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1. HELE-SHAW FLOWS

We discuss a flow which is produced by injection of fluid into the
narrow gap between two parallel planes. We call it a Hele-Shaw flow.

A mathematical description of the flow is the following: Let $\Omega(0)$

be a bounded connected open set in the plane and let $p_{0}$ be a point
in $\Omega(0)$ . We define $\Omega(0)$ and $p_{0}$ as the projection of the averaged
initial blob of fluid and the injection point of fluid into one of the
two parallel planes, respectively. The Hele-Shaw flow $\{\Omega(t)\}t>0$ is
the monotone increasing family of bounded connected open sets $\Omega(t)$

such that

$- \frac{1}{2\pi}\frac{\partial G(x,p0\Omega(t))}{\partial n_{x}},=v_{n_{x}}$

for every $t\geq 0$ and every point $x$ on the boundary $\partial\Omega(t)$ of $\Omega(t)$ ,
where $c(x,p_{0}, \Omega(t))$ denotes the Green function (of the Dirichlet
problem for the Laplace operator) for $\Omega(t)$ with pole at $p_{0},$ $\partial/\partial n_{x}$

denotes the outer normal derivative at $x\in\partial\Omega(t)$ and $v_{n_{x}}$ denotes
the velocity of $\partial\Omega(t)$ at $x$ in the direction of outer normal. Here we
have assumed that $\partial\Omega(t)$ is smooth for every $t\geq 0$ and the func-
tion $t=t(x)$ which is defined by $x\in\partial\Omega(t)$ is also smooth. Thus,
the problem of the Hele-Shaw flows with a free boundary is to find
$\{\Omega(t)\}_{t}>0$ which satisfies the equation above for given $\Omega(0)$ and $p_{0}$ .

It is very hard to discuss the problem as formulated above, because
we do not know a priori the smoothness of $\partial\Omega(t)$ and $t(x)$ even if
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the boundary $\partial\Omega(0)$ of the initial domain $\Omega(0)$ is sufficiently smooth.
Therefore, we need another formulation of the problem. If we assume
that $\partial\Omega(t)$ and $t(x)$ are sufficiently smooth, then we can easily prove
that, for every $t>0,$ $\Omega(t)$ satisfies

$\int_{\Omega(0)}s(x)dx+ts(p\mathrm{o})\leq\int_{\Omega(t)}S(X)d_{X}$

for every integrable and subharmonic function $s$ in $\Omega(t)$ . That is to

say, the Hele-Shaw flow is a family $\{\Omega(\theta)\}t>0$ of quadrature domains
$\Omega(t)$ of $\lambda|\Omega(0)+t\delta_{p_{0}}$ , where $\lambda$ denotes the two-dimensional Lebesgue

measure and $\delta_{p_{0}}$ denotes the unit one-point measure at $p_{0}$ . In this
formulation, we do not need the smoothness of $\partial\Omega(t)$ and $t(x)$ . The

existence and uniqueness of the solution are known. For more detailed
discussions, see e.g. Gustafsson and Sakai [2] and Sakai [6].

We take a point $x_{0}$ on $\partial\Omega(0)$ and discuss the shape of $\Omega(t)$ around
$x_{0}$ for small $t>0$ . If $x_{0}\in\partial\Omega(t)$ for some $t>0$ , then $x_{0}\in\partial\Omega(s)$

for every $s$ satisfying $0<s<t$ . We call such a point $x_{0}$ a stationary

point. If $x_{0}$ is not a stationary point, then $x_{0}\in\Omega(t)$ for every $t>0$ ,

In other words, $x_{0}$ is contained in $\Omega(t)$ right immediately after the
initial time.

To give a more concrete discussion, we treat a corner with interior
angle $\varphi$ . Assume that $(\partial\Omega(\mathrm{o}))\cap B$ is a continuous simple arc passing
through $x_{0}$ for a small disk $B$ with center at $x_{0}$ . Assume further that
$B\backslash (\partial\Omega(\mathrm{o}))$ consists of two connected components and $\Omega(0)\cap B$ is
one of them. We express $(\partial\Omega(\mathrm{o}))\cap B$ as the union of two continuous
simple arcs $\Gamma_{1}(0)$ and $\Gamma_{2}(0);(\partial\Omega(\mathrm{o}))\cap B=\Gamma_{1}(0)\cup\Gamma_{2}(0)$ and $\Gamma_{1}(0)\cap$

