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\S 1. Introduction.

We consider the following energy functional (GL functional)

(1.1) $E( \Phi)=\int_{\Omega}(\frac{1}{2}|\nabla\Phi|^{2}+\frac{\lambda}{4}(1-|\Phi|^{2})^{2)dX}$ $(\Phi\in H^{1}(\Omega;\mathbb{C}))$

and its grandient flow equation

(1.2) $\{$

$\frac{\partial\Phi}{\partial t}=\triangle\Phi+\lambda(1-|\Phi|2)\Phi$ $(t, x)\in(0, \infty)\mathrm{x}\Omega$ ,

$\frac{\partial\Phi}{\partial\nu}=0$ $(t, x)\in(0, \infty)\mathrm{x}\partial\Omega$ (Neumann $\mathrm{B}.\mathrm{C}.$ )

$\lambda>0$ is a parameter and supposed to be large when we consider the “vortex motion
phenomena”. A zero point $x\in\Omega$ (i.e. $\Phi(t,$ $x)=0$ ) is called a vortex at time $t$ .
Concerning these vortice, there have been many interesting studies recent 10 years.
This point is an important part of the solution because the energy concentrates
around it (for large $\lambda>0$ ) and behaves like a particle. Actcually one single vortex
has energy $\pi\log(1/\epsilon)$ (cf. Bethuel-Brezis-Helein [1]). The situation of the solution
is almost determined by the configuation of such points, which vary as time goes. In
this way a system of ODE describing the orbits of vortices arise. We consider this
dynamics in relation with problem of the existence of nontrivial stable equilibrium
solutions of

(1.3) $\{$

$\triangle\Phi+\lambda(1-|\Phi|^{2})\Phi=0$ $x\in\Omega$ ,

$\frac{\partial\Phi}{\partial\nu}=0$ $x\in\partial\Omega$ .

A stable solution of (1.3) is a local minimizer of the functional of (1.1). We take
a small parameter $\epsilon>0$ by the relation $\lambda=1/\epsilon^{2}$ for the convenience of notation.
For small $\epsilon>0$ , the coefficient of the nonlinear term becomes large and $|\Phi(t, X)|$

goes close to 1 very quickly as $t$ grows up, except for the small neighborhood of the
zero point (vortex). So there arises a sharp layer around a vortex and we see from
the expression of $E$ , that a big contribution comes from the neighborhood of such
vortices in the integration in the energy functional $E$ . These vortices persist to exist
because of the continuity of the solution and the invariance of the degreee around
the zero and they move very slowly afterwards. The mathematical study of such
phenomena were started in recent years while they had been studied by physicists
earlier (cf. Neu [9]). The speed of this slow motion of vortices were studied by
Rubinstein and Sternberg [10] and it turned out to be the order $O(1/\log(1/\epsilon))$ .
Therefore, by accelerrating this slow motion by the new time scale $s=t\log(1/\epsilon)$ ,
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we can see the motion of finite speed. These orbits of vortices were studied and
described as a finite dimensional system of ODE’s by Jerrard-Sonner [3], $\mathrm{F}.\mathrm{H}$ .Lin
$[7,8]$ in the case of 2 dimensional domain $\Omega$ with the 1st kind boundary condition.

On the other hand, a qualitative study of the dynamics of (1.2) in relation with
the geometry of the domain has been given (cf. Dancer [2], Jimbo-Morita $[4,6]$ ,
$\mathrm{J}\mathrm{i}\mathrm{m}\mathrm{b}_{0^{- \mathrm{M}\mathrm{o}}}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{a}-\mathrm{Z}\mathrm{h}\mathrm{a}\mathrm{i}[5])$. It was proved that in a simple domain such as a convex
domain, there is no non-trivial stable equilibrium solution to (1.2), while there arise
such a solution in a complicated domain. In this note, we want to understand about
the relation between such situation of (1.2) and the limit ODE system.

\S 2. Vortex motion.

In this section we describe the ODE system of the motion of the vortices done
in the work of F. H. Lin $[7,8]$ and Jerrard-Sonner [3]. Applying their method, we
can obtain the motion law of vortices for the case of Neumann B.C as well as 1st
kind $\mathrm{B}.\mathrm{C}$ .

