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Nash Equilibrium as Conjectures in
Public Belief*
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Department of Liberal Arts and Sciences, Ibaraki National College of Technology,
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ABSTRACT. In Game Theory with its applications to Economics, the interpretation
problem of a mixed strategy Nash equilibrium has been known to be important and
a number of the interpretations has been proposed.

Aumann and Brandenburger [Econometrica, Vol.63(1995), No.5, 1161-1180] has
succeeded in giving an epistemic interpretation of a mixed strategy Nash equilibrium
as conjectures on the part of other players: When there is a common-prior, mutual
knowledge of the payoff-functions and of rationality, and common-knowledge of the
conjectures, imply that the conjectures form a mixed strategy Nash equilibrium.
Where common-knowledge of something is the infinite recursion of mutual knowledge
of it; that is, all players know it and they know that they know it and they know
that they know that they know it and so on.

In the standard model of knowledge as like as the Aumann and Brandenburger
model, the players are implicitly assumed to have logically omniscient ability; that
is, they know every tautology and know all the implications of their knowledge. The
assumptions about common-knowledge and about logically omniscient ability are
evidently problematic in the sense that these are not realistic at all.

In this lecture presentation I propose a new model of awareness and belief with all
players having no logically omniscient ability, where awareness and belief are weaker
notions of knowledge. I say that an event is public belief if every player believes the
event whenever it occurs. Rationality is the requirement that a mixed strategy of
each player is optimal against a perturbation of his conjecture on the part of other
players. I give the epistemic condition for a mixed strategy Nash equilibrium:

Theorem. When there is a common-prior, public belief of payoff functions, of ra-
tionality and of a perturbation of conjectures imply that the conjectures induce a
mized strategy Nash eguilibrium.

I emphasize that I make no assumption about either common-belief or logically
omniscient ability for players. '
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1 INTRODUCTION

When a given game in strategic form is transformed into a decision problem,
the uncertainty that a player faces in a game is the strategic choice of the other
players’ actions. Each player has therefore knowledge (or belief) of the other players’
actions. In addition, each player is also uncertain about the knowledge of the
other players’ actions and must have knowledge of their knowledge, and so on.
Hence, beginning with a game, the decision theoretical approach leads to the study
of infinite recursion of knowledge ( or belief) for the players; e.g., the study of
common-knowledge (or common-belief) for the players. Once the transformation
of a game into a decision problem has been completed, solution concepts may be
explored from an epistemic point of view.

Since the pioneering contribution of Aumann(1976), game theorists and math-
ematical economists have investigated the concepts of common-knowledge (or
common-belief) and the foundation of solution-concepts of games in different kinds
of epistemic models. There are two important approaches among others: The first
~ is the axiomatic approach; the syntactic models of knowledge and belief, and the
second is the Bayesian approach of knowledge; the model of belief with proba-
bility 1. Bacharach(1985) and Samet(1990) adopted the first approach and ex-
tended the ‘Agreeing to disagree’ theorem of Aumann(1976). Aumann and Bran-
denburger(1995) adopted the second approach and succeeded in giving epistemic
conditions for Nash equilibrium of a game as conjectures on the part of other play-
ers using mutual knowledge of players’ rationality and common-knowledge of their
conjectures.

In every approach, the players in model have been explicitly or 1mphcxtly required
to be logically omniscient; that is, they can deduce all the logical implications of
their knowledge (or belief) and they know (or believe) every tautology. However
real people are not complete reasoners and the recent idea of ‘bounded rationality’
suggests dropping the problematic assumption. In regard to this Dekel, Lipman and
Rustichini(1998) introduced a unawareness operator with axiom of plausibility and
investigated the relation between the unawareness operator model and a possibility
operator model.

The purpose of this lecture is to present a new model of awareness and belief
in which the players are required neither to be men of complete perception nor to
have the complete ability of logical reasoning.

