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The growth theorem of spirallike mappmgs in
several complex variables

JUMNIRTHEE B EfE (Hidetaka Hamada)
Faculty of Mathematics, Babes-Bolyai Univ., Gabriela Kohr

Abstract

Let B be the unit ball in an arbitrary complex Banach space X. Let a €
R, |a| < 7/2. First, we give the growth theorem for normalized spirallike map-
pings of type o on B. We also show that the growth theorem does not hold for
normalized spirallike mappings defined by Suffridge. Next, we give an alternate
characterization of normalized spirallike mappings of typ:e a on B in terms of
subordination chains, when the dimension of X is finite.

1 Introduction

Let f be a univalent mapping in the unit disc A with f(0) =0 and f'(0) =
Then the classical growth theorem is as follows:
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It is well known that the above growth theorem cannot be generalized to nor-
malized biholomorphic mappings on the Euclidean unit ball B® in C* (n > 2).
Barnard, FitzGerald and Gong [1] and Chuaqui [2] extended the above growth
theorem to normalized starlike mappings on B™. Dong and Zhang [3] generalized
the above result to normalized starlike mappings on the unit ball in complex
Banach spaces.

In this paper, we will generalize the above growth theorem to spirallike map-
pings of type o on the unit ball B in an arbitrary complex Banach space. One
might consider that the same growth theorem holds for all normalized spirallike
mappings defined by Suffridge [12]. However, we can give an example of a normal-
ized spirallike mapping such that the same growth theorem does not hold. This
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example also shows that the growth of normalized spirallike mappings cannot be
estimated from above.

We also give an alternate characterization of normalized spirallike mappings
of type o on the unit ball B with respect to an arbitrary norm on C” in terms
of subordination chains.

2 Introduction

For complex Banach spaces X, Y, let £L(X,Y) be the space of all continuous
linear operators from X into Y with the standard operator norm. By I we denote
the identity in £(X, X). Let G be a domain in X and let f : G — Y. f is said
to be holomorphic on G, if for any z € G, there exists a Df(z) € £L(X, Y') such

that :
i £G4 1) = £() = DFGI _
h—0 1]
Let H(G) be the set of holomorphic mappings from a domain G C X into X.
A mapping f € H(G) is said to be locally biholomorphic on G if its Fréchet
derivative D f(z) as an element of £(X, X) is nonsingular at each z € G. Let B
denote the unit ball with respect to the norm || - || on X. A mapping f € H(B)

is said to be normalized if f(0) = 0 and Df(0) = I. For each z € X \ {0}, we
define

0.

T(z) ={z" € L(X,C) : [I2"]| = 1,2"(2) = ||[]}.
By the Hahn-Banach theorem, 7T'(z) is nonempty. Let
N ={geH(B) : g(0) =0, Rz*(9(2)) > 0 for all z € B\{0},2* € T(2)},
and also, let
M={geN : Dg(0) =1TI}.

The following definition generalizes the notion of spirallike functions of type a
on the unit disc to B.

Definition 2.1 Let f B — X be a normalized biholomorphic mapping on B.
Let « € R, |a] < /2. We say that f is a spirallike mapping of type a if the
spiral exp(—e**t) f(z) (t > 0) is contained in f(B) for any z € B.

We obtain the following theorem from Corollary 2 and Theorem 6 of Gurganus
[4] (cf. [6], see also [7]).
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Theorem 2.1 Let f be a normalized locally biholomorphic mapping on B. If
f is a spirallike mapping of type o, then e **[Df(2)|7*(f(2)) € N. Moreover,
when X is a finite dimensional complez Banach space, f is a spirallike mapping

of type o if and only if e **[Df(2)]7 (f(2)) € V.

Remark 2.1 In Lemma 5 of Gurganus [4], he claimed that for each h € N and
for each z € B, the initial value problem

ov
5 =
has a unique solution v(t) for all ¢ > 0. For the proof, he uses Theorem 2.1
of Pfaltzgraff [9]. One of the conditions on h in the theorem is that for each
r € (0,1), there exists a constant K (r) such that ||h(z)|| < K(r) for all z with
llz|| < r. However, in general, holomorphic mappings on the unit ball is not

_h(v), v(0) =g,

necessarily bounded on ||z]| < r. We do not know whether the above condition is
satisfied for all h € A/ or not. So, we restrict ourselves to the finite dimensional
case in Theorem 2.1.

The following definition is due to Suffridge [12].

Definition 2.2 Let f : B — X be a normalized biholomorphic mapping. Let
A € L(X,X) such that

inf{Rz*(A(2)) : ||zl = 1,2 € T(2)} > 0.
We say that f is spirallike relative to A if e7*4f(B) C f(B) for all £ > 0, where

oo (__1\k
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Let B denote the unit ball with respect to an arbitrary norm | : || on C™. A
mapping v € H(B) is called a Schwarz mapping if ||v(2)|| < ||z|| for all z € B.
This condition is equivalent to the condition that v(0) = 0 and |jv(2)|| < 1 for
z € B.

