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Abstract

The general goal of data mining is to extract interesting correlated information
from large collection of data. A key computationally-intensive subproblem of data
mining involves finding frequent sets in order to help mine assoc\^iation rules for market
basket analysis. Given a bag of sets and a probability, the frequent set problem is to
determine which subsets occur in the bag with some minimum probability. This
paper provides a convincing application of program calculation in the derivation of a
completely new and fast algorithm for this practical problem. Beginning with a simple
but inefficient specification expressed in a functional language, the new algorithm is
calculated in a systematic manner from the specification by $\mathrm{a}.\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ a sequence of
known calculation techniques1

1 Introduction

Program derivation has enjoyed considerable interests over the past two decades. Early
work concentrated on deriving programs in imperative languages, such as Dijkstra’s Guarded
Command Language, but now it has been realized that functional languages offer a number
of advantages over imperative ones.. Functional languages are so abstract that they can express the specifications of

problems in a more concise way than imperative languages, resulting in programs
that are shorter and easier to understand.. Functional programs can be constructed, manipulated, and reasoned about, like any
other kind of mathematics, using more or less familiar known algebraic laws.

$\bullet$ Functional languages can often be used to express both clear specification and its
efficient solution, so the derivation can be carried out within a single formalism. In

1This paper will appear in Proceedings of 2nd International Workshop on Practical Aspects of Declar-
ative Languages (PADL’OO), Boston, Massachusetts, January 17-18, 2000. Lecture Notes in Computer
Science, Springer Verlag.
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contrast, the derivation for imperative languages often rely on a separate (predicate)
calculus for capturing both specification and program properties.

Such derivation in a single formalism is often $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ program calculation [Bir89, $\mathrm{B}\mathrm{d}\mathrm{M}96$ ],
as opposed to simply program derivation. Many attempts have been made to apply the
program calculation for the $\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{a}_{\cup}^{\mathrm{A}}\mathrm{i}\mathrm{o}\mathrm{n}$ of various kinds of efficient programs [Jeu93], and
for the construction of optimization passes of compilers [GLJ93, TM95]. However, people
are still expecting more convincing and practical applications where program calculation
can give a better result, while other approaches could falter.

This paper aims to $\mathrm{i}\mathrm{U}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ a practical application of program calculation, by deriving
a completely new algorithm to solve the problem for finding frequent sets-an important
building block of data mining applications [AIS93, MT96]. In this problem, we are given
a set of items and a large collection of transactions which are essentially subsets of these
items. The task is to find all sets of items that occur in the transactions ffequently enough
-exceeding a given threshold. More concrete explanation of the problem can be found in
Section 2.

The most well-known classical algorithm for finding ffequent set is the Apriori algo-
rithm [AIS93] (ffom which many improved versions have been proposed) which relies on
the property that a set can only be ffequent if and only if all of its subsets are frequent.
This algorithm builds a tree of frequent sets in a level-wise fashion, starting from the leaves
of the tree. Firstly, it counts all the 1-item sets (sets with a single item), and identifies
those counts which exceed the threshold, as frequent 1-item sets. Then it combines these
to form candidate (potentially frequent) 2-item sets, counts them in order to determine the
frequent 2-item sets. It continues by combining the $\mathrm{f}\mathrm{i}:\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}2$-item sets to form candidate
3-item sets, counting them before determining which are the ffequent 3-item sets, and so
forth. The Apriori algorithm stops when there are no more ffequent $n$-set found.

Two important factors, which govern the performance of this algorithm, are the number
of passes made over the transactions, and the efficiency of each of these passes.

$\bullet$ The database that records all transactions is likely to be very large, so it is often
beneficial for as much information to be discovered ffom each pass, so as to reduce
the total number of passes [BMUT97].. In each pass, we hope that counting can be done efficiently and less candidates are
generated for later check. This has led to the studies of different pruning algorithms
as in [Toi96, LK98].

Two essential questions arise; what is the least number of passes for finding all ffequent
sets, and could we generate candidates that are so necessary that they $\mathrm{w}\mathrm{i}\mathrm{U}$ not be pruned
later? Current researches in data mining, as far as we are aware, have not adequately
address both these issues. Instead, they have been focusing on the improvement of the
Apriori algorithm, while taking for granted that database of transactions should only be
traversed transaction by transaction.

