
Short time behaviors of curves and surfaces
moved by surface diffusion

Kazuo Ito 伊藤 $-$ 男
Department of Mathematics

Faculty of Science
Hokkaido University

Sapporo 060-0810, Japan

1 Introduction and main results
We consider the following geometric evolution $\mathrm{i}^{\backslash }\mathrm{a}\mathrm{w}$ of the form

$\{$

$V=-\Delta_{\mathrm{r}(t)}H$ on $\Gamma(t),$ $t>0$ ,
$\Gamma(0)=\Gamma 0$ . (1)

Here $t$ denotes the time variable and $\Gamma(t)$ denotes an unknown evolving hypersurface in $\mathrm{R}^{n}$

with $n\geq 2$ (of course, $\Gamma(t)$ is a curve when $n=2$) $;\Gamma_{0}$ is a given initial hypersurface (curve)
in $\mathrm{R}^{n}$ . For each $t>0$ and $x\in\Gamma(t)$ , the quantities $V=V(t, x)$ and $H=H(t, x)$ denote the
outward normal velocity and the outward mean curvature of $\Gamma(t)$ at $x$ , respectively. The
operator $\Delta_{\Gamma(t)}$ stands for the Laplace-Beltrami operator on $\Gamma(t)$ . In particular $\Delta_{\Gamma(t\rangle}=\partial_{s}^{2}$

when $n=2$ , where $s$ is the arc-length parameter of $\Gamma(t)$ . The law (1) is called the surface
diffusion flow equation.

The solution $\Gamma(t)$ of (1) describes motion of interface in a binary alloy system. Equation
(1) was first proposed by Mullins [15] to explain thermal grooving in material sciences.
Also Davi and Gurtin [5] derived (1) from a view point of thermodynamics and continuum
mechanics (see also Cahn and Taylor [1]). Recently, J. W. Cahn, C. M. Elliott and
A. Novick-Cohen [2] linked (1) with the Cahn-Hilliard equation with a concentration
dependent mobility via formal singular limit.
Parametrization of (1) tells us that (1) is a nonlinear fourth order parabolic equation.
Generally speaking, behaviors of solutions of fourth order equations are less known than
those of second order equations.

The purpose here is to study the qualitative behavior of the solution $\Gamma(t)$ of (1) in a short
time.

Several mathematical and numerical studies for (1) show remarkable characteristic phe-
nomena, for example, loss of embeddedness and loss of convexity. The loss of both em-
beddedness and convexity reflects the fact that a fourth order parabolic equation does
not fulfill the maximum or comparison principle. In fact, this principle is satisfied in the
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second order models without nonlocal effect such as the mean curvature flow equation

$\{$

$V=H$ on $\Gamma(t),$ $t>0$ ,

$\Gamma(0)=\Gamma 0$ .
(2)

The maximum principle prevents the developments of self-intersections (Grayson [11] for
$n=2)$ and preserves convexity (Gage and Hamilton [8] for $n=2$ and Huisken [12] for
$n\geq 3)$ of solutions of (2).

The loss of embeddedness for (1) was conjectured by Elliott and Garcke [6], numerically
established by Escher, Mayer and Simonett [7]. When $n=2$ Giga and the author [9]
mathematically proved this phenomena. The result is as follows.

Theorem 1 ( $LosS$ of $embeddedneS\mathit{8}$). There $i\mathit{8}$ an embedded initial closed curve $\Gamma_{0}$ in $\mathrm{R}^{2}$

such that the smooth solution $\Gamma(t)$ of (1) starting from $\Gamma_{0}lo\mathit{8}es$ its embeddedness during
a time interval $(t_{0}, t_{1})$ with $t_{0}>0$ determined by $\Gamma_{0}$ .

Recently this result is extended to higher dimensional version by Mayer and Simonett
[14].

On the other hand J. Escher proposed a conjecture in the conference “Nonlinear Evolution
Equation” held in the end of June of 1997 in Oberwolfach that the convexity of the solution
$\Gamma(t)$ of (1) is not necessarily preserved. This phenomenon was also suggested by numerical
studies by B. D. Coleman, R. S. Falk and M. Moakher $[3, 4]$ . The rigorous proofs for the
loss of convexity were obtained by Giga and the author [10] for closed curves and by the
author [13] for compact hypersurfaces. The result is as follows.