If f,g € H(B), we say that f is subordinate to g (f < g) if there exists a
Schwarz mapping v € H(B) such that f(z) = g(v(z)) for z € B.
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Let {f(z,t)}:>0 be a family of mappings such that f;(2) = f(z,t) € #(B) and

£:(0) = 0 for each t > 0. We call {f(z,t)} a subordination chain if f(z,s) <
f(z,t) for all z € B and 0 < s < t. Moreover, f(z,t) is called univalent if f(-, t)
is univalent on B for each ¢t > 0.



29

3 The growth theorem

In this section, we will prove the following theorem.

Theorem 3.1 Let f be a normalized spirallike mapping of type o from B to X.

ther el Il
a+1ame < WOl < e

Proof. Let

h(z) = e [Df(2)]7' f(2).
Since h € N, we obtain the following inequalities from Lemma 4 of Gurganus
[4].

1 |z 1+ o]
< Rz*(h(2)) < ||z
T ) S D < =l

for z € B\ {0}, 2* € T(2). Let 0 < 7 < 73 < 1. Let 25 be a point such that
l|z2]] = r2. The curve c(t) = exp(—e~**t) f(22) is contained in f(B) for all ¢ > 0.
Also ¢(t) — 0 as t — oo. Since f is biholomorphic, the curve v(t) = f~1(c(t))
is well-defined and intersects the sphere ||z|| = 71 at some point z; = f~1(c(t;)).

cos af|z|| cos o (3.1)

Since
ov
| '52 - —h(’l}),

we can show that |v(t)|| is absolutely continuous. Therefore, ||v(t)|| is differen-

tiable a.e. on [0, 00) and _
Ollvll _ g+ [0V
T

for v* € T(v(t)) a.e. on [0,00) by Lemma 1.3 of Kato [8]. Then

Ollvll _ g+ -
57 = R (h(») <0 (3.2)

for v* € T'(v(t)). Let F(t) = || f(v(£)]| = e t°%¢|| f(22)||. Then we have

Lt [u@l 9ol . 1dF
@I = lv@I) 8¢ = F dt
1—|l@| ol
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from (3.1) and (3.2). Since ||v(t)|| is strictly decreasing on [0,%;] by (3.2), we
have
b 14+fu@l 9l
o @I - llv@l) ot
_ /Hv(h)ll 1+2 -
I z(l—z)
= loglv(t)]| — 2log(1 — |lo(t)I})
—{log [|[v(0)|| — 2log(L — [lv(0)[])}

fV

dt

log F(t1) — log F(0)

and
log F(t:) —log F(0) < logllu(t)|| — 2log(1 + |[v(t)|))
—{log ||v(0)|| — 2log(1 + {lv(0)I)}-
Then

(1 — [[o(0)[)* F(t:) (1 + JJo(0)]))?
BT — T = ol < oG + o@D O

Namely,
(1 = llzll)?

If @D o (O +]l2l)?

Tl = eeme ¥ @ S Tyl < Tala oo X - 63
Letting r; — 0, we obtain that
Q—"H—ﬂz—jf”-)—uf( Jl<1< (ﬁ“"ﬁ”) T
since
W@, 1D
T TR TR

This completes the proof.

When o = 0, we obtain the growth theorem of normalized starlike mappings
on the unit ball in complex Banach spaces [3] (cf. [1],(2]).

Let
Moo(r, f) = sup ||f(2)]l.

||zl}=r

Then we obtain the following corollary (cf. Tsurumi [13]) from (3 3) and Theorem
3.1.
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Corollary 3.1 Let f be a normalized spirallike mapping of type o from B to X.
Then the limit

B =lim(1 = 7)*Meuo(r, f)

exists. Moreover, we have 0 < 8 < 1.

Example 3.1 Consider the holomorphic mapping f(z1, 23) = (21 + 422, 25) on
the Euclidean unit ball in C2. Let A be a linear mapping such that Az, 20) =
(221,22). Then [Df(2)] 72 Af(21,2) = (221,2). Therefore, f is a normalized
spirallike mapping relative to A for any a € C. Let a € R and a > 2v/15. Let
2% =(0,1/2). Then f(z°) = (a/4,1/2) and ||f(z°)|| > 2. On the other hand,

B
A=~ >
Therefore, 12
i} IZO
G > 2

Also, ||f(2°)|] = oo as a — co. Therefore, the growth of normalized spirallike
mappings cannot be estimated from above.