We $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ show that program calculation indeed provides us with a nice ffamework to
examine into these practical issues for data mining application. In this framework, we
can start with a straightforward functional program that solve the problem. This $\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\dot{\mathrm{l}}$

program may be terribly inefficient or practicaUy infeasible. We then try to improve it
by applying a sequence of calculations such as fusion, tabulation, and accumulation, in
order to reduce the number of passes and to avoid generating unnecessary candidates. As
will be shown later in this paper, our program calculation can yield a completely novel
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algorithm for finding ffequent sets, which uses only a single pass of the transactions, and
generates only necessary candidates during execution. Rrthermore, the new algorithm is
guaranteed to be correct with respect to the initial straightforward program due to our
use of correctness-preserving calculation.

The rest of this paper is organized as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ . We begin by giving a straightforward
functional program for finding frequent sets in Section 2. We then go to apply the known
calculation techniques of fusion, accumulation, base-case filter promotion and tabulation
to the initial functional program to derive an efficient program in Section 3. Discussion on
the features of our derived program and the conclusion of the paper are given in Section
4 and 5 respectively.

2 Specification

Within the area of data mining, the problem of deriving associations ffom data has received
considerable attention [AIS93, Toi96, BMUT97], and is often referred to as the “market-
basket” problem. One common formulation of this problem is finding association rules
which are based on support and confidence. The support of an itemset (a set of items) $I$

is the fraction of transactions that the itemset occurs in (is a subset of). An itemset is
called frequent if its support exceeds a given threshold $\sigma$ . An association rule is written
as $Iarrow J$ where $I$ and $J$ are itemsets. The confidence of the rule is the fraction of the
transaction $I$ that also contains $J$ . For the association rule $Iarrow J$ to hold, $I\cup J$ must
be ffequent and the confidence of rule must exceed a given confidence threshold, $\gamma$ . Two
important steps for mining association rules are thus:. Find frequent itemsets for a given support threshold, $\sigma$ .

$\bullet$ Construct rules that exceed the confidence threshold, $\gamma$ , from the frequent itemsets.

Of these two steps, finding frequent sets is the more computationally-intensive sub-
problem, and have received the lion share of data mining $\mathrm{c}\mathrm{o}\grave{\mathrm{m}}$munity’s attention. Let us
now formalize a specification for this important subproblem.

Suppose that a shop has recorded the set of objects purchased by each customer on
each visit. The problem of finding frequent sets is to compute $\mathrm{a}\mathrm{U}$ subsets of objects that
appear frequently in customers’ visits with respect to a specific threshold. As an example,
suppose a shop has the following object set:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

and the shop recorded the following customers’ visits:

visit 1: {1, 2, 3, 4, 7}
visit 2: {1, 2, 5, 6}
visit 3: {2, 9}
visit 4: {1, 2, 8}
visit 5: {5, 7}

We can see that 1 and 2 appear together in three out of the five visits. Therefore we say
that the subset {1, 2} has frequency ratio of 0.6. If we set the ffequency ratio threshold
to be 0.3, then we know that the sets of

{1}, {2}, {5}, {7} and {1, 2}
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pass this threshold, and thus they should be returned as the result of our ffequent set
computation.

To simplify our presentation, we impose some assumption on the three inputs, namely
object set $os$ , customers’ visits $vss$ , and threshold least. We shall represent the objects of
interest using an ordered list of integers without duplicated elements, e.g.,

$os=[1,2,3,4,5,6,7,8,9,10,11]$

and represent customers’ purchasing visits by a list of the sublists of $os$ , e.g.,

$vss=[[1,2,3,4,7], [1,2,5,6], [2,9], [1,2,8], [5,7]]$ .

Furthermore, for threshold, we will use an integer, e.g.,

least $=3$

to denote the least number of appearances in the customers’ visits, rather than using a
probability ratio.

Now we can solve the frequent set problem straightforwardly by the following pseudo
Haskell $\mathrm{p}$

,
rogram2

$fs$ :: [In$t$] $arrow[[Int]]arrow Intarrow\{[Int]\}$

$fsosvss$ least $=$ $(fspvssleast)\triangleleft(subsos)$ .

It consists of two passes that can be read as follows.

1. First, we use subs to enumerate all the sublists of the object list $os$ , where subs can
be defined by

subs :: $[a]arrow\{_{-}[a]\}$

subs $[]$ $=$ $\{[]\}$

subs $(x:xs)$ $=$ subs $xs\cup(x:)*subsxs$ .

