot agree to disa.qree if $q_{i}=q_{j}$ for all
players $i,j$ . Aumann(1976) showed the ‘Agreeing to disagree’ theorem:

Proposition 1. In the standard model of knowledge with a common-p$r\cdot ior$, if
all posteriors are common-knowled.$qe$ at some state then all players cannot a.qree to
disa.gree.

Proof. See Proposition in Aumann (1976).

Remark 1. Axiom $\mathrm{K}$ impliae the monotonicity of player’s knowledge:
$\mathrm{M}$ $K_{i}E\subseteq K_{i}F$ whenever $E\subseteq F$.

Definition. I say that an player has lo.qically omniscient ability if his knowledge
operator satiffiae Axioms $\mathrm{N}$ and M.

3 AWARENESS STRUCTURE

I present the notion of awarenaes structure that is a generalization of the standard
model of knowledge. By a state-space I mean a non-empty (perhaps, infinite) set.

Definition. A belief structure is a pair $\langle\Omega, (B_{i})\rangle$ in which $\Omega$ is a state-space
and $(B_{i})$ is a class of $i’ \mathrm{s}$ belief operators on $2^{\Omega}$ . The mutual belief operator is the
operator $B_{E}$ that assigns to each event $F$ the intersection of B.$\cdot$ F for all $i$ of $N$ ;
that is,

$B_{E}F= \bigcap_{i\in N}B_{i}F$
.

The common-bdief operator $B_{C}$ is defined in the following way(Lismont, 1993).
We regard the class of all the operators on $2^{W}$ as a partially ordered set with the
$\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\subset \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$ that

$B\subset B’$ if and only if for every $F$ of $2^{W},$ $BF\subseteqq B’F$,

where $B,B’$ are operators on $2^{W}$ We define inductively the descending chain of
operators, $\{B^{m}\})$ on non-negative integers $m$ as follows:

$B^{0}F:=B_{E}F$, $\overline{B}^{0}F:=B_{E}(B^{0}F\cap F)$ ;
$B^{1}F:=\overline{B}^{0}F\cap B^{0}F$ , $\overline{B}^{1}F:=B_{E}(B^{1}F\cap F)$ ;

$B^{m-1}F:=\overline{B}^{m-2}F\cap B^{m-2}F$, $\overline{B}^{m}F:=B_{E}(B^{m-1}F\cap F)$ ;
$B^{m}F:=\overline{B}^{m-1}F\cap B^{m-1}F$.
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On noting that the operators on $2^{\Omega}$ are at most finite, there is a sufficiently large
number $M$ such that for $\mathrm{a}\mathrm{U}k\geq M,$ $B^{k}=B^{M}$ . We denote $B_{G}:=B^{M}$ , and say
that an event $E$ is common-belief in $\omega$ if $\omega$ belongs to $B_{C}E$ .

Worthy noticing is that $B_{C}$ satiffies the fixed point property:

FP $B_{C}F\subseteq B_{E}(B_{C}F\cap F)$ for every $F$ of $2^{\Omega}$ .
Definition. An awareness structure is a triple { $\Omega,$ $(A:),$ $(B_{i})\rangle$ in which $(\Omega, (B_{i})\rangle$

is a belief structure and $(A:)$ is a class of $i’ \mathrm{s}$ awaoeness operators on $2^{\Omega}$ such that
Axiom PL (axiom of plausibility) is valid:

PL $B_{i}F\cup B:(\Omega\backslash B_{i}F)\subseteq A_{i}F$ for every $F$ of $2^{\Omega}$ .

The awarenaes structure is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ finite if the state-space is a finite set.

The axiom PL due to Dekel, Lipman and Rustichini (1998) says that $i$ is aware
of $F$ if he believae it or if he believes that he dose not believe it.

The mutud awareness operator is the operator $A_{E}$ on $2^{\Omega}$ that assigns to each
event $F$ the intersectio.n of $A_{i}F$ for all $i$ of $N$; that is,

$A_{E}F= \bigcap_{i\in N}A_{i}F$
.

The interpretation of $A_{1}.F$ is the event that (
$i$ is aware of $F,’ \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ as $A_{E}F$ is

interpreted as the event teverybody is aware of $F_{:}$
’

Definition. Let $\langle\Omega, (A:), (B_{i})\rangle$ be an awarenaes structure. I say that an event
$F$ is self-aware of $i$ if $F\subseteq A_{i}F$ and it is said to be publidy aware if $F\subseteq A_{E}F$ . An
event $T$ is said to be $i^{J}s$ enident belief if $T\subseteq B:T$ , and it is said to be public belief
at state $\omega$ if $\omega\in T\subseteq B_{E}T$.

An event is public belief (or respectively, it is publicly aware) if whenever it
occurs all players believe it (or they are all aware of it.) We can think of public
belief as embodying the aesence of what is involved in all players making their direct
observations.