4 Subordination chains

In this section, we will give an alternate characterization of normalized-spiral-
like mappings of type o on B in terms of subordination chains, where B is the
unit ball in C™ with respect to an arbitrary norm on C".

Let f : B — C" be a holomorphic mapping on B and let o € R, |o| < 7/2.

Let

Flzt) = el f(e2), 2 € B, ¢ >0,

where o = tan . Then, we have the following theorem(cf. [11, Theorem 6.6], [5,
Theorem 2.4]).

Theorem 4.1 Let f : B — C™ be a normalized locally biholomorphic mapping
on B and let o € R, |a| < 7/2. Then {f(2,t)} is a univalent subordination
chain if and only if f is a spirallike mapping of type c.

Proof.  First, assume that f is a spirallike mapping of type «. Then f; is
univalent. It is easy to check that fi(z) € H(B), Df,(0) = €'I, ¢t > 0 and also,



f(z,t) satisfies the absolute continuity hypothesis of Theorem 2.2 of Pfaltzgraff
[9].
On the other hand, we have

af

Bt(z t) = Df(2,t)g(2,t), z€ B, t >0, , (41)

where
g(z,t) = iaz + (1 — ia)e " [Df(e*2)] "  f(e"*2).

Clearly g¢(z,t) is a measurable function for each z € B, g¢(0, t) = 0 and
Dg(0,t) = I. For any z € B\ {0}, z* € T(2), we have

R2*(g(2,t)) = R(iallz]]) +
> 0,

— am (e—iae—iatz*[Df(eiatz)]——lf(e'iatz))

since f is a spirallike mapping of type o and e~i¢z* € T(e"*z). Therefore
g:(z) € M. It is easy to show that, for each r € (0,1), there exists a constant
M = M(r) > 0 such that
lg(z, )l < M(r),

forall z € B, and t > 0.

Let t,, = mifa = 0 and t,, = 27m/a if @ # 0. Then e~ f(z,t,,) = f(z) holds
for any m € Z.

Hence, from Theorem 2.2 of Pfaltzgraff [9], it follows that {f(z,t)} is a subor-
dination chain.

Conversely, assume that {f(z,t)} is a univalent subordination chain. Then
there exist Schwarz mappings v(z, s,t) such that

f(Z,S) =f(’U(Z,S,t),t), z EB) t2 52>0.

Then v(z,s,t) = e~ f~1(ell=1)(5=1) f(gi452)) and therefore v(z, s,t) is differen-
tiable with respect to t for each z € B, s > 0 and ¢t > s. Hence, differentiating
this equality with respect to ¢, we obtain that

of
ot

If we compare the relations (4.1) and (4.2) and use the univalence of f(-,t) for
t > 0, we obtain that

Df('o(z,s,t),t)(?9 (z,8,t) + —(v(z,s,t),t) =0, z€ B, t>s>0. (4.2)

g(v(z, s,t),t) = —%{(z s,t), z€B, t>s52>0. (4.3)
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Since v(z, 5,t) is a Schwarz mapping, we obtain that
R2"(v(z,5,1)) < lv(z, s,1)|| < |lz]]

for all z € B\ {0}, t > s and 2* € T'(2).
Therefore,

Rt (@(z,o,o)) = lim Rz* (”—(3—9115>

ot t—0-+ t
< i =

t—0+ t
0.

Now, from (4.3) and the above inequality, we obtain that
§R[Z* (e_i“[Df(z)]—lf(z))} >0, z € B\{0},2" € T(2).
Moreover, for fixed 2 € 0B, 0 < r < 1, z* € T(rz), let

5(C) = m[z* (e-m [Df(Cz)g“lf(CZ)) ]

for ( € A, where A denotes the unit disc in C. Then ¢ is harmonic on A. Since

(I€1/¢)z" € T(¢z), I€lp(¢) = 0 for ¢ € A. Since
$(0) = &e[z* (a%)] - %[e_mnzﬂ] >0,

we have qﬁ(C ) > 0 for all { € A by the nﬁnimum principle for harmonic functions.
Considering ¢(r), we obtain that f is a spirallike mapping of type « from Theorem
2.1. This completes the proof.

If we consider the case @ = 0 in Theorem 4.1, we obtain the following result
due to. Pfaltzgraff and Suffridge [10, Corollary 2].

Corollary 4.1 Let f : B = C" be a normalized locally biholomorphic mapping
on B. Then fis starlike if and only if {e'f(2)} is a univalent subordination chain.

Remark 4.1 Let D be a bounded balanced pseudoconvex domain with C* pluri-
subharmonic defining functions in C*. Namely, for any { € 8D, there exist a
neighborhood U of ¢ in C™ and a C! plurisubharmonic function 7 on U such that
DNU ={z €U :r(z) <0} In 5], the authors obtained similar results as in
this section for normalized locally biholomorphic mappings on D.
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