We use the $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{x}*\mathrm{t}\mathrm{o}$ denote the map function on sets. Similar to the map function
on lists, it satisfies the so-called map-distributivity property (we use $\circ$ to denote
function composition):

$(f*)\circ(g*)=(f\circ g)*$ .

2. Then, we use the predicate $fsp$ to filter the generated sublists to keep only those
that appear frequently (exceeding the threshold least) in customers’ visits $vss$ . Such
$fsp$ can be easily defined by

$fsp$ :: $[[Int]]arrow Intarrow[Int]arrow Bool$

$fspvss$ least $ys$ $=$ $\#((ys‘ isSublist‘)\triangleleft vss)\geq least$

Note that for ease of program manipulation, we use the shorten notation: $\#$ to denote
function length, and $p\triangleleft$ to denote filter $p$ . The filter operator enjoys the filter-
element-map property (that is commonly used in program derivation e.g. [Bir84]):

$(p\triangleleft)\circ((x:)*)=((x:)*)\circ((p\circ(x:))\triangleleft)$

2We assume that the readers are familiar with the Haskell notation in this paper. In addition, we say
that our Haskell programs are “

$\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}_{0}’$

) in the sense that they include some additional notations for sets.
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and the filier-pipeline property:

$(p\triangleleft)\mathrm{o}(q\triangleleft)=(\lambda x.(px\wedge qx))\triangleleft$ .

In addition, $xs$ ‘isSublist‘ $ys$ is true if $xs$ is a sublist of $ys$ , and false otherwise:

$[]$ ‘isSublist‘ $ys$ $=$ True
$(x:xs)$ ‘isSublist‘ $ys$ $=$ $xs$ ‘isSublist‘ $ys\wedge x$ ‘elem‘ $ys\wedge$

So much for our specification program which is simple, straightforward, and easy to
understand. No attention has been paid to efficiency or to implementation details. In fact,
this initial functional program is practicaUy infeasible for all but the very small object set,
because the search space of potential ffequent sets consists of $2\# os$ sublists.

3 Derivation

We $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ demonstrate how the exponential search space of our initial concise program can
be reduced dramatically via program calculation. Specifically, we will derive an efficient
program for finding frequent sets from the specification

$fsosvss$ least $=$ $(fspvssleast)\triangleleft(subsos)$

by using the known calculation techniques of fusion [Chi92], generalization (accumulation)
[Bir84, HIT99], base-case filter promotion [Chi90], and tabulation [Bir80, CH95].

3.1 Fusion

Fusion is used to merge two passes (ffom nested recursive calls) into a single one, by
eliminating intermediate the data structure passing between the two passes. Notice that
our $fs$ has two passes, and the intermediate data structure is huge containing $\mathrm{a}\mathrm{U}$ the
sublists of $os$ . We shall apply the fusion calculation to eliminate this huge intermediate
data structure by the following calculation via an induction on $os$ .

$fs$ $[]$ $vss$ least
$=$ {def. of $fs$ }

$(fspvssleast)\triangleleft(subs [])$

$=$ {def. of subs}
$(fspvssleast)\triangleleft\{[]\}$

$=$ { def. $\mathrm{o}\mathrm{f}\triangleleft \mathrm{a}\mathrm{n}\mathrm{d}fsp$ }
if $\#$ ( $([]$ ‘isSublist$‘)\triangleleft vss$) $\geq least$ then $\{[]\}$ else $\{\}$

$=$ { isSublist }
if $\#((\lambda ys.True)\triangleleft vss\rangle\geq least$ then $\{[]\}$ else $\{\}$

$=$ { simplification }
if $\# vss\geq least$ then $\{[]\}$ else $\{\}$
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And
$fs(\mathit{0}:os)vss$ least

$=$ {def. of $fs$ }
$(fspvssleast)\triangleleft(subs(\mathit{0}:os))$

$=$ {def. of subs}
$(fspvssleast)\triangleleft(subsos\cup(\mathit{0}:)*(s\mathrm{u}bsos))$

$=$ { def. $\mathrm{o}\mathrm{f}\triangleleft$ }
$(fspvssleast)\triangleleft(subsos)\cup$

$(fspvssleast)\triangleleft((\mathit{0}:)*(subsos))$

$=$ { by filter-element-map property}
$(fspvssleast)\triangleleft(subsos)\cup$

$(\mathit{0}:)*$ ( ($fspvss$ least $\circ(\mathit{0}:))\triangleleft(subsos)$ )
$=$ { calculation for equation (1)}