Theorem 2 ( $Los\mathit{8}$ of convexity; [10] for $n=2,$ $[13]$ for $n\geq 3$). There is a strictly convex
$clo\mathit{8}ed$ compact initial hypersurface $\Gamma_{0}$ such that the smooth solution $\Gamma(t)$ of (1) starting
from $\Gamma_{0}lose\mathit{8}$ its convexity during a time interval $(t_{0}, t_{1})$ with $t_{0}>0$ determined by $\Gamma_{0}$ .

Let us briefly mention the organization of this note. In Section 2 we state a parametriza-
tion of (1) near a fixed compact reference hypersurface $\Sigma$ , which shows that (1) is described
by a fourth order nonlinear parabolic equation of a unknown signed distance function from
$\Sigma$ . This equation can be given in a quite intrinsic manner. Section 3 is devoted to ex-
plain the idea of the proof of Theorem 1 by specifying $\Sigma$ as a dumbbell like closed curve
immersed in $\mathrm{R}^{2}$ . Section 4 explains the idea of the proof of Theorem 2. The main part
is to give a way of constructing a deformation for smooth compact strictly convex hyper-
surfaces which lose convexity in a short time without loosing their smoothness when they
move by their surface diffusion.

2 Parametrization
Following [7], we introduce a parametrization for (1). Let $\Sigma$ be a smooth, compact,
closed, embedded, oriented hypersurface in $\mathrm{R}^{n}$ and let $\{U_{\beta}, \psi_{\beta}\}_{\beta=1}^{\overline{\beta}}$ be an atlas on $\Sigma$ . For
$s\in U_{\beta}\subset\Sigma,$ $\psi_{\beta}(s)=(u_{\beta}^{1}, \cdots, u_{\beta})n-1\in U_{\beta}’:=\psi_{\beta}’(U\beta)\subset \mathrm{R}^{n-1}$ is called the local coordinate
of $s$ . Let $z$ be the induced metric on $\Sigma$ from the Euclidean metric in $\mathrm{R}^{n}$ and let $h$ be the
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second fundamental quantity of $\Sigma$ . In local coordinates they are written as

$z= \sum_{ij=}^{n-}11Z_{\beta,ij}du\beta i\otimes du_{\beta}^{j}$, $h= \sum_{i,j=1}^{n-1}h\beta,ijdu\beta i\otimes du_{\beta}^{j}$

at $s\in U_{\beta}$ , where

$z_{\beta,ij}= \frac{\partial s}{\partial u_{\beta}^{i}}\cdot\frac{\partial s}{\partial u_{\beta}^{j}}$ , $h_{\beta,ij}= \frac{\partial^{2}s}{\partial u_{\beta^{u_{\beta}^{j}}}^{i}}\cdot\nu(s)$

and $\nu(s)$ is the outward normal of $\Sigma$ at $s$ . Hereafter, if any confusion may not be caused,
then using Einstein’s convention and omitting the index $\beta$ we often simply write them as

$z=z_{ij}dui\otimes du^{j}$ , $h=h_{ij}du^{i}\otimes du^{j}$ .

Throughout this paper we regard $\Sigma$ as a Riemannian manifold with the metric $z$ . We call
$\Sigma$ the reference hypersurface.

Let $\rho:[0, T)\cross\Sigmaarrow \mathrm{R}$ be a smooth $8\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{r}$ field whose absolute value is small enough
and we assume that $\Gamma(t),$ $t\in[0, T)$ , is close to $\Sigma$ and is written in terms of $\rho(t, s)$ with
$\rho(0, S)=\rho_{0}(S)$ as

$\Gamma(t)=\{S+\rho(t, S)\nu(_{S})\in \mathrm{R}^{n};s\in\Sigma\}$ .
We define two geometric quantities of $\Sigma$ :