$\Gamma_{2}(0)=\{x_{0}\}$ , and assume further that both $\Gamma_{1}(0)$ and $\Gamma_{2}(0)$ are of

class $C^{1}$ and regular up to the endpoint $x_{0}$ . Then the intersection
of $\Omega(0)$ and the circle with center at $x_{0}$ and with small radius is a
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circular arc. We say that $x_{0}$ is a corner with interior angle $\varphi$ if the
ratio of the length of the circular arc to the radius tends to $\varphi$ as the
radius tends to $0$ . It follows that $0\leq\varphi\leq 2\pi$ . If $\varphi=\pi$ , we interpret
$x_{0}$ as a smooth boundary point of $\Omega(0)$ . If $\varphi=\pi/2$ , we say that $x_{0}$

is a corner with right angle.
If $x_{0}$ is a corner with interior angle $\varphi$ , we can give a more accurate

discussion than whether it is a stationary point or not. We introduce
the following notion.

The corner $x_{0}$ is called a laminar-flow stationary corner with inte-
rior angle $\varphi$ , if there is a small disk $B_{0}$ with center at $x_{0}$ and small
$t_{0}>0$ such that $(\partial\Omega(t))\cap B_{0}$ is a continuous simple arc for every $t$

with $0<t<t_{0}$ and $(\partial\Omega(t))\cap B_{0}$ can be expressed as the union of two
continuous simple arcs $\Gamma_{1}(t)$ and $\Gamma_{2}(t),$ $(\partial\Omega(t))\cap B_{0}=\Gamma_{1}(t)\cup\Gamma_{2}(t)$

and $\Gamma_{1}(t)\cap\Gamma_{2}(t)=\{x_{0}\}$ , and both $\Gamma_{1}(t)$ and $\Gamma_{2}(t)$ are of class
$C^{1}$ and regular up to the endpoint $x_{0}$ , and real-analytic except for
$x_{0}$ . Furthermore $x_{0}$ is a corner of $\partial\Omega(t)$ with interior angle $\varphi$ , and
$\varphi$ does not depend on $t$ satisfying $0<t<t_{0}$ . It follows that
$(\partial\Omega(S)\cap B_{0})\backslash \{x_{0}\}\subset\Omega(t)\cap B_{0}$ for every $s$ with $0\leq s<t$ .

The corner $x_{0}$ is called a laminar-flow point, if there is a small disk
$B_{0}$ with center at $x_{0}$ and small $t_{0}>0$ such that $(\partial\Omega(t))\cap B_{0}$ is a
regular real-analytic simple arc for every $t$ with $0<t<t_{0}$ . In this
case, $(\partial\Omega(S)\cap B_{0})\subset\Omega(t)\cap B_{0}$ for ev\’ery $s$ with $0\leq s<t$ .

We have already announced the following theorems:

Theorem A. Let $x_{0}\in\partial\Omega(0)$ be a corner with interior angle $\varphi$ .

(1) If $0\leq\varphi<\pi/2_{f}$ then $x_{0}$ is a laminar-flow stationary corner with
interior angle $\varphi$ .

(2) If $\varphi=\pi/2_{f}$ then $x_{0}$ is a laminar-flow stationary corner with
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right angle or a laminar-flow point.

(3) If $\pi/2<\varphi<2\pi$ , then $x_{0}$ is a laminar-flow point.

Theorem B. Let $x_{0}\in\partial\Omega(0)$ be a corner with right angle.

(1) There is an example of corner $x_{0}$ which is a laminar-flow sta-
tionary corner with right angle.

(2) If $\Gamma_{1}(0)$ and $\Gamma_{2}(0)$ are of class $C^{1,\alpha}$ or $x_{0}$ is a Lyapunov-Dini
corner with right angle, then $x_{0}$ is a laminar-flow point.

In this paper, we give a more detailed discussion and give a sufficient

condition for a corner with right angle to be a laminar-flow stationary

corner with right angle and also give a sufficient condition to be a
laminar-flow point. Each of them is not a necessary and sufficient
condition, but very close to a necessary and sufficient condition.

2. GENERAL ARGUMENTS

We have already interpreted $\Omega(t)$ as the quadrature domain of
$\lambda|\Omega(0)+t\delta_{p_{0}}$ . For the sake of simplicity, we write $\Omega(0)$ for $\lambda|\Omega(0)$ ,

that is to say, $\Omega(t)$ is a quadrature domain of $\Omega(0)+t\delta_{p_{0}}$ . Now we
introduce the restricted quadrature domain and measure of $D+\mu$ ,

where $D$ is a bounded domain and $\mu$ is a finite positive measure sup-
ported in $D$ . Let $R$ be a domain, which may not be bounded, with
smooth boundary. We call this domain a restriction domain. For

the sake of simplicity, we assume that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu\subset D\cap R$ and $D\cap R$ is
connected.