$(fspvssleast)\triangleleft(s\mathrm{u}bsos)\cup$

$(\mathit{0}:)*$ (($fsp$ (($\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) $least)\triangleleft(subsos)$ )
To complete the above calculation, we need to show that

$fspvss$ least $\circ(\mathit{0}:)=fsp((\mathit{0}‘ elem‘)\triangleleft vss)$ least. (1)

This can be easily shown by the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ calculation.
$fspvss$ least $\circ(\mathit{0}:)$

$=$ { def. of $fsp$ }
( $\lambda ys.$ ( $\#((ys$ (isSublist$‘)\triangleleft vss)\geq least)$ ) $\mathrm{o}(\mathit{0}:)$

$=$ { function composition}
$\lambda ys.(\#(((\mathit{0}:ys)‘ isS^{J}ublist‘\rangle\triangleleft vss)\geq least)$

$=$ { def. of isSublist}
$\lambda ys.(\#$ ( $(\lambda xs.(ys‘ isSublist(xs\wedge \mathit{0}$ telem‘ $xs))\triangleleft vss)\geq least$)

$=$ { by filter-pipeline property}
$\lambda ys.$ ( $\#((ys$ ‘isSublist$‘)\triangleleft((\mathit{0}$ ‘elem$‘)\triangleleft vss))\geq least$ )

$=$ { def. of $fsp$ }
$fsp$ (( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) least

To summarize, we have obtained the following program, in which the intermediate
result used to connect the two passes have been eliminated.

$fs$ $[]$ $vss$ least $=$ if $\neq vss\geq least$ then $\{[]\}$ else $\{\}$

$fs(\mathit{0}:os)vss$ least $=$ $fsosvssleast\cup$
$\underline{(\mathit{0}^{\cdot}.)*}$( $fsos((\mathit{0}‘ elem‘)\triangleleft vss)$ least)

3.2 $\mathrm{G}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{A}\mathrm{c}\mathrm{c}\mathrm{u}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

Notice that the underlined part in the above program for insert $\mathit{0}$ to every element of a list
will be rather expensive if the the list consists of a large number of elements. Fortunately,
this could be improved by introducing an accumulating parameter in much the same spirit
as [Bir84, HIT99]. To this end, we generalize $fs$ to $fs’$ , by introducing an accumulating
parameter as follows.

$fs’osvss$ least $r=(r-\vdash)*$ ($fsosvss$ least)

And clearly we have
$fsosvss$ least $=fs’osvss$ least $[]$ .

Calculating the definition for $fs’$ is easy by induction on $os$ , and thus we omit the
detailed derivation. The end result is as $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$ .

$fs’$ $[]$ $vss$ least $r$ $=$ if $\neq vss\geq least$ then $\{r\}$ else $\{\}$

$fs’(\mathit{0}:os.)vss$ least $r$ $=$ $fs’osvss$ least $r\cup$

$fs’os((\mathit{0}‘ elem‘)\triangleleft vss)$ least $(r+-[\mathit{0}])$
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The accumulation transformation has successfully turned an expensive map operator
of $(\mathit{0}:)*\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}$ a simple operation that just appen&o to $r$ . In addition, we have got a
nice side-effect ffom the accumulation transformation in that $fs’$ is defined in an almost
tail recursive form, in the sense that each recursive call produces independent part of
the resulting list. This kind of recursive form is used by the base-case filter promotion
technique of [Chi90].

3.3 Base-case Filter Promotion

From the second equation (inductive case) of $fs’$ , we can see that computation of

$fs’osvss$ least $rs$

will need $2\# os$ recursive calk to $(fs’$ []. . . $)$ after recursive expansion. In fact, not $\mathrm{a}\mathrm{U}$ these
recursive calls are necessary for computing the final result, because the first equation (base
case) of $fs’$ shows that those recursive calls of $fs’[]vss$ least $r$ will not contribute to the
final result if

$\neq vss<least$ .
The base-case filter promotion [Chi90] says that the base case condition could be

promoted to be a condition for the recursive calls, which is very helpful in pruning un-
necessary recursive calls. Applying the base-case filter promotion calculation gives the
following program:

$fs’$ $[]$ $vss$ least $r$ $=$ if $\neq vss\geq least$ then $\{r\}$ eke $\{\}$

$fs’(\mathit{0}:os)vss$ least $r$ $=$ (if $\neq vss\geq least$

then $fs’osvss$ least $r$ else $\{\})$ $\cup$

(if $\#((\mathit{0}‘ elem‘)\triangleleft vss)\geq least$

then $fs’os((\mathit{0}‘ elem‘)\triangleleft vss)$ least $(r-\}+[\mathit{0}])$

else $\{\})$

and accordingly $fs$ changes to

$fsosvss$ least $=\mathrm{i}\mathrm{f}\neq vss\geq least$ then $fs’osvss$ least $[]$ else $\{\}$ .