Definition. The associated information structure $(P_{i})$ is a class of the mappings
$P_{i}$ of $\Omega$ into $2^{\Omega}$ in which $P_{i}$ assigns to each $\omega$ the intersection of all the $i^{)}\mathrm{s}$ evident
belie&T to which $\omega$ belongs; that is,

$P_{i}( \omega)=\bigcap_{T\in 2^{\Omega}}\{T|\omega\in T\subseteq B_{i}T\}$
.

(If there is no event $T$ for which $\omega\in T\subseteq B_{i}T$ then we take $P_{i}(\omega)$ to be non-
defined.) We call $P_{i}(\omega)$ the $i’ \mathrm{s}$ evidence set at $\omega$ .

An evidence set is interpreted as the basis for all $i’ \mathrm{s}$ evident beliefs since each $i’ \mathrm{s}$

evident belief $T\mathrm{i}\mathrm{s}_{t}$ decomposed into a union of all evidence sets contained in $T$ .

Definition. A non-empty event $H$ is said to be $P_{i}- inva\dot{n}ant$ if for every $\xi$ of $H$ ,
$P_{i}(\xi)$ is defined and is contained in $H$ .
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Remark $B$. The standard model of knowledge can be interpreted as an awarenaes
structure $\langle\Omega, (A_{i}), (B:)\rangle$ such that $\Omega$ is finite, $B_{i}$ satisfies $\mathrm{N},$ $\mathrm{K},$ $\mathrm{T},$ $4$ and 5, and
A is the trinial awarenaes operator; i.e. $A_{i}(E)=\Omega$ for every $E\in 2^{\Omega}$ . In fact, the
associated information structure $(P_{i})$ with the standard model of knowledge coin-
cidae with the information partition $(\Pi_{i})$ of the model. This says that an awarenaes
structure is an extension of the standard model of knowledge. In this regard we
note that every event is publicly aware in the standard model of knowledge.

Example 1. Consider the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ situation. Player 1 believae the theory that
$‘(\mathrm{t}\mathrm{h}\mathrm{e}$ earth is not flat and it movae around the sun,” while player 2 believes the

$\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{y}$ that (
$‘ \mathrm{t}\mathrm{h}\mathrm{e}$ earth is neither flat nor it moves around the sun”; the former

theory is an l’s evident belief and the latter is an $2’ \mathrm{s}$ evident belief. Furthermore
it is public belief that “the earth is not flat.”

This can be repraeented as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ : The state-space $\Omega$ consists of four statae
$\alpha,\beta,\gamma,\delta$ , where state $\alpha$ represents the proposition “the earth is not flat but it
movae around the sun,” state $\beta(‘ \mathrm{t}\mathrm{h}\mathrm{e}$ earth is neither flat nor it moves around the
$\mathrm{s}\iota \mathrm{m},$

” state $\gamma$ “not $\alpha,$

” and state $\delta$ represents “not $\beta.$
” The belief operators are given

by:

$B_{1}(\{\alpha\})=\Omega,B_{1}(\{\alpha,\beta\})=\{\alpha,\beta\},B_{1}(\Omega)=\{\alpha\}$ and $B_{1}(E)=\emptyset$ otherwise;
$B_{2}(\{\beta\})=\Omega,B_{2}(\{\alpha,\beta\})=\{\alpha,\beta\},B_{2}(\Omega)=\{\beta\}$ and $B_{2}(,E)=\emptyset$ otherwise.

The associated information structure is given $\Phi$:

$P_{1}(\alpha)=\{\alpha\},P_{1}(\beta)=\{\alpha,\beta\}$ and $P_{1}(\omega)$ is not dffined otherwise;
$P_{2}(\alpha)=\{\alpha,\beta\},P_{2}(\beta)=\{\beta\}$ and $P_{2}(\omega)$ is not defined otherwise.

Let $\mu$ be the equal probability measure on $\Omega:\mu(\omega)=1/4$ . Now if we denote
by $q_{i}(X,\omega)$ the posterior of $X$ in $\omega$ defined by $\mu(X|P.\cdot(\omega))$ then we obtain that
$q_{2}(\{\alpha\},\alpha)=1/2$; that is, in the true state $\alpha$ player $2’ \mathrm{s}$ posterior of the event $\{\alpha\}$

(the earth is not flat and it moves around the sun) is 1/2 when player 2 believes
that $\beta$ is true and never believes that $\alpha$ is so $(B_{2}(\alpha)=\emptyset)$ , contrary to the spirit of
the example.

