Hele－Shaw flows moving boundary problem whose initial domain has a corner with right angle

東京都立大学理学研究科 酒井 良（Makoto Sakai）

1．HELE－SHAW FLOWS

We discuss a flow which is produced by injection of fluid into the narrow gap between two parallel planes．We call it a Hele－Shaw flow．
A mathematical description of the flow is the following：Let $\Omega(0)$ be a bounded connected open set in the plane and let p_{0} be a point in $\Omega(0)$ ．We define $\Omega(0)$ and p_{0} as the projection of the averaged initial blob of fluid and the injection point of fluid into one of the two parallel planes，respectively．The Hele－Shaw flow $\{\Omega(t)\}_{t>0}$ is the monotone increasing family of bounded connected open sets $\Omega(t)$ such that

$$
-\frac{1}{2 \pi} \frac{\partial G\left(x, p_{0}, \Omega(t)\right)}{\partial n_{x}}=v_{n_{x}}
$$

for every $t \geq 0$ and every point x on the boundary $\partial \Omega(t)$ of $\Omega(t)$ ， where $G\left(x, p_{0}, \Omega(t)\right)$ denotes the Green function（of the Dirichlet problem for the Laplace operator）for $\Omega(t)$ with pole at $p_{0}, \partial / \partial n_{x}$ denotes the outer normal derivative at $x \in \partial \Omega(t)$ and $v_{n_{x}}$ denotes the velocity of $\partial \Omega(t)$ at x in the direction of outer normal．Here we have assumed that $\partial \Omega(t)$ is smooth for every $t \geq 0$ and the func－ tion $t=t(x)$ which is defined by $x \in \partial \Omega(t)$ is also smooth．Thus， the problem of the Hele－Shaw flows with a free boundary is to find $\{\Omega(t)\}_{t>0}$ which satisfies the equation above for given $\Omega(0)$ and p_{0} ．
It is very hard to discuss the problem as formulated above，because we do not know a priori the smoothness of $\partial \Omega(t)$ and $t(x)$ even if
the boundary $\partial \Omega(0)$ of the initial domain $\Omega(0)$ is sufficiently smooth. Therefore, we need another formulation of the problem. If we assume that $\partial \Omega(t)$ and $t(x)$ are sufficiently smooth, then we can easily prove that, for every $t>0, \Omega(t)$ satisfies

$$
\int_{\Omega(0)} s(x) d x+t s\left(p_{0}\right) \leq \int_{\Omega(t)} s(x) d x
$$