$w(r)=w_{ij}(r)dui\otimes du^{j}:=(z_{i}j-2hijr+z^{k\iota}h_{ki}h\iota jr^{2})dui\otimes du^{j}$ for $r\in \mathrm{R}$,
$\sigma(\rho, d\rho):=w(\rho)+d\rho\otimes d\rho$ ,

where $(z^{ij})=(z_{ij})^{-1}$ and $d \rho=\frac{\partial\rho}{\partial u}\dot{.}du^{i}$ . Note that $w(\rho)$ and $\sigma(\rho, d\rho)$ are also metrics on
$\Sigma$ as long as $|\rho|$ is small enough. Thus we can consider the geometric operators acting on
scalar fields $\Psi$ on $\Sigma$ such as $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{w(f)},$ $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}_{w}(f),$ $\Delta_{w(f)}$ , and $\Delta_{\sigma(f,df}$) for small scalar fields
$f$ on $\Sigma$ . They are given in local coordinates by

$\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{w(f)}\Psi=w(ijf)\frac{\partial\Psi}{\partial u^{j}}\frac{\partial}{\partial u^{i}}$,

$\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{S}_{w(f})\Psi=(\frac{\partial^{2}\Psi}{\partial u^{i}\partial u^{j}}-W_{ij}^{k}(f, df)\frac{\partial\Psi}{\partial u^{k}})du^{i}\otimes du^{j}$,

$\Delta_{w(f)}\Psi=w^{ij}(f)(\frac{\partial^{2}\Psi}{\partial u^{i}\partial u^{j}}-W_{ij}k(f, df)\frac{\partial\Psi}{\partial u^{k}})$ ,

$\Delta_{\sigma(f,df)}\Psi=\sigma^{ij}(f, df)(\frac{\partial^{2}\Psi}{\partial u^{i}\partial u^{j}}-\gamma^{k}ij(f, df, \nabla df)\frac{\partial\Psi}{\partial u^{k}})$,

where $(w^{ij}(f)):=(w_{ij}(f))-1,$ $(\sigma^{ij}(f, df)):=(\sigma_{ij}(f, df))-1;W_{ij}^{k}(f, df)$ and $\gamma_{ij}^{k}(f, df, \nabla df)$

with $i,j,$ $k=1,2,$ $\cdots,$ $n-1$ are the Christoffel symbols of $w(f)$ and $\sigma(f, df)$ , respectively.
We also define

$L=L(\rho, d\rho):=(1+w(\rho)[\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\rho,\mathrm{g}\mathrm{r})\mathrm{a}\mathrm{d}w(\rho w(\beta)\rho])1/2$ , (3)
$w’(r)=w_{ij}’(r)du^{i}\otimes du^{j}:=(-2h_{ij}+2z^{kl}h_{k}ih_{lj}r)dui\otimes du^{j}$,
$w’(r)w^{*}(r):=w_{ij}’(r)w^{i}(jr)$ (4)

for $r\in \mathrm{R}$ with $|r|$ small enough.

37



Then, as computed in [7] we can have the partial differential equation of $\rho(t, s)$ de-
scribed by local coordinates which parametrizes (1). But this equation can be rewritten
in more intrinsic way by making further computations. We present here the equation of
$\rho(t, s)$ in an intrinsic manner without detailed computations:

$\{$

$\rho_{t}$ $=$ $-L\Delta_{\sigma(\rho,d\rho)}[L^{-3}\{L^{2}\Delta(\rho)\rho-\mathrm{H}\mathrm{e}\mathrm{S}\mathrm{s}w(\rho)\rho[w\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{w(\rho)}\rho, \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\rho w(\beta)]$

$- \frac{1}{2}w’(\rho)[\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\rho, \mathrm{g}\mathrm{r}\mathrm{a}w(\beta)(\rho)\mathrm{d}_{w}\rho]-\frac{1}{2}L^{2/}w(\rho)w*(\rho)\}]$ , $t>0,$ $s\in\Sigma$ ,

$\rho(0, s)$ $=$ $\rho_{0}(s)$ , $s\in\Sigma$ .

(5)

3 Idea of the proof of Theorem 1

Here we summarize an idea of the proof of Theorem 1. The detailed proof is given in [9].
First let us point out that for the case $n=2$ the equation (5) is simply written in the

form

$\{$

$\rho_{t}+J^{-4}\rho_{uuuu}+P\rho_{uuu}+Q=0,0<t<T,$ $u\in \mathrm{T}$ ,
$\rho(0, u)=\rho \mathrm{o}(u),$ $u\in \mathrm{T}$ .