I improve on the definition of posterior as follows:
Definition. Let $\langle\Omega, (A_{i}), (B_{i}),\mu\rangle$ be an awareness structure with a common-

prior $\mu$ . I define the mapping $\mathrm{q}_{i}$ of $2^{\Omega}\cross\Omega$ into $[0,1]$ that assigns to each (X, $\omega$) the
conditional probability $\mu(X\cap A_{i}(X)|P_{i}(\omega))$ . For every real number $q_{i}$ , I denote

$[q_{i}]=\{\omega\in\Omega|\mathrm{q}_{i}(X,\omega)=q:\}$ .

An interpretation of $\mathrm{q}_{i}(X;\omega)$ is the conditional probability of the $i’ \mathrm{s}$ awareness
section of $X$ under his evidence set at $\omega$ .

I say $q_{i}$ to be the $i’ \mathrm{s}$ posterior of $X$ at $\omega$ if $\omega$ belongs to $[q_{i}]$ . I denote by $q$ the
profile $(q_{i})_{i\in N}$ . An event $[q]$ is the intersection of the sets $[q_{i}]$ for all $i$ of $N$ ; that is,

$[q]= \bigcap_{i\in N}[q_{i}]$
.
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For Example 1, letting $A_{i}(E)=B_{i}(E)\cup B_{i}(-B:(E))$ I obtain that $A_{2}(\{\alpha\})=$

$\{\beta\}$ . Therefore it $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ bom the new definition that player $2’ \mathrm{s}$ posterior of $\{\alpha\}$

at state $\alpha$ is $\mathrm{q}_{2}(\{\alpha\}, \alpha)=0$, as desired.

The $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}i\mathrm{n}\mathrm{g}$ lemma is the key to proving $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}\mathrm{s}1$ and 2.

Fundamental Lemma. Let $(P_{i})$ be the associated information structure with
a finite awareness stmcture and $\mu$ a common-prior. Let $q_{\dot{l}}$ be an $i^{J}s$ posterior of an
event $X$ at a state $\omega$ . If the.re is an event $H$ such that the following two $prope\hslash ies$

(a), (b) are $tme$. Then we obtain that

$\mu(X\cap A_{i}(X)|H)=q:$ :

(a) $H$ is non-empty and it is $P_{i^{-}}invar\dot{\mathrm{v}}ant$,
(b) $H$ is contained in $[q_{i}]$ .

Proof. Sae Appendix.

I say that the players commonly believe their poste$r\dot{\mathrm{v}}orsq_{i}$ of $X$ at $\omega$ if $[q]$ is
common-belief at $\omega$ ; that is, $\omega\in B_{C}([q])$ . I can prove the generalized version of
Aumann’s $\mathrm{t}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}$:

Theorem 1. In a finite awareness structure with a $common- p\tau\cdot ior$, if all players
commonly believe their poste$r\dot{\tau}orsq_{i}$ of a publicly aware event $X$ at a state $\omega$ then
they cannot agroe to disa.qree; that $is_{J}q_{i}=q_{j}$ for every $i,j$ , even when they are not
lo.qically omniscient.

Proof. I set $[q]\cap B_{C}([q])$ by $H$ . I note that $H$ is $P_{i}$-invariant for every $i$ . It follows
that $H$ satiffies the conditions (a) and (b) in Fundamental Lemma. Therefore
$\mu(X|H)=\mu(X\cap A_{i}(X)|H)=q_{i}$ for every $i$ .

Remark $S$. In Matsuhisa(1998) the logic of awareness and belief is introduced
and it is shown that the logic have the finite model property. Rom this syntactical
point of view it suffices to explore the class of all finite awareness structures.

4 PUBLIC BELIEF AND NASH EQUILIBRIUM

By a.qame $G$ I mean a finite game in strategic form $<N,$ $(S_{i}),$ $(g_{i})>$ in which
$N$ is a finite set of players $\{$ 1, 2, $\ldots$ , $n\}$ and for every player $i,$ $S\dot{.}$ is a finite set of
$i^{)}\mathrm{s}$ actions and $g_{i}$ is an $i’ \mathrm{s}$ payoff-function of $S$ into $R$ , where $S$ denotes the product
$S_{1}\cross S_{2}\cross\cdots \mathrm{x}S_{n},$ $S_{-i}$ the product $S_{1}\mathrm{x}S_{2}\mathrm{x}\cdots\cross S_{i-1}\mathrm{x}S_{i+1}\mathrm{x}\cdots \mathrm{x}S_{n}$ and $g$ denote
the $n$-tuple $(g_{1},g_{2}, \ldots g_{n})$ . For every $s$ of $S$ denote $s_{-i}=(s_{1}, \ldots , s_{i-1}, s_{i+1}, \ldots, s_{n})$ .