I begin in Section 2 by reviewing the standard model of knowledge. Section 3
devotes to establish a model of awareness and belief without logical omniscience
and to present the fundamental lemma. As consequence I extend the ‘Agreeing to
disagree’ theorem of Aumann(1976) to the model of awareness and belief with a
common-prior. In section 4 I give an epistemic condition for Nash equilibrium in
a finite strategic game without common-belief assumption. In Appendix I give a
proof of Fundamental Lemma.
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2 STANDARD MODEL OF KNOWLEDGE

Let N be a set of finitely many players and i denote an player. A state-space is
a finitely non-empty set, whose members are called states. An eventis a subset of
the state-space. If {2 is a state-space we denote by 29 the field of all subsets of it.
We say that an event F occurs at a state w if w belongs to F'.

An information partition (IL;) is a class of mappings II; of £ into 29 in which
{IL;(w)|w € N} makes a partition of 2 such that each image II;(w) contains w which
is the set of states that i thinks are possible when w occurs. The mapping II; is -
called the i’s information partition and IL;(w) the possibility set of i at w.

Given our interpretation of an information partition, an player i for whom
II;(w) € E knows, in the state w, that some state in the event E has occurred.
In this case we say that in the state w the player i knows E. An i's knowledge
operator is an operator K; on 22 such that K;F is the set of states of £ in which 1
knows that E has occurred; that is, '

K;E = {w € QIH,(&)) g E}

I note that an i’s knowledge operator satisfies the following axioms: For every
E,F of 29, '

N KQ =

K  KJ(ENF)=KENKF,
T  KFCF;

4 K.F C K;K;F;

5 Q\ K:F C K;(Q\ K;F).

Definition. I call a pair (Q, (K;)) the standard model of knowledge if K; satisfies
the five axioms N, K, T, 4 and 5.

The information partition (IL;) is then uniquely determined by

II,-(w)= ﬂ FE= n T.

weK; E weT=K;T
The common-knowledge operator K¢ is defined by

KX = n K Kiy--- KikX-
11,i2,... , ik €N, k=1,2,... )

We say that an event X is common-knowledge at w if w belongs to KcX. That
is, when w occurs then for all k and for all players 43,12, ... .ig it is true that

i1 knows that [is knows that [ ...ik—1 knows that [ ix knows X ]} ... ].

This is an iterated notion of common-knowledge. We note that K¢ satisfies the
fixed point property: : '
KcX C KE(KcX ﬂX)
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for every X of 2.

Let i be a common—pnor on ) with p(w) 2 0 for all w € 2 and X an event. We
denote by g¢; the i’s posterior of X at w; tha.t is,

¢ = p(X|TLw)).
We set
[a = [ {¢ € QUu(X|L:()) = &:}.

ieN

We say that all posteriors of the players are common-knowledge at w if w belongs
to Kc([q]), and we say that the players cannot agree to disagree if ¢; = g; for all
players i, j. Aumann(1976) showed the ‘Agreeing to disagree’ theorem:

Proposition 1. In the standard model of knowledge with a common-prior, if

all posteriors are common-knowledge at some state then all players cannot agree to
disagree.

Proof. See Proposition in Aumann (1976). O
Remark 1. Axiom K implies the monotonicity of player’s knowledge:
M K;E C K;F whenever ECPF

Definition. Isay that an player has logically omniscient ability if his knowledge
operator satisfies Axioms N and M.

3 AWARENESS STRUCTURE

I present the notion of awareness structure that is a generalization of the standard
model of knowledge. By a state-space I mean a non-empty (perhaps, infinite) set.

Definition. A belzef structure is a pair (Q, (B;)) in which Q is a state-space
and (B;) is a class of i’s belief operators on 29, The mutual belief operator is the

- operator Bp that assigns to each event F' the intersection of B;F for all i of N;
that is,

BgF = (] BiF .
ieN

The common-belief operator Bc is defined in the following wa.y( Lismont, 1993).
We regard the class of all the operators on 2% as a partially ordered set with the
order [C such that

BC B'  if and only if for every F of 2%, BF C B'F,

where B, B’ are operators on 2% . We define inductively the descending chain of
operators, { B™}, on non-negative integers m as follows:

BOF := BgF, B°F := Bg(B°F n F);
B'F .= B°Fn B°F, B'F := Bg(B'FNF);
B™F:=B™?FNB™%F, B™F:=Bg(B"'FnF)

B™F := B 'FnB™'F, |
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On noting that the operators on 2? are at most finite, there is a sufficiently large
number M such that for all k > M, B = BM. We denote B¢c = BM  and say
that an event E is common-belief in w if w belongs to B¢ E.