We call $(\Omega_{R,R}l^{\text{ノ}})$ the restricted quadrature domain and measure in
$R$ of $D\cap R+\mu$ if
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(i) $\Omega_{R}$ is a bounded domain containing $D\cap R$ ;
(ii) $\nu_{R}$ is a finite positive measure on $(\partial\Omega_{R})\backslash (R\cap\partial\Omega_{R})$ ;
(iii)

$\int_{D\cap R}s(X)d_{X}+\int sd\mu\leq\int_{\Omega_{R}}s(X)d_{X}+\int sd\mathcal{U}_{R}$

for every integrable and subharnlonic function $s$ on $\overline{\Omega R}\backslash (R\cap$

$\partial\Omega_{R})$ .

Here we interpret lノ R as $0$ if $(\partial\Omega_{R})\backslash (R\cap\partial\Omega_{R})$ is empty and we say
that $s$ is subharmonic on $\overline{\Omega_{R}}\backslash (R\cap\partial\Omega_{R})$ if $s$ is subharmonic in some
open set containing $\overline{\Omega R}\backslash (R\cap\partial\Omega_{R})$ . If $\mu>0$ , then there exists a
smallest $\Omega_{R}$ . We always treat the case that $(\Omega_{R,R}l^{\text{ノ}})$ is determined
uniquely. For the properties of the restricted quadrature domain and
measure $(\Omega_{R,R}\iota^{\text{ノ}})$ , see Gustafsson and Sakai [2, Sect.2] and Sakai [6,
Chap.I, Sect.4]. Simple facts which we use afterward are

$D\cap R\subset\Omega_{R}\subset\Omega\cap R$ ,

where $\Omega$ denotes the quadrature domain of $D+\mu$ and

$\beta(\mu, D\cap R)|\partial R\leq U_{R}\leq\beta(\mu, \Omega_{R})|\partial R$,

where $\beta(\mu, D\cap R)$ denotes the balayage measure of $\mu$ onto the bound-
ary of $D\cap R$ .

Let $x_{0}$ be a corner with right angle and let $R_{a}=\{y\in \mathrm{R}^{2}$ : $|y-$

$x_{0}|>a\}$ be a restriction domain. Let $(\Omega_{a}(t), \mathcal{U}_{a}(t))$ be the restricted
quadrature domain and measure in $R_{a}$ of $\Omega(0)\cap R_{a}+t\delta_{p_{0}}$ . Then we
obtain the following proposition:
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Proposition 1. $x_{0}$ is a laminar-flow stationary corner with right

angle if and only if
$\lim_{aarrow}\inf_{0}\frac{||\nu_{a}(t)||}{a^{2}}=0$

for some $t>0$ .

Replacing $D$ with $\Omega(0),$ $R$ with $R_{a},$ $\mu$ with $t\delta_{p_{0}}$ and $\nu_{R}$ with $\nu_{a}(t)$

in the first inequality before Proposition 1, we obtain

$\beta(t\delta_{p_{0}}, \Omega(\mathrm{o})\mathrm{n}R_{a})|\partial R_{a}\leq\nu a(\mathrm{t})$ .

Since
$\beta(t\delta_{p_{0}}, \Omega(\mathrm{o})\cap R_{a})=t\beta(\delta_{p0}, \Omega(\mathrm{o})\cap R_{a})$ ,

we obtain the following corollary:

Corollary 2. If
$\lim_{aarrow}\inf_{0}\frac{||\beta(\delta_{p_{0}},\Omega(0)\cap Ra)|\partial R_{a}||}{a^{2}}>0$ ,

then $x_{0}$ is a larninar-flow point.

3. CONCRETE RESULTS

From now on, we discuss very concrete cases. We assume that
$x_{0}=0,$ $p_{0}=(1,0)\in\Omega(0)$ and

$\Omega(0)\cap\{(r, \theta) : 0<r<1\}=\{(r, \theta) : 0<r<1, -\frac{\pi}{4}+\delta_{2}(r)<\theta<\frac{\pi}{4}+\delta 1(r)\}$ ,

where $\delta_{j}$ is a function on the interval [$0,1$ [such that

(i) $\delta_{j}$ is continuous on [$0,1$ [and of class $C^{1}$ on ] $0,1$ [;

(ii) $\delta_{j}(0)=0$ and $| \delta_{j}(r)|<\frac{\pi}{8}$ on [$0,1$ [;
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(iii) $\lim_{rarrow 0}r\delta_{j}’(r)=0$ .