A probability distribution $\phi\dot{.}$ on $S_{-i}$ is said to be an $i’ \mathrm{s}$ overall conjecture (or
simply $i’ \mathrm{s}$ conjecture). For each player $j$ other than i,this induces the marginal
on $j’ \mathrm{s}$ actions; we call it $i’ \mathrm{s}$ individual conjeciure about $j$ (or simply $i’ \mathrm{s}$ conjecture
about $j.$ ) Functions on $\Omega$ are viewed like. random variables in a probability space
$(\Omega, \mu)$ . If $\mathrm{x}$ is a such function and $x$ is a value of it, I denote by $[\mathrm{x}=x]$ (or simply
by $[x])$ the set $\{\omega\in\Omega|\mathrm{x}(\omega)=x\}$ .

An awareness structure with a common-prior $\mu$ yields the two overaU conjectures
as follows.
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Definition. The $i’ \mathrm{s}$ normal conjecture $\emptyset$: is given by $\mu([s_{-i}]\cap A_{i}([s_{-i}])|P_{i}(\omega))$ ;
and the $i’ \mathrm{s}\epsilon$-perturbed conjecture $\phi_{\dot{i}}^{\epsilon}$ is given by $(1-\epsilon)\mu([s_{-i}]\cap A_{i}([s_{-i}])|P_{i}(\omega))+$

$\epsilon p_{i}([s_{-i}]\cap \mathrm{A}([s_{-i}]))$ , where $\epsilon\in(0,1)$ and $p\dot{.}$ is a state-independent probability
measure on $\Omega$ .

The probability distribution $p_{i}([s_{-i}]\cap A_{i}([s_{-i}]))$ on $S_{-1}$. is a perturbation unable
to be controUed by $i$ when the other $\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s}-i$ play actions $s_{-i}$ . I denote $\phi:=$

$(\phi_{1)}\phi_{2}, \ldots,\phi_{n})$ and $\phi^{\epsilon}:=(\phi_{1}^{\epsilon},\phi_{2}^{\epsilon}, \ldots,\phi_{n}^{\epsilon})$.
Definition. Let $A=<\Omega,$ $(A_{i}),$ $(B_{i})>\mathrm{b}\mathrm{e}$ an awareness structure. I say that $G$

is an $A$-game with $\epsilon$-perturbed conjectures if there is a $\mathrm{c}\dot{\mathrm{o}}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}$-prior $\mu$ on $\Omega \mathrm{a}\mathrm{n}\mathrm{d}-$

if for every player $i$ there are two random variabloe $\mathrm{g}_{i}$ of $\Omega$ into the class of real
valued functions $\{g_{i}\}_{i\in N}$ on $S$ and $\mathrm{s}$: of $\Omega$ into $S\dot{.}$ such that the four conditions are
valid:

(i) $[g]=\cap:\in N[\mathrm{g}\dot{.}=g_{i}]$ is $i’ \mathrm{s}$ evident belief$\cdot$,
(ii) $[s_{i}]=[\mathrm{s}_{i}=s_{i}]$ is $i’ \mathrm{s}$ evident belief for every $s_{i}$ of Si;
(iii) $[s_{-i}]=[\mathrm{s}_{-:}=s_{-i}]$ is self-aware of $i$ for every $s_{-:}$ of $S_{-:;}$ and
(iv) $[ \phi]=\bigcap_{i\in N}[\phi_{i}^{\epsilon}=\phi_{i}]$ is $i’ \mathrm{s}$ evident belie$f$ for every $n$-tuple of conjectures

$\phi=(\phi_{i})_{i\in N}$ ,

where $[\mathrm{s}_{-i}=s-:]$ $:= \bigcap_{j\neq i}[\mathrm{s}_{\mathrm{j}}=s_{j}]$ and $[ \phi_{i}^{\epsilon}=\phi_{i}]:=\bigcap_{S-:\in S_{-:}}[\phi_{i}^{\epsilon}(s_{-i})=\phi_{i}(s_{-i})]$ .

In an $A$-game $G$ the pay-off functions $g=$ $(g_{1},g_{2}, \ldots , g_{n})$ is said to be actually
played at a state $\omega$ if $\omega$ belongs to $[\mathrm{g}=g]$ . An $i’ \mathrm{s}$ action $s\dot{.}$ is said to be actual at
a state $\omega$ if $\omega$ belongs to the set $[\mathrm{s}_{i}=S:]$ .

Definition. An player $i$ is said to be $\epsilon$-rational at $\omega$ if each $i’ \mathrm{s}$ actual action $s_{i}$

maximizes the expectation of his actually played pay-off function $g_{i}$ at $\omega$ when the
other players $a$ctions are distributed according to his $\epsilon$-perturbed conjecture $\phi_{\mathfrak{i}}^{\epsilon}(\omega)$ :
Formally, letting $g_{i}=\mathrm{g}_{i}(\omega)$ and $s_{i}=\mathrm{s}_{i}(\omega)$ ,

$\mathrm{E}\mathrm{x}\mathrm{p}^{\epsilon}(g_{i}(s_{i},\mathrm{s}_{-i});\omega)\geqq \mathrm{E}\mathrm{x}\mathrm{p}^{\epsilon}(g_{i}(t_{i},\mathrm{s}_{-i});\omega)$

for all $t_{i}$ in $S_{i}.2$ An player $i$ is said to be rational at $\omega$ if he is $0$-ration$a1$ at $\omega$ .