Worthy noticing is that B¢ satisfies the fixed point property:

FP BoF C Bp(BcFNF)  for every F of 2.

Definition. An awareness structure is a triple (R, (4;), (B;)) in which (Q, (B;))
is a belief structure and (A;) is a class of i’s awareness operators on 2 such that
Axiom PL (axiom of plausibility) is valid:

PL B;FUB;(Q\ B;F)C A;F for every F of 29.

The awareness structure is called finite if the state-space is a finite set.

The axiom PL due to Dekel, Lipman and Rustichini (1998) says that 7 is aware
of F if he believes it or if he believes that he dose not believe it.

The mutual awareness operator is the operator Ax on 2 that assigns to each
event F the intersection of A;F for all ¢ of N; that is, :

ApF = ﬂ A;F .
ieN

The interpretation of A;F is the event that i is aware of F,’Where as AgF is
interpreted as the event ‘everybody is aware of F.’

Definition. Let (€, (4;), (B:)) be an awareness structure. I say that an event
F is self-aware of i if F C A;F and it is said to be publicly aware if F C AgF. An
event T is said to be i’s evident belief if T C B;T, and it is said to be public belief
at state w f w e T C BgT.

An event is public belief (or respectively, it is publicly aware) if whenever it
occurs all players believe it (or they are all aware of it.) We can think of public
belief as embodying the essence of what is involved in all players making their direct
observations.

Definition. The associated information structure (P;) is a class of the mappings
P; of Q into 22 in which P; assigns to each w the intersection of all the #'s evident
beliefs T' to which w belongs; that is, ‘

Pw)= () {T|weT BT}
Te'zn .

(If there is no event T for which w € T C B;T then we take P;(w) to be non-
defined.) We call P;(w) the i’s evidence set at w.

An evidence set is interpreted as the basis for all i’s evident beliefs since each i’s
evident belief T' is decomposed into a union of all evidence sets contained in T'.

Definition. A non—émpty event H is said to be Pi-invdriant,if for every £ of H,
P;(£) is defined and is contained in H.



Remark 2. The standard model of knowledge can be interpreted as an awareness
structure (€, (A;), (B;)) such that § is finite, B; satisfies N, K, T, 4 and 5, and
A; is the trivial awareness operator; i.e. A;(E) = Q for every E € 2. In fact, the
associated information structure (P;) with the standard model of knowledge coin-
cides with the information partition (IL;) of the model. This says that an awareness
structure is an extension of the standard model of knowledge. In this regard we
note that every event is publicly aware in the standard model of knowledge.

Example 1. Consider the following situation. Player 1 believes the theory that
“the earth is not flat and it moves around the sun,” while player 2 believes the
theory that “the earth is neither flat nor it moves around the sun”; the former
theory is an 1’s evident belief and the latter is an 2’s evident belief. Furthermore
it is public belief that “the earth is not flat.”

This can be represented as follows: The state-space Q consists of four states
o, B,7,8, where state o represents the proposition “the earth is not flat but it
moves around the sun,” state 8 “the earth is neither flat nor it moves around the
sun,” state v “not «,” and state § represents “not 8.” The belief operators are given

by: 7 |
Bi({a}) =Q,B;({a, 8}) = {a, B}, B1(®) = {a} and B;(E) = 0 otherwise;
B:({8}) =, B2({e, 8}) = {, 8}, B2(?) = {8} and By(E) = 0 otherwise.

The associated information structure is given by:

Py (a) = {a}, P\(B) = {a, B} and P;(w) is not defined otherwise;
Py(a) = {e, 8}, P2(8) = {8} and P(w) is not defined otherwise.

Let p be the equal probability measure on Q: p(w) = 1/4. Now if we denote
by ¢;(X,w) the posterior of X in w defined by u(X|P;(w)) then we obtain that
g2({a}, @) = 1/2; that is, in the true state a player 2’s posterior of the event {a}
(the earth is not flat and it moves around the sun) is 1/2 when player 2 believes

that 8 is true and never believes that o is so (B2(a) = @), contrary to the spirit of
. the example. O

I improve on the definition of posterior as follows:

Definition. Let ((Q,(A;), (B;), ) be an awareness structure with a common-
prior p. I define the mapping q; of 2 x Q into [0, 1] that assigns to each (X,w) the
conditional probability x(X N A;(X) |P;(w)). For every real number g;, I denote

[¢:] = {w € Qlqi(X,w) = ¢}
An interpretation of q;(X;w) is the conditional probability of the i's awareness
section of X under his evidence set at w.