for every integrable and subharmonic function s in $\Omega(t)$. That is to say, the Hele-Shaw flow is a family $\{\Omega(t)\}_{t>0}$ of quadrature domains $\Omega(t)$ of $\lambda \mid \Omega(0)+t \delta_{p_{0}}$, where λ denotes the two-dimensional Lebesgue measure and $\delta_{p_{0}}$ denotes the unit one-point measure at p_{0}. In this formulation, we do not need the smoothness of $\partial \Omega(t)$ and $t(x)$. The existence and uniqueness of the solution are known. For more detailed discussions, see e.g. Gustafsson and Sakai [2] and Sakai [6].
We take a point x_{0} on $\partial \Omega(0)$ and discuss the shape of $\Omega(t)$ around x_{0} for small $t>0$. If $x_{0} \in \partial \Omega(t)$ for some $t>0$, then $x_{0} \in \partial \Omega(s)$ for every s satisfying $0<s<t$. We call such a point x_{0} a stationary point. If x_{0} is not a stationary point, then $x_{0} \in \Omega(t)$ for every $t>0$, In other words, x_{0} is contained in $\Omega(t)$ right immediately after the initial time.
To give a more concrete discussion, we treat a corner with interior angle φ. Assume that $(\partial \Omega(0)) \cap B$ is a continuous simple arc passing through x_{0} for a small disk B with center at x_{0}. Assume further that $B \backslash(\partial \Omega(0))$ consists of two connected components and $\Omega(0) \cap B$ is one of them. We express $(\partial \Omega(0)) \cap B$ as the union of two continuous simple arcs $\Gamma_{1}(0)$ and $\Gamma_{2}(0) ;(\partial \Omega(0)) \cap B=\Gamma_{1}(0) \cup \Gamma_{2}(0)$ and $\Gamma_{1}(0) \cap$ $\Gamma_{2}(0)=\left\{x_{0}\right\}$, and assume further that both $\Gamma_{1}(0)$ and $\Gamma_{2}(0)$ are of class C^{1} and regular up to the endpoint x_{0}. Then the intersection of $\Omega(0)$ and the circle with center at x_{0} and with small radius is a
circular arc. We say that x_{0} is a corner with interior angle φ if the ratio of the length of the circular arc to the radius tends to φ as the radius tends to 0 . It follows that $0 \leq \varphi \leq 2 \pi$. If $\varphi=\pi$; we interpret x_{0} as a smooth boundary point of $\Omega(0)$. If $\varphi=\pi / 2$, we say that x_{0} is a corner with right angle.
If x_{0} is a corner with interior angle φ, we can give a more accurate discussion than whether it is a stationary point or not. We introduce the following notion.
The corner x_{0} is called a laminar-flow stationary corner with interior angle φ, if there is a small disk B_{0} with center at x_{0} and small $t_{0}>0$ such that $(\partial \Omega(t)) \cap B_{0}$ is a continuous simple arc for every t with $0<t<t_{0}$ and $(\partial \Omega(t)) \cap B_{0}$ can be expressed as the union of two continuous simple arcs $\Gamma_{1}(t)$ and $\Gamma_{2}(t) ;(\partial \Omega(t)) \cap B_{0}=\Gamma_{1}(t) \cup \Gamma_{2}(t)$ and $\Gamma_{1}(t) \cap \Gamma_{2}(t)=\left\{x_{0}\right\}$, and both $\Gamma_{1}(t)$ and $\Gamma_{2}(t)$ are of class C^{1} and regular up to the endpoint x_{0}, and real-analytic except for x_{0}. Furthermore x_{0} is a corner of $\partial \Omega(t)$ with interior angle φ, and φ does not depend on t satisfying $0<t<t_{0}$. It follows that $\left(\partial \Omega(s) \cap B_{0}\right) \backslash\left\{x_{0}\right\} \subset \Omega(t) \cap B_{0}$ for every s with $0 \leq s<t$.
The corner x_{0} is called a laminar-flow point, if there is a small disk B_{0} with center at x_{0} and small $t_{0}>0$ such that $(\partial \Omega(t)) \cap B_{0}$ is a regular real-analytic simple arc for every t with $0<t<t_{0}$. In this case, $\left(\partial \Omega(s) \cap B_{0}\right) \subset \Omega(t) \cap B_{0}$ for every s with $0 \leq s<t$.
We have already announced the following theorems:
Theorem A. Let $x_{0} \in \partial \Omega(0)$ be a corner with interior angle φ.
(1) If $0 \leq \varphi<\pi / 2$, then x_{0} is a laminar-flow stationary corner with interior angle φ.
(2) If $\varphi=\pi / 2$, then x_{0} is a laminar-flow stationary corner with
right angle or a laminar-flow point.
(3) If $\pi / 2<\varphi<2 \pi$, then x_{0} is a laminar-flow point.

Theorem B. Let $x_{0} \in \partial \Omega(0)$ be a corner with right angle.
(1) There is an example of corner x_{0} which is a laminar-flow stationary corner with right angle.
(2) If $\Gamma_{1}(0)$ and $\Gamma_{2}(0)$ are of class $C^{1, \alpha}$ or x_{0} is a Lyapunov-Dini corner with right angle, then x_{0} is a laminar-flow point.

In this paper, we give a more detailed discussion and give a sufficient condition for a corner with right angle to be a laminar-flow stationary corner with right angle and also give a sufficient condition to be a laminar-flow point. Each of them is not a necessary and sufficient condition, but very close to a necessary and sufficient condition.

2. GENERAL ARGUMENTS

We have already interpreted $\Omega(t)$ as the quadrature domain of $\lambda \mid \Omega(0)+t \delta_{p_{0}}$. For the sake of simplicity, we write $\Omega(0)$ for $\lambda \mid \Omega(0)$, that is to say, $\Omega(t)$ is a quadrature domain of $\Omega(0)+t \delta_{p_{0}}$. Now we introduce the restricted quadrature domain and measure of $D+\mu$, where D is a bounded domain and μ is a finite positive measure supported in D. Let R be a domain, which may not be bounded, with smooth boundary. We call this domain a restriction domain. For the sake of simplicity, we assume that $\operatorname{supp} \mu \subset D \cap R$ and $D \cap R$ is connected.