Let $R_{j}^{\epsilon}$ denote the set of $\mathrm{a}\mathrm{U}$ the states at which an player $j$ is $\epsilon- \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}$.nal and $R^{\epsilon}$

the intersection $\bigcap_{j\in N}R_{j}^{\epsilon}$ . I simply denote $R_{j}^{0}$ by $R_{j}$ and $R^{0}$ by $R$ .
Example 2. For each Nash equilibrium $(\sigma_{j})$ of $G$ , I can construct the standard

model of knowledge $A=<\Omega,$ $(K_{i})>$ such that $G$ is an $A$-game with normal
conjectures (i.e., with $0$-perturbed conjecturae) as follows:

. $\Omega$ is the product of all the supports of $\sigma_{j}$ with $j$ of $N$ ; that is,

$\Omega=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{1})\cross\cdots\cross \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{n})$ ;

2The expectation $\mathrm{E}\mathrm{x}\mathrm{p}^{\epsilon}$ is defind by

Exp $(g_{i}(t:,\mathrm{s}_{-i});\omega):=$
$\sum_{s_{-}.\in s_{-:}}.g_{i}(t_{i}, s_{-i})\phi_{;}^{\mathrm{g}}(\omega)(s_{-i})$ .
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. $\Pi_{i}$ is the. $i’ \mathrm{s}$ information partition defined by

$\Pi_{i}(\omega)=\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{1})\cross\cdots\cross \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{\-1}.)\mathrm{x}\{\omega_{i}\}\mathrm{x}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{i+1})\cross\cdots \mathrm{x}\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{n})$

for $\omega=(\omega_{1}, \ldots,\omega_{i}, \ldots,\omega_{n})$ of $\Omega$ ;

. $K_{i}$ is the $i’ \mathrm{s}$ knowledge operator defined by

$K_{i}F=\{\omega\in\Omega|\Pi_{i}(\omega)\subseteqq F\}$

. $\mu$ is the probability meaeure on $\Omega$ defined by

$\mu(\omega)=\sigma_{1}(\omega_{1})\sigma_{2}(\omega_{2})\cdots\sigma_{n}(\omega_{n})$ .

I define the mapping $\mathrm{s}_{i}$ : $\Omegaarrow S_{i}$ as $\omega=(\omega_{1}, \ldots,\omega_{i}, \ldots,\omega_{n})$ $\mapsto\omega_{i}$

and define the mapping $\mathrm{g}_{i}$ : $\Omegaarrow\{g_{i}\}$ as $\omegarightarrow g_{i}$ . I can plainly observe
that $G$ is an $A$-game with normal conjectures. Furthermore, let $K_{C}$ be the
common-knowledge operator of $<\Omega,$ $(K_{i})$ $>$ and let $\phi_{i}(s$-: $)$ be defined by
$\sigma_{1}(s_{1})\sigma_{2}(s_{2})\cdots\sigma_{i-1}(s_{i-1})\sigma_{i+1}(s_{i+1})\cdots\sigma_{n}(s_{n})$. I observe that $\emptyset(S_{-i})$ coincides
with the normal conjecture $\phi_{i}(\omega,s_{-i})=\mu([s_{-i}]|P_{i}(\omega))$ for every $\omega$ of $\Omega$ . In these
circumstancoe, I note that for every player $i,$ $K.([s_{i}])=[S:1$ and $[\phi]=[g]=R_{i}=\Omega$,
so that $K_{E}([g])=K_{E}(R)=K_{C}([\phi])=\Omega$ .

Aumann and Brandenburger (1995) succeeded in giving sufficient epistemic con-
ditions for Nash equilibrium in the standard model of knowledge:

Proposition 2. Let $A$ be the standard model of knowled.$qe$ with the trivial
awareness operator. In an A-.qame $G$ with normal conjectures havin.$q$ a common-

$\mathrm{p}\dot{n}or_{J}$ if the $player^{f}s$ payoff-functions and their rationality are mutually known and
if their conjectures about other players’ actions are commonly known then the n-
tuple of conjectures is a mixed strate.$qy$ Nash equilibrium of $G$ .

Proof. See Theorem $\mathrm{B}$ in Aumann and Brandenburger (1995).