I say ¢; to be the i's posterior of X at w if w belongs to [g;]. I denote by ¢ the
profile (g;);en. An event [g] is the intersection of the sets [g;] for all i of N; that s,

lal = () la]-

ieN
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For Example 1,. letting A;(E) = B;(E) U B;(—B;i(FE)) I obtain that A2({a}) =
{B}. Therefore it follows from the new definition that player 2’s posterior of {a}
at state « is- qz({a} a) = 0, as desired.

The following lemma is the key to proving Theorems 1 and 2.

Fundamental Lemma. Let (P;) be the associated information structure with
a finite awareness structure and p a common-prior. Let g; be an i’s posterior of an
event X at a state w. If there is an event H such that the following two properties
(a), (b) are true. Then we obtain that

(X NA(X)|H) =gi:

(a) H is non-empty and it is P;-invariant,
(b) H is contained in [g;].

Proof See Appendix.

I say that the players commonly believe their postemors g of X at w if [g] is
common-belief at w; that xs, w € Bc([g]). I can prove the generalized version of
Aumann’s theorem:

Theorem 1. In a finite awareness structure with a common-prior, if all players
commonly believe their posteriors g; of a publicly aware event X at a state w then
they cannot agree to disagree; that is, q; = q; for every 1, j, even when they are not
logically omniscient. '

Proof. 1set [qjNBc([g]) by H. I note that H is P;-invariant for every i. It follows
that H satisfies the conditions (a) and (b) in Fundamental Lemma. Therefore
p(X|H) =p(X NA;(X)|H) =g; for every i. 0

Remark 8. In Matsuhisa(1998) the logic of awareness and belief is introduced
and it is shown that the logic have the finite model property. From this syntactical
point of view it suffices to explore the class of all finite awareness structures.

4 PUBLIC BELIEF AND NASH EQUILIBRIUM

By a game G I mean a finite game in strategic form < N, (S;), (g:) > in which
N is a finite set of players {1,2,...,n} and for every player i, S; is a finite set of
i's actions and g; is an 1’s payoff-function of S into R, where S denotes the product
S1 X8y x-++x8,, S_; the product S; x Sg X+ x Sij_1 X Sj41 X+ --x S, and g denote
the n-tuple (g1, g2, ... gn). For every s of S denote s—; = (81,--.,8i1, Si+1,- -+, 5n)-

A probability distribution ¢; on S_; is said to be an #’s overall conjecture (or
simply #’s conjecture). For each player j other than i,this induces the marginal
- on j's actions; we call it 4’s individual conjecture about j (or simply ¢’s conjecture
about j.) Functions on 2 are viewed like random variables in a probability space
(Q, p). If x is a such function and z is a value of it, I denote by [x = z] (or simply
by [z]) the set {w € Q| x(w) = z}.

An awareness structure with a common-prior y yields the two overall conjectures
as follows.



Definition. The i’s normal conjecture ¢; is given by u([s—:] N A;([s—i])|P:(w));
and the 4's e-perturbed conjecture ¢ is given by (1 — €)u([s—:] N Ai([s—:))|Pi(w)) +
epi([s-:] N Ai([s-i])), where € € (0,1) and p; is a state-independent probability
measure on 2.

The probability distribution p;([s—:] N A;([s—:])) on S_; is a perturbation unable
to be controlled by ¢ when the other players —i play actions s_; . I denote ¢ :=
(¢1,¢2,,-‘--;¢n) and ¢£ = (¢61:7¢§77¢$;)‘ .