We call $\left(\Omega_{R}, \nu_{R}\right)$ the restricted quadrature domain and measure in R of $D \cap R+\mu$ if
(i) Ω_{R} is a bounded domain containing $D \cap R$;
(ii) ν_{R} is a finite positive measure on $\left(\partial \Omega_{R}\right) \backslash\left(R \cap \partial \Omega_{R}\right)$;
(iii)

$$
\int_{D \cap R} s(x) d x+\int s d \mu \leq \int_{\Omega_{R}} s(x) d x+\int s d \nu_{R}
$$

for every integrable and subharmonic function s on $\overline{\Omega_{R}} \backslash(R \cap$ $\left.\partial \Omega_{R}\right)$.
Here we interpret ν_{R} as 0 if $\left(\partial \Omega_{R}\right) \backslash\left(R \cap \partial \Omega_{R}\right)$ is empty and we say that s is subharmonic on $\overline{\Omega_{R}} \backslash\left(R \cap \partial \Omega_{R}\right)$ if s is subharmonic in some open set containing $\overline{\Omega_{R}} \backslash\left(R \cap \partial \Omega_{R}\right)$. If $\mu>0$, then there exists a smallest Ω_{R}. We always treat the case that $\left(\Omega_{R}, \nu_{R}\right)$ is determined uniquely. For the properties of the restricted quadrature domain and measure $\left(\Omega_{R}, \nu_{R}\right)$, see Gustafsson and Sakai $[2$, Sect.2] and Sakai $[6$, Chap.I, Sect.4]. Simple facts which we use afterward are

$$
D \cap R \subset \Omega_{R} \subset \Omega \cap R,
$$

where Ω denotes the quadrature domain of $D+\mu$ and

$$
\beta(\mu, D \cap R)\left|\partial R \leq \nu_{R} \leq \beta\left(\mu, \Omega_{R}\right)\right| \partial R,
$$

where $\beta(\mu, D \cap R)$ denotes the balayage measure of μ onto the boundary of $D \cap R$.
Let x_{0} be a corner with right angle and let $R_{a}=\left\{y \in \mathbf{R}^{2}: \mid y-\right.$ $\left.x_{0} \mid>a\right\}$ be a restriction domain. Let $\left(\Omega_{a}(t), \nu_{a}(t)\right)$ be the restricted quadrature domain and measure in R_{a} of $\Omega(0) \cap R_{a}+t \delta_{p_{0}}$. Then we obtain the following proposition:

Proposition 1. x_{0} is a laminar-flow stationary corner with right angle if and only if

$$
\liminf _{a \rightarrow 0} \frac{\left\|\nu_{a}(t)\right\|}{a^{2}}=0
$$

for some $t>0$.
Replacing D with $\Omega(0), R$ with R_{a}, μ with $t \delta_{p_{0}}$ and ν_{R} with $\nu_{a}(t)$ in the first inequality before Proposition 1, we obtain

$$
\beta\left(t \delta_{p_{0}}, \Omega(0) \cap R_{a}\right) \mid \partial R_{a} \leq \nu_{a}(t) .
$$

Since

$$
\beta\left(t \delta_{p_{0}}, \Omega(0) \cap R_{a}\right)=t \beta\left(\delta_{p_{0}}, \Omega(0) \cap R_{a}\right),
$$

we obtain the following corollary:
Corollary 2. If

$$
\liminf _{a \rightarrow 0} \frac{\left\|\beta\left(\delta_{p_{0}}, \Omega(0) \cap R_{a}\right) \mid \partial R_{a}\right\|}{a^{2}}>0
$$

then x_{0} is a laminar-flow point.

3. CONCRETE RESULTS

From now on, we discuss very concrete cases. We assume that $x_{0}=0, p_{0}=(1,0) \in \Omega(0)$ and $\Omega(0) \cap\{(r, \theta): 0<r<1\}=\left\{(r, \theta): 0<r<1,-\frac{\pi}{4}+\delta_{2}(r)<\theta<\frac{\pi}{4}+\delta_{1}(r)\right\}$, where δ_{j} is a function on the interval $[0,1[$ such that
(i) δ_{j} is continuous on $\left[0,1\left[\right.\right.$ and of class C^{1} on $] 0,1[$;
(ii) $\delta_{j}(0)=0$ and $\left|\delta_{j}(r)\right|<\frac{\pi}{8}$ on $[0,1[$;
(iii) $\lim _{r \rightarrow 0} r \delta_{j}^{\prime}(r)=0$.

We need the last condition, because it holds if and only if $\Gamma_{j}(0)$ is of class C^{1} up to the origin. We set $\delta(r)=\delta_{1}(r)-\delta_{2}(r)$. It follows that

$$
\left(\frac{\pi}{4}+\delta_{1}(r)\right)-\left(-\frac{\pi}{4}+\delta_{2}(r)\right)=\frac{\pi}{2}+\delta(r) \longrightarrow \frac{\pi}{2} \quad(r \rightarrow 0)
$$