Remark 4. Aumann and Brandenburger (1995) proved the proposition for the
model of belief with probability 1 $,$

$<\Omega,$ $(K_{i})>$ , defined by

$K_{i}F=\{\omega\in\Omega|\mu(F|\Pi_{i}(\omega))=1\}$ ,

where $(\Pi_{i})$ is a given information partition. The knowledge operator satisfies Ax-
ioms $\mathrm{N}$ and $\mathrm{M}$ , thus an player $i$ in this model has logically omniscient ability.

Common-knowledge (common-belief) of the players’ overaU conjectures seems
a rather strong assumption with respect to its infinite recursion. The following
example shows a possibility of getting away with less.

Example 3. Here the ‘overaU’ conjectures are public belief, the individual con-
jectures are agreed on, rationality is public $\mathrm{b}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{f}_{1}$ and there is a common prior, and
then we get Nash equilibrium even when the overaU conjectures are not commonly
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beheved. Consider the three person game of Figure 1. We can plainly observe that
$( \frac{1}{2}\mathrm{H}+\frac{1}{2}\mathrm{T}, \frac{1}{2}\mathrm{h}+\frac{1}{2}\mathrm{t},\mathrm{W})$ is the unique Nash equilibrium.

Consider now this game as $A$-game with normal conjectures, in which $A$ is the
awareness structure $<\Omega,$ $(A_{i})_{i=1,2,3},$ $(B_{i})_{i=1,2,3}>\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ common-prior $\mu$ as follows:

$\Omega=\{\omega_{1},\omega_{2}, \ldots,\omega_{12}\}$ and $\Pi_{i}(i=1,2,3)$ is the partition of $\Omega$ in Figure 2;
$B_{1}$ and $B_{2}$ are respectively the knowledge operators induced by $\Pi_{1},$ $\Pi_{2}$ , and
letting $F_{0}:=\{\omega_{5},\omega_{6}, \ldots,\omega_{12}\},$ $B_{3}$ is defined by

$B_{3}E:=F_{0}\cup\{\omega_{1}\}$ if $E=F_{0}$ ,
$B_{3}E:=F_{0}$ if $E=F_{0}\cup\{\omega_{1}\}$ ,
$B_{3}E:=\{\omega\in\Omega|\Pi_{3}(\omega)\subseteqq E\}$ if $E$ otherwise;
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. $A_{:}(E):=B_{i}(E)\cup B_{i}(-B_{i}(E))$ for $i=1,2,3$;

$\mu(\omega)=1/12$ for every $\omega\in\Omega$ .
. $\mathrm{g}_{i}(\omega)=\Omega$ for every $\omega\in\Omega$, and $\mathrm{s}_{i}$ is defined in Figure 2.

Consider the state $\omega=\omega_{5}$ . Player l’s overaU conjecture $\phi_{1}$ is $\frac{1}{2}\mathrm{h}\mathrm{W}+\frac{1}{2}\mathrm{t}\mathrm{W}$,
player $2’ \mathrm{s}$ overaU conjecture $\phi_{2}$ is $\frac{1}{2}\mathrm{H}\mathrm{W}+\frac{1}{2}\mathrm{T}\mathrm{W}$ and player $3’ \mathrm{s}$ overaU conjecture $\phi_{3}$

is $\frac{1}{4}\mathrm{H}\mathrm{h}+\frac{1}{4}\mathrm{H}\mathrm{t}+\frac{1}{4}\mathrm{T}\mathrm{h}+\frac{1}{4}\mathrm{T}\mathrm{t}$ . Players 1 and 2 agree on the conjecture $\frac{1}{2}\mathrm{W}+\frac{1}{2}\mathrm{E}$ about
player 3. Similarly, players 1 and 3 agree on the conjecture $\frac{1}{2}\mathrm{h}+\frac{1}{2}\mathrm{t}$ about player
2, and players 2 and 3 agree on the conjecture $\frac{1}{2}\mathrm{H}+\frac{1}{2}\mathrm{T}$ about player 1. Hence the
individual conjectures derived ffom player l’s overaU conjecture are $\sigma_{2}=\frac{1}{2}\mathrm{h}+\frac{1}{2}\mathrm{t}$

for player 2 and $\sigma_{3}=\mathrm{W}$ for player 3. These are the same as player $2’ \mathrm{s}$ and player
$3’ \mathrm{s}$ conjecturae about each other; in particular their individual conjectures about

$\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{l}a\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sigma_{1}=\frac{1}{2}\mathrm{H}+\mathrm{I}\mathrm{t}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}11\mathrm{p}\mathrm{a}\mathrm{y}- 0\mathrm{f}\mathrm{f}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\frac{1}{1^{2}}\mathrm{T}g]\mathrm{i}\mathrm{s}\Omega$

which is public belief at every
state, and that both rationality $R$ and the overall conjectures $[\phi]$ are the same event
$F_{0}$ that is public belief at $\omega_{5}$ but is not commonly believed since $B_{3}B_{3}(F_{0})=\emptyset$ .
Nevertheless, the triple of the individual conjecturae $(\sigma_{1}, \sigma_{2}, \sigma_{3})$ form the Nash
equilibrium of the game.