Definition. Let A= < Q, (4:),(B;) > be an awareness structure. I say that G
is an A-game with e-perturbed conjectures if there is a common-prior 1 on Q and
if for every player i there are two random variables g; of  into the class of resl

valued functions {g;};cny on S and s; of Q into S; such that the four conditions are

valid:

(i) [9] = Nien[g: = gi] is i’s evident belief;
(i) [si] = [si = si] is i's evident belief for every s; of S;;
(iii) [s—i] = [s—: = s—i] is self-aware of i for every s_; of S_;; and
(iv) [¢] = Nien[@f = ¢i] is i’s evident belief for every n-tuple of conjectures

¢ = (¢i)i€N1
where [s_; = s_] 1= Njifs; = ;] and [§f = ¢i] == Ny_,es_ [$5(5-:) = di(s-s)].
In an A-game G the pay-off functions g = (g1,92,...,9x) is said to be actually

played at a state w if w belongs to [g = g]. An i's action s; is said to be actual at
a state w if w belongs to the set [s; = s;].

Definition. An player i is said to be e-rational at w if each #’s actual action s;
maximizes the expectation of his actually played pay-off function g; at w when the
other players actions are distributed according to his e-perturbed conjecture & (w):
Formally, letting g; = gi(w) and s; = s;(w),

Exp®(gi(s:,5-:);w) 2 Exp®(g:(t;,5-:); w)
for all ¢; in S;.2 An playef i is said to be rational at w if he is O-rational at w.

Let R denote the set of all the states at which an player j is e-rational and R®
the intersection Njen R;. I simply denote R} by R; and R® by R.

Example 2. For each Nash equilibrium (0;) of G, I can construct the standard
model of knowledge A =< Q,(K;) > such that G is an A-game with normal
conjectures (i.e., with O-perturbed conjectures) as follows:

- § is the product of all the supports of o; with j of N ; that is,

2= Supp(01) X - - x Supp(on) ; -

2The expectation Exp® is defined by

Expf(gi.(ti» S_i);w) = Z gi(ti, 8-3) 5 (w)(s—s) .

s_;€ES;
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- II; is the.i’s information partition defined by

TI;(w) = Supp(o1) x -+ x Supp(9i-1) X {wi} x Supp(cis1) X -+ x Supp(on)

for w = (wy,...,Wi,...,wp) of Q;

- K; is the i’s knowledge operator defined by

K.F = {w € QIL;(w) S F}

- u is the probability measure on §2 defined by

[.L(Ld) = 0'1(w1)0'2(w2) T o'n(wn) .

I define the mapping s; : @ — S; as w = (Wi,...,Wiy...,Wn) — Wi
and define the mapping g; : & — {¢:} as w — gi. I can plainly observe
that G is an A—game with normal conjectures. Furthermore, let K¢ be the
common-knowledge operator of < ,(K;) > and let ¢;(s—;) be defined by
01(51)02(82) - - 0i—1(8i=1)Ti+1(Si+1) - - - on(5n). 1 observe that ¢(s—;) coincides
with the normal conjecture @;(w, s—;) = u([s—:]|Pi(w)) for every w of Q. In these
circumstances, I note that for every player i, K;([s;]) = [si] and [¢]) = [g] = R; =
'so that Kg([g]) = Kg(R) = Kc([¢]) =9. O

Aumann and Brandenburger (1995) succeeded in giving sufficient epistemic con-
ditions for Nash equilibrium in the standard model of knowledge:

Proposition 2. Let A be the standard model of knowledge with the trivial
awareness operator. In an A-game G with normal conjectures having a common-
prior, if the player’s payoff-functions and their rationality are mutually known and
if their conjectures about other players’ actions are commonly known then the n-
tuple of conjectures is a mized strategy Nash equilibrium of G.

Proof. See Theorem B in Aumann and Brandenburger (1995). O
Remark 4. Aumann and Brandenburger (1995) proved the proposition for the
model of belief with probability 1, < Q, (K;) >, defined by
KiF = {w € Q|u(F|L;(w)) =1},

where (II;) is a given information partition. The knowledge operator satisfies Ax-
ioms N and M, thus an player 7 in this model has logically omniscient ability.

Common-knowledge (common-belief) of the players’ overall conjectures seems
a rather strong assumption with respect to its infinite recursion. The following
example shows a possibility of getting away with less.