(6)

Here $\mathrm{T}:=\mathrm{R}/2l\mathrm{Z}$ and $2l$ is the total length of the reference curve $\Sigma$ ; we choose $u$ as the
arc-length parameter of $\Sigma$ . $J$ is the line element of $\Gamma(t)$ and its explicit form is

$J=(\rho_{u}+(21-h\rho)^{2})^{1}/2$ .
$P$ and $Q$ are polynomials with arguments $(1-h\rho)^{-}1,$ $J^{-}1,$ $h,$ $hu’ huu’ h_{u}uu’\rho,$ $\rho_{u}$ , and $\rho_{uu}$ .
We note that $h$ toghther with its derivatives $h_{u},$ $h_{uu},$ $h_{uuu}$ is continuous and bounded on
$\mathrm{T}$ since $\Sigma$ is smooth.

We show that there is an evolving closed curve which pinches in finite time, even if
initial curve is simple. Let us explain our idea of the proof. We specify the reference
curve $\Sigma$ as a dumbbell like curve symmetric with respect to both $x$-axis and $y$-axis and
its neck is so thin so that it is just a segment on the $x$-axis. It is normalized by setting
$s(\mathrm{O})=s(l)=\mathrm{t}\mathrm{h}\mathrm{e}$ origin $(0,0)$ . Let $\Gamma_{0}=\{s(u)+\rho_{0}(u)\nu(u)\in \mathrm{R}^{2};u\in \mathrm{T}\}$ with $\rho_{0}(u)>0$

be symmetric with respect to both $x$-axis and $y$-axis and assume that $\rho_{0}(u)$ takes its
global isolated minimum at $u=0$ and $l$ . We then establish a unique local existence
result in $L^{2}$-framework whose precise statement is omitted here. Moreover we give a fact
that by symmetry of the equation (6), the solution $\Gamma(t)=\{s(u)+\rho(t, u)\nu(u);u\in \mathrm{T}\}$

stays symmetric with respect to both $x$-axis and $y$-axis. In particular, $\rho_{u}(t, 0)=0$ and
$\rho_{uuu}(t, 0)=0$ . Thus if $p(t, u)$ solves (6), then

$\rho_{t}(0,0)=-\partial_{u}^{4}\rho(\mathrm{o}, \mathrm{o})+3(\partial_{u}^{2}\rho(\mathrm{o}, 0))^{3}$ .

Thus, by the fundamental theorem of calculus,

$\rho(t, \mathrm{O})$ $=$ $\rho(0,0)+\rho_{t}(\mathrm{o}, 0)t+\int_{0}^{t}\int_{0}^{\tau}\rho_{\sigma}\sigma(\sigma, 0)d\sigma d\mathcal{T}$

$\leq$
$\rho(\mathrm{o}, 0)+(-\partial_{u}^{4}\rho(0, \mathrm{o})+3_{\backslash ^{\partial_{u}^{2}}}’\rho(\mathrm{o}, 0))3)t+t\cdot\sup_{0,t\in \mathrm{T}}|2\rho ttt\in[\neg,u(\mathrm{t}, u)|$

, (7)

where $\overline{t}$ is taken so that $\rho(t, u)$ exists for $[0, t]$ . Roughly speaking, if $\rho(0,0)$ is sufficiently
small and $-\partial_{u}^{4}\rho(0, \mathrm{o})+3(\partial_{u}^{2}\rho(\mathrm{o}, 0))^{3}<0$ , then $\rho(t, 0)$ may be nagative for $t$ between two
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roots of the quadratic equation of $t$ : the $\mathrm{R}.\mathrm{H}$.S. of (7) $=0$ , which will imply a pinching of
$\Gamma(t)$ .