The main result in this lecture is as follows:

Theorem 2. Let $A$ be a finit.e awareness structure with a common-p$r\dot{\mathrm{v}}or\mu$ and
$G$ an $A$-game with $\epsilon$-perturbed conjectures. Let $\phi$ be an $n$-tuple of conjectures $(\phi_{i})$ .
If for every sufficiently small positive number $\epsilon$ , it is public belief at some state
that all players are rational, ihat $\emptyset=\phi$ and that $\mathrm{g}=g$ then for each $j$ , all the
conjectures $\phi_{i}$ of players $i$ other than $j$ induce the same probability distribution

$\sigma_{j}$ on the $j^{f}s$ actions. Moreover the profile $(\sigma_{j})$ constitutes a mixed strate.$qy$ Nash
equilib$7^{\cdot}ium$ of $G$ .

Proof. For each $\epsilon$ , I set $[\phi^{\epsilon}=\emptyset]$ by $F$ and $[\mathrm{s}_{i}=s_{i}]\cap F$ by $H_{i}$ . Let $\omega$ be a state
such that $\omega\in[g]\cap R^{\epsilon}\cap F$ . We note that $F$ is $P_{i}$-invariant and that $\mu(F)\neq 0$ .

I set the probability distribution $Q$ on $S$ by $Q(s)=\mu([s]|F)$ . Lt $Q(s_{i})$ denote
the marginal of $Q$ on $S_{i}$ and $Q(s_{-i})$ the marginal of $Q$ on $S_{-i}$ . I define a probability
distribution $\sigma_{\mathrm{j}}$ on $S_{j}$ by $\sigma_{j}(s_{j})=Q(s_{j})$ for each $j$ . Let $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ denote the support
of $\sigma_{j}$ . I note that for every player $i,$ $\mathrm{i}\mathrm{f}s_{j}$ belongs to $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ then $H_{j}=[\mathrm{s}_{j}=\epsilon_{j}]\cap F$

is non-empty and is $P_{j}$-invariant. Denote the conjecture $q_{i}$ by

$q_{i}(s_{-i}):= \frac{1}{1-\epsilon}\{\phi_{i}^{\epsilon}(s_{-i})-\epsilon p_{i}(s_{-i})\}$ ,

and I note $q_{i}(s_{-i})=\mu([s_{-i}]|P\dot{.}(\omega))$ .
$(\alpha)$ For every player $i$ , all conjecturae $q_{j}$ with $j\neq i$ induce the same distribution

$\sigma_{i}$ on $S_{i}$ .

Proof of $(\alpha)$ . For every player $j$ and for every $s$ of $S$ with $s_{j}\in \mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j})$ , I obtain
by Fundamental Lemma that

$\mu([s_{-j}]|H_{j})=q_{j}(s_{-j})$ .
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Dividing by $\mu(F)$ yields that $\mu([s]|F)=q_{j}(s_{-j})\mu([s_{j}]|F)$ and that

$Q(s)=q_{j}(s_{-j})Q(s_{j})$ . (1)

Summing up over $s_{j}$ I obtain that for every $s_{-j}$ of $S_{-j}$ ,

$Q(s_{-j})=q_{j}(s_{-j})$ . (2)

Therefore I can plainly observe that for each $i\neq j,$ $q_{j}(s_{i})=Q(s_{i})=\sigma_{i}(s_{i})$ ; that
is, for $\mathrm{a}\mathrm{U}j$ the conjecture $q_{j}(s_{i})$ about $i\neq j$ induced by $\phi_{j}$ is the same distribution
$\sigma_{i}$ which is independent of $j$ , in completing the proof of $(\alpha)$ .

$(\beta)$ The $n$-tuple $(\sigma_{j})$ is a mixed strategy Nash equilibrium of $G$.
Proof of $(\beta)$ . By (1) and (2) it immediately follows that for every $j$ and for all $s_{j}$

of $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}(\sigma_{j}),$ $Q(s)=Q(s_{-j})Q(s_{j})$ . Rom this I can veriq by induction on players
$j=1,2,$ $\ldots$ , $n$ that the distribution $q_{\mathrm{j}}$ is the product of $\sigma_{j}$ ; that is,

$q_{j}(s_{-j})=\sigma_{1}(s_{1})\cdots\sigma_{j-1}(s_{j-1})\sigma_{j+1}(s_{j+1})\cdots\sigma_{n}(s_{n})$ . (3)

I note that
$[s_{j}]\cap[g_{j}]\cap R_{j}^{\epsilon}\cap[\phi_{j}]\neq\emptyset$ .