Example 3. Here the ‘overall’ conjectures are public belief, the individual con-
jectures are agreed on, rationality is public belief, and there is a common prior, and
then we get Nash equilibrium even when the overall conjectures are not commonly
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¢ _ h t
H| 1,0, 0,1, 2 Hi 10,3 0, 1, 0
T|0,1,2(1,0,2 T|0,1,0/|1,0, 3

W E
FIGURE 1
hy t1 hy to hs t3
H1 w1 W1 w9 E1
T1| w3 By |wg Wy
Hy | ws Wy |wg W3

' T2 Wy W3 Wy Wg,

Hj wg W3 |wig Wy
Ts w11 W2 w1z W3
FIGURE 2

believed. Consider the three person game of Figure 1. We can plainly observe that
(3H+ 3T, h+ 1t, W) is the unique Nash equilibrium.

Consider now this game as .A-game with normal conjectures, in which A is the
awareness structure < 2, (4;)i=1,2,3, (B:)i=1,2,3 > with common-prior y as follows:

- 0= {w,wy,...,wi2} and I;(i = 1, 2, 3) is the partition of Q in Figure 2;
- B; and B are respectively the knowledge operators induced by II;, II5, and
letting F() = {ws,we, ce ,wlz}, Bj is defined by
BsE = FyU {wl} if £ = Fy,
BsE :=Fy if E=FyU {wl},

B3E := {w € QII3(w) S E}  if E otherwise;
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. A;(E) := B;(E)U B;(—B;(E)) for i =1,2,3;
p(w) = 1/12 for every w € {0.
. gi(w) = Q for every w € 2, and s; is defined in Figure 2.

Consider the state w = ws. Player 1’s overall conjecture ¢; is shW + tW,
player 2’s overall conjecture ¢, is 1HW+ 1TW and player 3’s overall conJecture o3
is 1Hh+ 1Ht+ 3 Th+ 3 Tt. Players 1 and 2 agree on the conjecture W+ 1E about
player 3. Slm11arly, players 1 and 3 agree on the conjecture 3 ih + 1t about player
2, and players 2 and 3 agree on the conjecture 3 19 + 1T about player 1. Hence the
individual conjectures derived from player 1’s overall conjecture are o, = -;—h + —%t
" for player 2 and o3 = W for player 3. These are the same as player 2’s and player
3’s conjectures about each other; in partlcular their individual conjectures about
player 1 are the same distribution oy = 1H + 1T.

It can be observed that all pay-off functlons Lq] is 2 which is public belief at every
state, and that both rationality R and the overall conjectures [@] are the same event
Fp that is public belief at ws but is not commonly believed since BsBs(Fo) = 0.
Nevertheless, the triple of the individual conjectures (o1, 032, 03) form the Nash
equilibrium of the game. 0

The main result in this lecture is as follows:

Theorem 2. Let A be a finite awareness structure with a common-prior u and
G an A-game with e-perturbed conjectures. Let ¢ be an n-tuple of conjectures (¢:).
If for every sufficiently small positive number €, it is public belief at some state
that all players are rational, that ¢ = ¢ and that g = g then for each j, all the
conjectures ¢; of players i other than j induce the same probability distribution
oj on the j’s actions. Moreover the profile (0;) constitutes a mized strategy Nash
equilibrium of G.

Proof. For each g, I set [¢° = ¢] by F and [s; = s;] N F by H;. Let w be a state
such that w € [g] N R* N F. We note that F is P;-invariant and that p(F) # 0.

I set the probability distribution @ on S by Q(s) = u([s]|F). Let Q(s;) denote
the marginal of Q on S; and Q(s—;) the marginal of Q on S_;. I define a probability
distribution o on S; by o;(s;) = Q(s;) for each j. Let Supp(o;) denote the support
“of ;. I note that for every player i, if s; belongs to Supp(o;) then H; = [s; = s;]NF
is non-empty and is Pj-invariant. Denote the conjecture g; by .

£(s_:) — eps(s-)} |

gi(s—i) =

and I note ¢i(s-:) = p([s-i]| P:()).

(@) For every player i, all conjectures g; with j # ¢ induce the same distribution
o; on S;.