Hence the origin is a corner with right angle.
Now, we apply estimates of harmonic measure which were given originally by Ahlfors [1] and improved by Warschawski [7] and others. By using our notation, we express them as follows:

$$
\left\|\beta\left(\delta_{p_{0}}, \Omega(0) \cap R_{a}\right) \mid \partial R_{a}\right\| \leq C_{1} \exp \left(-\pi \int_{a}^{1} \frac{d r}{r \theta(r)}\right)
$$

where C_{1} denotes an absolute constant and $\theta(r)=\frac{\pi}{2}+\delta(r)$ and

$$
\left\|\beta\left(\delta_{p_{0}}, \Omega(0) \cap R_{a}\right) \mid \partial R_{a}\right\| \geq C_{2} \exp \left(-\pi \int_{a}^{1} \frac{d r}{r \theta(r)}\right)
$$

where C_{2} denotes a constant which depends on the total variations of δ_{1} and δ_{2}.
Substituting $\frac{\pi}{2}+\delta(r)$ for $\theta(r)$, we obtain

$$
\pi \int_{a}^{1} \frac{d r}{r \theta(r)}=-2 \log a-\frac{4}{\pi} \int_{a}^{1} \frac{\delta(r)}{1+\frac{2}{\pi} \delta(r)} \frac{d r}{r}
$$

We set

$$
\Delta(r)=\frac{\frac{4}{\pi} \delta(r)}{1+\frac{2}{\pi} \delta(r)}
$$

We denote by $V\left(I ; \delta_{j}\right)$ the total variation on an interval I of δ_{j} and set

$$
V(r)=V\left([r, 1] ; \delta_{1}\right)+V\left([r, 1] ; \delta_{2}\right) .
$$

Then we obtain the following main theorem:

Theorem 3. Let the origin be a corner with right angle.
(1) If there is a positive constant ϵ such that

$$
\int_{0}^{1} \exp \left(\int_{r}^{1} \Delta(s) \frac{d s}{s}+\epsilon V(r)\right) \frac{d r}{r}<+\infty
$$

then the origin is a laminar-flow stationary corner with right angle.
(2) If there is a positive constant ϵ such that

$$
\int_{0}^{1} \exp \left(\int_{r}^{1} \Delta(s) \frac{d s}{s}-\epsilon V(r)\right) \frac{d r}{r}=+\infty
$$

then the origin is a laminar-flow point.

Example. Let

$$
\delta(r)=\delta_{1}(r)-\delta_{2}(r)=\frac{A}{\log \left(\frac{1}{r}\right)}
$$

for small r, where A denotes a constant, and δ_{1} and δ_{2} are monotone functions satisfying (i) through (iii). Then $\int_{0}^{1} \delta(r)^{2} \frac{d r}{r}<+\infty$, and so

$$
\int_{0}^{1} \exp \left(\int_{r}^{1} \Delta(s) \frac{d s}{s}\right) \frac{d r}{r}<+\infty
$$

if and only if

$$
\int_{0}^{1} \exp \left(\frac{4}{\pi} \int_{r}^{1} \delta(s) \frac{d s}{s}\right) \frac{d r}{r}<+\infty
$$

Since the last inequality holds if and only if

$$
\int_{0}^{r_{0}}\left(\log \left(\frac{1}{r}\right)\right)^{\frac{4}{\pi} A} \frac{d r}{r}<+\infty
$$

for some $r_{0}<1$, the origin is a laminar-flow stationary corner with right angle if and only if $A<-\frac{\pi}{4}$.

The proof of Theorem 3 is complicated and long. We prove the first assertion by applying the Ahlfors distortion theorem which we have already mentioned before Theorem 3 as the first estimate of harmonic measure. Ahlfors [1] called it Die erste Hauptungleichung. In the paper he also discussed the opposite inequality, which he called Die zweite Hauptungleichung. This second inequality was improved extensively by Warschawski [7], Lelong-Ferrand [4], Jenkins and Oikawa [3] and Rodin and Warschawski [5]. We prove the second assertion by applying the second inequality formulated and proved by Warschawski.

REFERENCES

[1] Ahlfors L. V., Untersuchungen zur Theorie der konformen Abbildungen und der ganzen Funktionen, Acta Soc. Sci. Fenn.
Nova Ser. A. 1:9(1930), 1-40.
[2] Gustafsson B. and Sakai M., Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal. 22(1994), 1221-1245.
[3] Jenkins J. A. and Oikawa K., On results of Ahlfors and Hayman, Illinois J. Math. 15(1971), 664-671.
[4] Lelong-Ferrand J., Représentation conforme et transformations a intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955.
[5] Rodin B. and Warschawski S. E., Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn.
Ser. A. I. Math.2(1976), 467-500.
[6] Sakai M., Quadrature domains, Lecture Notes in Math. No.934, Springer-Verlag, Berlin, 1982.
[7] Warschawski S. E., On conformal mapping of infinite strips, Trans.
Amer. Math. Soc. 51(1942), 280-335.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo, 192-0397 JAPAN