Therefore I can observe that each action $s_{i}$ with $q_{\mathrm{j}}(s_{i})=\sigma_{i}(s_{i})>0$ for some $i\neq j$

maximizae $g_{j}$ against $\phi_{j}^{\epsilon}$ since $j$ is rational at some state of $[s_{j}]\cap[q_{j}]\cap R_{j}\cap[\phi_{j}]$ .
Rom this together with (3) I can conclude that $(\sigma_{i})$ is $\mathrm{a}\frac{2\epsilon}{1-\epsilon}||g||_{s}$-equilibrium of $G$

where $||g||_{s}:=iN,s \in S\max_{\epsilon}|g_{i}(s)|$ , and therefore it constitutae a Nash equilibrium of $G$

as $\epsilon$ tends to $0$ , in completing the proof of $(\beta)$ . $\square$

Remark 5. I have showed in the above proof that: When there is a common-
prior, public belief of $\epsilon$-conjectures, the pay-off functions and of $\epsilon$-rationality imply
that the conjecturae induce $\mathrm{a}\frac{2\epsilon}{1-\epsilon}||g||_{s}$-equilibrium of $G$ .

Remark 6. For normal conjectures, I can prove the following epistemic conditions
for Nash equilibrium by the same way as above:

Let $A$ be a finite awareness structure with a common-prior $\mu$ and $G$ an A-.qame
with nonnal conjectures. If it is public belief at some state that all players are
rational, that $\phi=\phi$ and that $\mathrm{g}=g$ , then all the conjectures $\phi_{i}$ of $i$ other than $j$

induce the same probability distribution $\sigma_{j}$ on the $j’s$ actions. Moreover the profile
$(\sigma_{j})$ constitutes a mixed strate.$gy$ Nash equiIibrium of $G$ .

CONCLUSION
In this lecture I present the model of awareness and behef with emphasis on

the logically non-omniscient point of view. With the common-prior assumption I
extend the ‘Agreeing to disagree’ theorem of Aumann to the model and give an
epistemic conditions for Nash equilibria in a finite game in strategic form without
common-belief assumption.
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APPENDIX

Proof of Fundamental Lemma

A $\mathrm{s}\dot{\mathrm{u}}$nnlilar lemma was proved by Matsuhisa and Kamiyama(1997, Section 11);
I repeat the proof for the sake of importance and completenaes. The idea of the
proof comes ffom Samet$(1990, \mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}7.)$

I can plainly obaerve that $(P_{i})$ is a reflerive and transitive information structure
ae follows: For each $i$ and for every state $\omega$ ,

(Reflexivity) $\omega\in P_{i}(\omega)$ ;

(Ransitivity) $\xi\in P_{i}(\omega)$ impliae $P_{i}(\xi)\subseteqq P_{i}(\omega)$ .
I define the equivalence $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim \mathrm{o}\mathrm{n}$ the state-space $\Omega$ by

$\xi\sim\omega$ if and only if $P_{i}(\xi)=P\dot{.}(\omega)$ .

I denote by $\Pi_{i}(\omega)$ the equivalence class of a state $\omega$ . Since $H$ is $P_{i}$-invariant,
it immediately $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ that $H$ is decomposed into a disjoint union of components
$\mathrm{I}\mathrm{I}_{i}(\xi)$ for $\xi\in H$ . I can observe that each component $\Pi_{i}(\xi)$ is $\mu$-measurable. I set by
$S$ the class of $a\mathrm{U}$ the components $\Pi_{i}(\xi)$ of $H$ such that $\mu(X\cap A:(X)|\Pi:(\xi))=q_{i}$ ,
and denote by $S$ the union of $\mathrm{a}\mathrm{U}$ members of $S$ .

To prove the lemma it suffices to show that $S=H$. Suppose to the contrary
that $S_{\neq}^{\subset}H$ . I observe the point that there exists $a$ state $\omega_{0}\in H\backslash S$ such that
$P_{i}(\xi)\backslash S=P_{i}(\omega_{0})\backslash S$ for every $\xi\in P_{i}(\omega_{0})\backslash S$ : For, if not then, noting that $P_{i}$

is reflexive and transitive as above, I can plainly obtain an infinite sequence $\{\omega_{n}\}$

of states in $H$ such that $\omega_{n+2}\in P_{i}(\omega_{n+1})\backslash S\neq\subset P_{i}(\omega_{n})\backslash S\subseteqq H\backslash S$ for every
$n=0,1,2,$ $\ldots$ , in contradiction to the assumption that $\Omega$ is finite as required.
Therefore, I can $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\Phi$ that $\Pi_{i}(\omega_{0})=P_{i}(\omega_{0})\backslash S$, and since $\omega_{0}\in H\subseteqq[q_{i}]$ I
conclude that $\Pi_{i}(\omega_{0})\in S$ , in final contradiction. This establishes the Fundamental
Lemma. $\square$
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