Proof of (o). For every player 7 and for every s of S with s; € Supp(aj) I obtain
by Fundamental Lemma that

p((s—1lH;) = g;(s—;) -



Dividing by u(F) yields that u([s]|F) = g;(s—;)u([s;]|F) and that
Qs) = 4i(5-5)Qs5) - e

Summing up over s; I obtain that for ‘ever'y s—jof S_;,
Q(s-5) = gj(s—5) - | (2)

Therefore I can plainly observe that for each i # J, ¢;(s:) = Q(s;) = 0u(s;) ; that
is, for all j the conjecture g;(s;) about i # j induced by ¢; is the same distribution
o; which is independent of j, in completing the proof of ().

(B) The n-tuple (o;) is a mixed strategy Nash equilibrium of G.

Proof of (8). By (1) and (2) it immedia.telj follows that for every j and for all s;

of Supp(a,) Q(s) = Q(s5-;)Q(s;). From this I can verify by induction on players
J=1,2,...,n that the distribution g; is the product of g; ; that is,

gi(s—3) = 01(s1) -+ - 0j-1(85-1)0541(5541) - - - On(5n) - (3)

I note that
[s;1n{g; ] NR; N[p;]1 #0 .

Therefore I can observe that each action s; with g;(s:) = 0:(s;) > 0 for some 7 # j
maximizes g; against ¢} since j is rational at some state of [s;10 (gl NR; N[g;] .
From this together with (3) I can conclude that (o) is a 25 ||g||s- equlhbnum of G

where ||g||s := max |gi(s)|, and therefore it constitutes a Nash equilibrium of G
ieN,seS

as € tends to 0, in completing the proof of (8). O

Remark 5. 1 have showed in the above proof that: When there is a common-
prior, public belief of e-conjectures, the pay-off functions and of e-rationality imply
that the conjectures induce a 2 ||g||s-equilibrium of G.

Remark 6. For normal conjectures, I can prove the following epistemic conditions
for Nash equilibrium by the same way as above:

Let A be a finite awareness structure with a common-prior u and G an A-game
with normal conjectures. If it is public belief at some state that all players are
rational, that ¢ = ¢ and that g = g, then all the conjectures ¢; of i other than j
induce the same probability distribution o; on the j’s actions. Moreover the profile
(0;) constitutes a mized strategy Nash equilibrium of G.

CONCLUSION

In this lecture I present the model of awareness and belief with emphasis on
the logically non-omniscient point of view. With the common-prior assumption I
extend the ‘Agreeing to disagree’ theorem of Aumann to the model and give an
epistemic conditions for Nash equilibria in a finite game in strategic form without
common-belief assumption.
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APPENDIX

Proof of Fundamental Lemma

A similar lemma was proved by Matsuhisa and Kamiyama(1997, Section 11);
I repeat the proof for the sake of importance and completeness. The idea of the
proof comes from Samet(1990, Theorem 7.)

I can plainly observe that (P;) is a reflezive and transitive information structure
as follows: For each i and for every state w,

(Reflexivity) w € Py(w);

(Transitivity) ¢ € P;(w) implies P;(¢) & Pi(w).

I define the equivalence relation ~ on the state-space Q by
E~w  if and only if P;(¢) = Pi(w) .

I denote by II;(w) the equivalence class of a state w. Since H is P;-invariant,
it immediately follows that H is decomposed into a disjoint union of components
I1;(¢) for € € H. 1 can observe that each component II;(¢) is y-measurable. I set by
S the class of all the components II;(¢) of H such that u(X N A;(X) |IL(£)) = a,
and denote by S the union of all members of S. ,

To prove the lemma it suffices to show that S = H. Suppose to the contra.ry
that S ;Cé H. 1 observe the point that there exists a state wp € H \ S such that
P,(&)\ S = P;(wo) \ S for every € € P;(wo) \ S: For, if not then, noting that F;
is reflexive and transitive as above, I can plainly obtain an infinite sequence {wn}
of states in H such that wnis € Pi(wnt1) \ S G Pi(wn) \ S & H \ S for every
n = 0,1,2,..., in contradiction to the assumption that Q is finite as required.
Therefore, I can verify that II;(wo) = Pi(wo) \ S, and since wg € H & [g] I
conclude that II;(wo) € S, in final contradiction. This establishes the Fundamental
Lemma. [
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