We shall state our result rigorously in the following. To do this, we define a special
$(C^{\infty})$ reference curve $\Sigma$ . This is parametrized by

$s(u)=(s^{1}(u), s^{2}(u))$ for $u\in \mathrm{T}=\mathrm{R}/’(2l\mathrm{z})$

satisfying

$\{$

$s^{1}(u)=-s^{1}(-u)$ , $0\leq u\leq l$ ,
$s^{2}(\eta)=S^{2}(-u)$ , $0\leq u\leq l$ ,
$s(u)=(u, 0)$ , $0\leq u\leq l/4$ ,
$s_{u}^{1}(u)>0$ , $0\leq u\leq l/2$ ,
$s^{1}(l/2+u)=s^{1}(l/2-u)$ , $0\leq u\leq l/2$ ,
$s^{2}(u)>0$ , $l/4<u<l/2$ ,
$s^{2}(l/2+u)=-S^{2}(l/2-u)$ , $0\leq u\leq l/2$ ,

where $u$ is taken as the arclength parameter of $\Sigma$ . We define a set of functions in $\mathrm{T}$

depending on positive parameters $N$ and $\epsilon$ :

$D_{0}(N_{\mathit{6}},)$ $=$ { $\rho_{0}$ : smooth; $\rho_{0}(-u)=\rho_{0}(u)=\rho_{0}(l-u)$ , $\rho_{0}(u)>0$ $(\forall u\in \mathrm{T})$ ,
$||\rho 0||_{H^{9}()}\mathrm{T}\leq N$, $\rho_{0}(0)\leq \mathcal{E}$ , $\rho_{0}^{(4)/}(0)-3\rho_{0’}(0)^{3}>0$ ,
$\rho_{0}(u)$ attains its global minimum at $u=0$}.

Note that closed curves $\Gamma_{0}$ parametrized by $s(u)+\rho_{0}(u)_{\mathcal{U}()}u$ with $\rho_{0}\in D_{0}(N, \epsilon)$ are simple
in $\mathrm{R}^{2}$ . A typical result is:

Theorem 3 (Pinching of evolving closed $curve\mathit{8}$). For any $N>0$ depending on $\Sigma$ , there
is an $\epsilon_{0}>0_{j}$ for any $\epsilon\in(0,\epsilon_{0})$ and any $\rho_{0}\in D_{0}(N, \epsilon)\mathrm{z}$ there are $t_{0}\in(0, T_{1}(N))$ (where
$T_{1}(N)$ is an existing time of the $\mathit{8}olution$ of (6)$)$ and $t_{1}(>t_{0})$ such that for initial simple
$clo\mathit{8}ed$ curve $\Gamma_{0}$ with parametrization

$\Gamma_{0}=\{s(u)+\rho \mathrm{o}(u)\nu(u);u\in \mathrm{T}\}$ ,

the solution curve $\Gamma(t)$ with parametrization

$\Gamma(t)=\{s(u)+\rho(t, u)\nu(u);u\in \mathrm{T}\}$ , $t\in[0, T_{1}(N)]$ ,

where $d\in D_{\tau_{1(}}N$) $(N)$ is the unique solution of $(\theta),$ $cea\mathit{8}e\mathit{8}$ to be simple for. at least $t_{0}<$

$t< \min(t_{1,1}\tau(N))$ .

This result looks stronger than the one presented in [9] in the sense that $\rho_{0}$ is taken
arbitrary but clearly the proof in [9] yields this result.

4 Idea of the proof of Theorem 2
Here we summarize the strategy to prove Theorem 2. The datailed proof is given in
$[10, 13]$ . For consistency of the descriptions we only consider the case that $\Gamma(t)$ are
compact hypersurfaces, that is, $n\geq 3$ . We set the refernce hypersurface $\Sigma$ to be convex.
Then we have:
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Lemma 4 Let $\Sigma$ be a $\mathit{8}mooth$, compact, convex, $clo\mathit{8}ed$, embedded, oriented $hyper\mathit{8}urface$

in $\mathrm{R}^{n}$ . Then,
(i) $w(r)i\mathit{8}$ a metric on $\Sigma$ for $r\geq 0$ ,
(ii) $\sigma(f, df)$ is a metric on $\Sigma$ for nonnegative (at least) $C^{1_{-\mathit{8}}}calar$ field $f=f(s)$ on $\Sigma$ .