Let $\Omega\subset \mathbb{R}^{2}$ be a bounded domain. We assume throughout this note

$(*)$ $\Omega$ : contractible.

Take any point $p\in\Omega$ and consider the following equation:

(2.1) $\{$

$\triangle_{x}\varphi=0$ in $\Omega$ ,

$\frac{\partial\varphi}{\partial\nu_{x}}=-\langle\nu_{x}, \nabla_{x}\mathrm{A}\mathrm{r}\mathrm{g}(x-p)\rangle$ in $\partial\Omega$ ,

where $\nu_{x}$ is the unit outward vector on $\partial\Omega$ .
We note that

$\nabla_{x}\mathrm{A}\mathrm{r}\mathrm{g}(x-p)=(\frac{-(x_{2}-p_{2})}{|x-p|^{2}},$ $\frac{x_{1}-p_{1}}{|x-p|^{2}})$ .

Proposition. (2.1) has a solution $\varphi=\varphi(x,p)$ which is a function in $x$ (with
parameter $p$). This solution is unique up to additive constants.

Remark. The above fact follows from the integral condition

$\int_{\partial\Omega}\langle_{I\text{ノ_{}x}}, \nabla_{x}\mathrm{A}\mathrm{r}\mathrm{g}(x-p)\rangle dS=0$.

We should note that $\nabla_{x}\varphi(x)$ is uniquely determined only by $p\in\Omega$ in spite of the
ambiguity of solution.

Fkom now we use the following notation for 2 vector.

Notation. $=$.

We denote the configuration of $m$ vortices by

$\mathrm{y}(t)=(y((1)t), y((2)t),$
$\ldots,$

$y^{(m})(t))\in\hat{\Omega}=\Omega\cross\Omega\cross\cdots \mathrm{X}\Omega$.
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$y^{(j)}(t)$ denotes the position of the j-th vortex.

Proposition. The time variation of the configuration $\mathrm{y}(t)$ is given by the following
system of the ODEs

(2.2) $\frac{d}{dt}y^{(j)}=-2\{\sum_{k=1}^{m}\nabla_{x}\varphi(y^{(}(j)t),$ $y^{(k)}(t))^{\perp}+ \sum_{k\neq j}\frac{y^{(k)}(t)-y^{(}(j)t)}{|y^{(k)}(t)-y((j)t)|^{2}}\}$

for $j=1,2,$ $\ldots,$
$m$ . See also [3], [7], [8]. Let us make sure that

$\nabla_{x}\varphi(y^{(}(j)t),$ $y((k)t))=\nabla x\varphi(x,p)|x=y((j)t),p=y((k)t)$ .

We rewrite the above system in a simpler form. Consider

(2.3) $H(x)=\mathrm{A}\mathrm{r}\mathrm{c}(x-p)+\varphi(x,p)$

which is multi-valued function. It is easy to see that $H(x)$ is harmonic and satisfies
the Neumann boundary condition on $\partial\Omega$ . We are naturally lead to take the conju-
gate harmonic function $\Psi$ in $\Omega$ . From the Cauchy-Riemann equation, $\nabla H\perp\nabla G$

in $\Omega$ . As we are assuming $\Omega$ is contractible, $G$ is constant on $\partial\Omega \mathrm{h}\mathrm{o}\mathrm{m}$ the Neumann
$\mathrm{B}.\mathrm{C}$ . of $H$ . So we can assume $G$ satisfies the Dirichlet $\mathrm{B}.\mathrm{C}$ . on $\partial\Omega$ . Of course $G$ has
a $\log$-singularity at $p$ . Precisely, $G$ is defined by the following system of equations.

Let $q\in\Omega$ and a function $G=G(x, q)$ such that

(2.4) $\{$

$\triangle_{x}G=0$ in $\Omega\backslash \{q\}$ ,
$G=0$ on $\partial\Omega$ ,
$G(x)\sim\log|x-q|+O(1)$ near $q$ .

Note that the solution $G$ in (2.4) is unique. Actually it is proved by the aid of the
maximum principle and Riemann’s removable singularity theorem.