Now propagating the condition of $\neq vss\geq$ least backwards from the initial call of $fs’$ to
its recursive calls, we obtain

$fs’[]vss$ least $r$ $=$ $\{r\}$

$fs’(\mathit{0}:os)vss$ least $r$ $=$ $fs’osvss$ least $r$ else $[]$ $\cup$

(if $\#((\mathit{0}‘ elem‘)\triangleleft vss)\geq least$

then $fs’os((\mathit{0}‘ elem‘)\triangleleft vss)$ least $(r++[\mathit{0}])$

else $\{\})$

in which any recursive call $fs’osvss$ least $r$ that does not meet the condition of $\# vss\geq$

least would be selectively pruned.

3.4 Tabulation

Although much improvement has been achieved through fusion, accumulation, and base-
case filter promotion, there still remains a source of serious inefficiency because the induc-
tive parameter $os$ is traversed multiple times by $fs’$ . We want to share some computation
among all recursive $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{s}$ to $fs’$ , by using the tabulation calculation [Bir80, CH95].
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The purpose of our tabulation calculation is to exploit the relationship among recursive
calk to $fs’$ so that their computation could be shared. The difficulty in such tabulation
is to determine which values should be tabulated. Now, taking a close look at the derived
definition for $fs’$

$fs’(\mathit{0}:os)\underline{vss}$ least $\underline{r}$ $=$ $fs’os\underline{vss}$ least $\underline{r}\cup$

(if $\#((\mathit{0}‘ elem‘)\triangleleft vss)\geq least$

then $fs’os$ (( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) least $(r++[\mathit{0}])$

eke $\{\})$

reveals some dependency of the second and the fourth arguments of $fs’$ among the left and
the right recursive calls to $fs’$ , as indicated by the underlined parts. Moreover these two
arguments will be used to produce the final result, according to the base case definition of
$fs’$ . This hints us to keep (memoize) all necessary intermediate results of the second and
the fourth parameters:

$(r_{1}, vss_{1}),$ $(r_{2}, vss_{2}),$
$\ldots$ .

According to base-case filter promotion, each element $(r_{i}, vss_{i})$ meets the invariant prop-
erty

$\# vss_{i}\geq least$ .
We could store all these pairs using a list. But a closer look at the second equation of $fs’$

reveals that along with the extension of $r$ , the corresponding number of $vss$ decreases with
each filtering. More precisely, for any two intermediate results of $(r_{i}, vss_{i})$ and $(r_{j},vss_{j})$ ,
$r_{i}\subseteq r_{j}$ implies $vss_{i}\underline{\subseteq}vss_{j}$ . This observation suggests us to organize all these pairs into
a tree. To do $\mathrm{s}\mathrm{o}_{7}$ we define the following tree data structure for memoization:

Tree $=$ Node ([Int], $[[Int]]$ ) [Tree].

In this tree, each node, tagged with a pair storing $(r_{i}, vss_{i})$ , can have any number of
children.

Now we apply the tabulation calculation to $fs’$ by defining

tab $os$ least (Node $(r,$ $vss)$ []) $=$ $fs’osvss$ least $r$

tab $os$ least (Node $(r,$ $vss)ts$ ) $=$ $fs’osvss$ least $r\cup$

flattenMap (tab $os$ least) $ts$

where flattenMap is defined by

flattenMap $f=foldr(\cup)$ $\{\}$ $\circ$ map $f$.