We state the local existence theorem of (5) for positive initial data. The differences
between the local existence theorem in [7] and ours is that our theorem uses the convex
reference hypersurface $\Sigma$ , which enable us to treat large magnitude of positive initial
data $\rho_{0}(s)$ . This advantage is useful in the proof of Theorem 2. Another difference is
that our local existence theorem is established in a different category from that of [7],
that is, the local existence theorem in [7] is established in the framework of t-continuous
and $s$-little H\"older continuous regularity whereas our theorem is in the framework of the
type $c^{[m/4]\alpha}+\alpha,m+4(\Sigma)$ for an integer $m\geq 4$ and $0<\alpha<1/4$ , where the symbol $[q]$

denotes the largest integer less than or equal to $q$ . Our theorem also explicitly gives an
information how the existence time depends on initial data, which is also useful in the
proof of Theorem 2.

Theorem 5 Let $m\geq 4$ be an integer and $0<\alpha<1/4$ . Let $\rho_{0}\in C^{m+4\alpha}(\Sigma)$ with $\rho_{0}(s)>0$

$f\dot{o}rs\in\Sigma$ . Set
$m0= \min\rho 0s\in\Sigma(s)>0$ . (8)

Then there are positive constants $T(||\rho 0||cm+4\alpha(\Sigma), m0)$ and $G(||\rho_{0}||_{c(\Sigma\rangle}m+4\alpha)\mathit{8}uch$ that (5)
$ha\mathit{8}$ a unique solution $\rho(t, s)$ satisfying

$\rho\in c^{[m/4}]+\alpha,m+4\alpha([0,\tau_{0}]\mathrm{x}\Sigma)$ ,
$||\rho||_{C^{\mathrm{l}}}m/4\mathrm{l}+\alpha,m+4\alpha([0,\tau 0]\cross\Sigma)\leq G(||\rho 0||cm+4\alpha(\Sigma))$,
$(t,s) \in[0,\tau 0]\Sigma\min_{\cross}\rho(t, s)\geq m_{0}/2>0$ ,

where $T_{0}:=T(||\rho 0||Cm+4\alpha(\Sigma), m0)$ .

Remark 6 Here $T(M_{0}, m_{0})$ is nonincreasing in $M_{0}$ and nondecreasing in $m_{0i}G(M_{0})$

is nondecreasing in $M_{0}$ .

The essential task of the proof of Theorem 5 is to show that the linearized differential
operator at initial data $\rho_{0}$ is sectorial in $C(\Sigma)$ . Once this is verified, we can use the
iteration method in the linearized equation to obtain the desired unique local solution of
(5). The details are omitted.

To consider the proof of Theorem 2, it is useful to intuitively -magine that the hyper-
surface of the solution of (1) starting from an initial hypersurface with sufficiently weak
convexity may easily creats a loss of convexity. From this observation, as a first step,
we introduce a deformation depending on a small parameter $\epsilon>0$ for strictly convex
hypersurfaces $\Gamma_{0}$ . Let us denote by $\Gamma_{0}^{\epsilon}$ the deformed hypersurface. This deformation
should be constructed to preserve the convexity everywhere and to weaken the convexity
of the original surface $\Gamma_{0}$ as one of the principal curvatures of $\Gamma_{0}^{\epsilon}$ has the order $O(-\epsilon)$

locally but its fourth order derivative stays negative away from $0$ . Also this deformation
should guarantee that the distance function $\rho_{0}^{\epsilon}$ of $\Gamma_{0}^{\epsilon}$ from $\Sigma$ is bounded in $c^{m+\alpha}(\Sigma)$ with
respect to $\epsilon$ . Let us give a rough explanation on how to construct this deformation. Let
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us assume that $\Gamma_{0}$ is an axisymmetric rotational hypersurface about the $x^{1}$-axis with a
generator $x^{2}=f(x^{1})\geq 0$ for $x\in[-1,1]$ . The function $f$ should be smooth, even, and
strictly concave, i.e., $f^{\prime/}<0$ . Let $\delta>0$ be a sufficiently small parameter and $\varphi_{\delta}$ be a
smooth cut-off function such as

$\varphi_{\delta}(x^{1})=\{$
1 for $|x^{1}|<\delta$,
$0$ for $2\delta<|x^{1}|<1$

and $0\leq\varphi_{\delta}\leq 1$ . We combine the function $-\epsilon-(x^{1})^{4}/4!$ with $f^{J/}\mathrm{a}\mathrm{S}$ follows

$w^{\epsilon,\delta/}(X^{1}):=(- \mathcal{E}-\frac{(x^{1})^{2}}{4})\varphi_{\delta()}x^{1}+f/(_{X^{1})(-}1\varphi_{\delta}(x1))$.