We need the last condition, because it holds if and only if $\Gamma_{j}(\mathrm{O})$ is of
class $C^{1}$ up to the origin. We set $\delta(r)=\delta_{1}(r)-\delta_{2}(r)$ . It follows that

$( \frac{\pi}{4}+\delta_{1}(r))-(-\frac{\pi}{4}+\delta_{2}(r))=\frac{\pi}{2}+\delta(r)arrow\frac{\pi}{2}$ $(rarrow 0)$ .

Hence the origin is a corner with right angle.
Now, we apply estimates of harmonic measure which were given

originally by Ahlfors [1] and improved by Warschawski [7] and others.
By using our notation, we express them as follows:

$|| \beta(\delta_{p0}, \Omega(\mathrm{o})\cap R_{a})|\partial R_{a}||\leq C_{1}\exp(-\pi\int^{1}\frac{dr}{r\theta(r)})$ ,

where $C_{1}$ denotes an absolute constant and $\theta(r)=\frac{\pi}{2}+\delta(r)$ and

$|| \beta(\delta_{p}\Omega(0’ 0)\cap R_{a})|\partial R_{a}||\geq C_{2}\exp(-\pi\int_{a}^{1}\frac{dr}{r\theta(r)})$ ,

where $C_{2}$ denotes a constant which depends on the total variations
of $\delta_{1}$ and $\delta_{2}$ .

Substituting $\frac{\pi}{2}+\delta(r)$ for $\theta(r)$ , we obtain

$\pi\int_{a}^{1}\frac{dr}{r\theta(r)}=-2\log a-\frac{4}{\pi}\int_{a}^{1}\frac{\delta(r)}{1+\frac{2}{\pi}\delta(r)}\frac{dr}{r}$.

We set
$\triangle(r)=\frac{\frac{4}{\pi}\delta(r)}{1+\frac{2}{\pi}\delta(r)}$ .

We denote by $V(I;\delta_{j})$ the $\mathrm{t}\mathrm{o}\mathrm{t}_{\mathrm{J}}\mathrm{a}1$ variation on an interval $I$ of $\delta_{j}$ and
set

$V(r)=V([r, 1];\delta 1)+V([r, 1];\delta 2)$ .

Then we obtain the following main theorem:
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Theorem 3. Let the origin be a corner with right angle.

(1) If there is a positive constant $\epsilon$ such that

$\int_{0}^{1}\exp(\int_{r}^{1}\triangle(s)\frac{ds}{s}+\epsilon V(r))\frac{dr}{r}<+\infty$ ,

then the origin is a laminar-flow stationary corner with right
angle.

(2) If there is a positive constant $\epsilon$ such that

$\int_{0}^{1}\exp(\int_{r}^{1}\triangle(s)\frac{ds}{s}-\epsilon V(r))\frac{dr}{r}=+\infty$ ,

then the origin is a laminar-flow point.

Example. Let

$\delta(r)=\delta_{1}(r)-\delta_{2}(r)=\frac{A}{\log(\frac{1}{r})}$

for small $r$ , where $A$ denotes a constant, and $\delta_{1}$ and $\delta_{2}$ are monotone
functions satisfying (i) through (iii). Then $\int_{0}^{12_{\frac{dr}{r}}}\delta(r)<+\infty$ , and so

$\int_{0}^{1}\exp(\int_{r}^{1}\triangle(S)\frac{ds}{s})\frac{dr}{r}<+\infty$

if and only if

$\int_{0}^{1}\exp(\frac{4}{\pi}\int_{r}^{1}\delta(s)\frac{ds}{s})\frac{dr}{r}<+\infty$.

Since the last inequality holds if and only if

$\int_{0}^{r_{0}}(\log(\frac{1}{r}))^{\frac{4}{\pi}A}\frac{dr}{r}<+\infty$
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for some $r_{0}<1$ , the origin is a laminar-flow stationary corner with
right angle if and only if $A<- \frac{\pi}{4}$ .

The proof of Theorem 3 is complicated and long. We prove the first
assertion by applying the Ahlfors distortion theorem which we have
already mentioned before Theorem 3 as the first estimate of harmonic
measure. Ahlfors [1] called it Die erste Hauptungleichung. In the pa-
per he also discussed the opposite inequality, which he called Die
zweite Hauptungleichung. This second inequality was improved ex-
tensively by Warschawski [7], Lelong-Ferrand [4], Jenkins and Oikawa
[3] and Rodin and Warschawski [5]. We prove the second asser-
tion by applying the second inequality formulated and proved by
Warschawski.
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