From (2.3) and the Cauchy-Riemann equation $\nabla G^{\perp}=\nabla H$ ,

$\nabla G^{\perp}=\nabla H=(\frac{-(x_{2^{-p_{2}}})}{|x-p|^{2}},$ $\frac{x_{1}-p_{1}}{|x-p|^{2}})+\nabla\varphi(x,p)$ .

Consequently,
$- \nabla G=\frac{-(x-p)}{|x-p|^{2}}+\nabla\varphi(x,p)^{\perp}$ .

By the aid of this function, we express the right hand of the ODE system (2.2), as
follows,

Proposition.

(2.5) $\frac{d}{dt}y^{(j)}=-2\{\nabla_{x}\varphi(y^{(j}()t),$
$y(j)(t)) \perp+\sum_{k\neq j}\nabla_{x}G(y^{(j}()t),$

$y^{(}(k)t))\}$
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for $j=1,2,3,$ $\cdots,$ $m$ . This form is useful for the analysis on the special case in \S 4.

\S 3. Non-existence of Pattern formation
Let us consider the original equation (1.2). The relation between the geometric

property of the domain and the structure of the solutions is studied recently. One
of important insights is the observation that if the geometrical situation is very
simple, then the structure of the stable solutions will be very simple. Actually one
result proved from such point of view is the following.

Theorem (Jimbo-Morita [4]) If $\Omega$ is convex, there is no-nonconstant stable
solutions in (1.3) for any $\lambda>0$ .

This result suggests that the dynamics of the “limit system” in $\hat{\Omega}$ may not have
any stable equilibrium point provided that $\Omega$ is convex. We want to investigate this
problem in more details about the special cases.

\S 4. Special Case $\Omega=$ Disk
In this section we deal with a very special case

$\Omega=\{_{X}=(X1, x2)\in \mathbb{R}^{2}||x|<1\}$ .
The functions $\varphi(x,p),$ $G(x, q)$ can be seen better and more information of the dy-
namics of (2.2) can be obtained, because we can discuss the situation more explicitly.

Proposition.

$G(x, q)=\log|x-q|-\log|q||x-q|*$ , $H(x,p)=\mathrm{A}\mathrm{r}\mathrm{c}(x-p)-\mathrm{A}\mathrm{r}\mathrm{c}|p|(x-p)*$

where $z^{*}$ is the Kelvin transform about the unit circle $\partial\Omega$ , that is

$z^{*}=\{$

$z/|z|^{2}$ for $z\in \mathbb{R}^{2}\backslash \{0\}$

$\infty$ for $z=0$

The case of 1 vortex $(m=1)$ . We put $y(t)=y^{(1)}(t)$ for simplicity of notation.
The position of the vortex is described by the equation,

(4.1) $\frac{d}{dt}y(t)=-2.\frac{y(t)-.y(t)^{*}}{|y(t)-v(t)*|^{2}}$

The case 2 vortices $(m=2)$ . We put $\xi(t)=y^{(1)}(t),$ $\eta(t)=y^{(2)}(t)$ for simplicity
of notation.
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(4.2) $\{$

$\frac{d}{dt}\xi(t)=-2(\frac{\xi(t)-\xi(t)^{*}}{|\xi(t)-\xi(t)^{*}|^{2}}-\nabla_{x}G(\xi(t), \eta(t)))$

$\frac{d}{dt}\eta(t)=-2(\frac{\eta(t)-\eta(t)^{*}}{|\eta(\mathrm{t})-\eta(t)^{*}|^{2}}-\nabla_{x}c(\eta(t), \xi(t)))$

Hkom the geometric consideration on the right hand side of (4.2), we see that
the vortex which is close to the circle will be pushed out to the boundary.

け\check -r-に –

$.\mu^{\nearrow r}$

“戸」..
$\sim\searrow 4\sim_{arrow\}$

$l^{r’}/\cdot$

$3^{(\mathrm{t})}’\delta\backslash \backslash$

$\mathrm{L}_{-\prime}^{\eta^{(}}--\underline{\mathrm{k}}^{\backslash }\nearrow \mathrm{t}\wedge’arrow$

$)$

By summing up the above two case, we have the following result.

Theorem. For $\Omega=\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{k}$ and $m=1$ or 2, there is no stable equilibrium configu-
ration to (2.2).
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