Moreover we set

$v^{\epsilon,\delta}(x^{1}):= \int_{0}^{x^{1}}w^{\epsilon,\delta}(\xi)d\xi\varphi 1/4(x)+f1’(X^{1})(1-\varphi 1/4(X)1)$ ,

$(M^{\epsilon,\delta}f)(x)1:=f( \frac{1}{2})+\int_{0}^{x^{1}}v(\epsilon,\delta\xi)d\xi$.

Then we can easily check that the axisymmetric rotational hypersurface about the $x^{1}-$

axis with the generator $x^{2}=(M^{\epsilon,\delta}f)(x^{1})$ satisfies the desired properties if $\delta>0$ is small
enough (the size of $\delta$ is determined by $f$ ). This is the rough explanation for the way of
constructing the deformation.

Then the unique smooth solution $\Gamma^{\epsilon}(\mathrm{t})$ of (1) starting from $\Gamma_{0}^{\epsilon}$ exists for $t\in[0, T^{\epsilon}]$ for
some $T^{\epsilon}>0$ . But we should be afraid that $T^{\epsilon}$ may shrink to $0$ as $\epsilonarrow 0$ . In the second
step, using Theorem 5, we present a fact that there is a time $T>0$ such that $T^{\epsilon}\geq T$

for any sufficiently small $\epsilon$ depending on $\delta$ . This means that $\Gamma^{\epsilon}(t)$ exists uniformly in $\epsilon$ .
Finally, using the results of the previous two steps, we prove that if $\epsilon>0$ is sufficiently
small, then one of the principal curvatures of $\Gamma^{\epsilon}(t)$ becomes positive after a finite time,
which means that $\Gamma^{\epsilon}(t)$ loses its convexity.

References
[1] J. W. Cahn and J. E. Taylor, Surface motion by surface diffusion, Acta Metallurgica

42 (1994), 1045-1063.

[2] J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation: Surface
motion by the Laplacian of the mean curvature, Euro. J. Appl. Math., 7 (1996), 287-
301.

[3] B. D. Coleman, R. S. Falk and M. Moakher, Stability of cylindrical bodies in the
theory of surface diffusion, Phy8ica D, 89 (1995), 123-135.

[4] B. D. Coleman, R. S. Falk and M. Moakher, Space-time finite element methods for
surface diffusion with applications to the theory of the stability of cylinders, SIAM
J. Sci. Comput., 17 (1996), 1434-1448.

[5] F. Davi and M. E. Gurtin, On the motion of a phase interface by surface diffusion,
Zeit. Angew. Math. Phys., 41 (1990), pp. 782-811.

41



[6] C. M. Elliott and H. Garcke, Existence results for diffusive surface motion laws, Adv.
Math. Sci. Appl., 7 (1997), 467-490.

[7] J. Escher, U. F. Mayer and G. Simonett, The surface diffusion flow for immersed
hypersurfaces, SIAM J. Math. Anal., 29 (1998), 1419-1433.

[8] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J.
Differential Geometry, 23 (1986), 69-96.

[9] Y. Giga and K. Ito, On pinching of curves moved by surface diffusion, Comm. Appl.
Anal., 2 (1998), 393-405.

[10] Y. Giga and K. Ito, Loss of convexity of simple closed curves moved by surface
diffusion, Topics in Nonlinear Analysis. The Herbert Amann Anniversary Volume,
PNDEA 35 (1988), Birkh\"auser, to appear.

[11] M. Grayson, The heat equation shrinks embedded plane curves to round points, J.
Differential Geometry, 26 (1987), 285-314.

[12] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential
Geometry, 20 (1984), 237-266.

[13] K. Ito, Loss of convexity of compact hypersurfaces moved by surface diffusion,
preprint.

[14] U. F. Mayer and G. Simonett, Self-intersections for the surface diffusion and the
volume preserving mean curvature flow, preprint.

[15] W. W. Mullins, Theory of thermal grooving, J. Appl. Phy8., 28 (1957), 333-339.

42