Clearly $fs’$ is a $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}$.ial case of tab:

$fs’osvss$ least $r=tabos$ least (Node $(r,$ $vss)$ [])

We hope to synthesize a new definition that defines tab inductively on $os$ where $os$ is
traversed only once (it is now traversed by both $fs’$ and tab). The general form for this
purpose should be

tab $[]$ least $t$ $=$ sele$ct$ least $t$

tab $(\mathit{0}:os)$ least $t$ $=$ tab $os$ least (add $\mathit{0}$ least $t$ )
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where select and add are two newly introduced functions that are to be calculated. We
can synthesize select by induction on tree $t$ . From

tab $[]$ least (Node $(r,$ $vss)$ [])
$=$ {def. of tab}

$fs’$ $[]$ $vss$ least $r$

$=$ {def. of $fs’$ }
$\{r\}$

and
tab $[]$ least (Node $(r,$ $vss)ts$ )

$=$ {relation between tab and $fs’$ , the invariant tells: $\# vss\geq least$ }
$fs’$ $[]$ $vss$ least $r\cup flauenMap$ (tab [] least) $ts$

$=$ {def. of $fs’$ , and the above invariant}
$\{r\}\cup flattenMap$ (tab [] least) $ts$

$=$ {relation between tab and select}
$\{r\}\cup$ flattenMap $\langle$ sdect least) $ts$

we soon have
select least (Node $(r\cdot,$ $vss)$ []) $=$ $\{r\}$

select least (Node $(r,$ $vss)ts$ ) $=$ $\{r\}\cup flattenMap$ (select least) $ts$ .
The definition of add can be inferred in a similar fashion. For the base base:

tab $(\mathit{0}:os)$ least (Node $(r,$ $vss)$ [])
$=$ {def. of tab}

$fs’$ $(\mathit{0} : os)vss$ least $r$

$=$ {def. of $fs’$ }
$fs’osvss$ least $r\cup$

(if $\#$ ( $(\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) $\geq least$

then $fs’os$ (($\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) least $(r+\vdash[\mathit{0}])$

else $\{\})$

$=$ { by if property}
if $\#$ (( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) $\geq least$

then $fs’osvss$ least $r\cup fs’os$ (( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) least $(r+\vdash[\mathit{0}])$

else $fs’osvss$ least $r$

$=$ {relation between tab and $fs’$ }
if $\#((o^{(}elem‘)\triangleleft vss)\geq least$

then tab $os$ least (Node $(r,$ $vss)$ [Node $((r++[\mathit{0}]),$ $(\mathit{0}$ ‘elem$‘)\triangleleft vss)$ []])
else tab $os$ least (Node $(r,$ $vss)$ [])

$=$ { by $if$ property}
tab $os$ least

(if $\#$ ( $(\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) $\geq least$

then Node $(r, vss)$ [Node $($ ( $r+\vdash[\mathit{0}]\rangle$ , ( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) []]
else Node $(r, vss)$ $[])$

we thus get:

add $\mathit{0}$ least (Node $(r,$ $vss)$ $[]$ ) $=$

if $\#$ (( $\mathit{0}$ ‘elem$‘)\triangleleft vss$ ) $\geq least$

then Node $(r, vss)$ [Node $((r+\vdash[\mathit{0}]),$ $(\mathit{0}‘ elem‘)\triangleleft vss)$ []]
eke Node $(r, vss)$ $[]$ .

Similarly, for the inductive case, we can derive the following result, whose detailed deriva-
tion is omitted.

add $\mathit{0}$ least (Node $(r,$ $vss)ts$ ) $=$

if $\#((\mathit{0}‘ elem‘)\triangleleft vss)\geq least$

then Node $(r, vss)$

(Node $((r++[\mathit{0}]),$ $(\mathit{0}‘ elem‘)\triangleleft vss)$ [] : map (add $\mathit{0}$ least) $ts$ )
else Node $(r, vss)ts$

20



Figure 1: Our Final Program for Finding Frequent Sets

Comparing the two programs before and after tabulation calculation, we can see that
the latter is more efficient in that it shares the computation for checking the invariant
conditions; when an object $\mathit{0}$ is added to the tree, it $.\mathrm{c}$hecks from the root and if it fails at
a node, it does not check its descendants. Now putting all together, we get the final result
in Figure 1.

4 Discussion

We shall clarify $\mathrm{t}\mathrm{h}\cdot \mathrm{e}\mathrm{e}$ features of the derived algorithm, namely correctness, simphcity,
efficiency and inherited parallelism, and highlight how to adapt the algorithm to practical
use.

Correctness

The correctness follows directly ffom the basic property of program calculation. Our de-
rived algorithm is correct with respect to the initial straightforward specification, because
the whole derivation is done in a semantics-preserving manner. In contrast, the correctness
of existing algorithms, well summarized in [Toi96], are often proved in an $\mathrm{a}\mathrm{d}$-hoc manner.

Simplicity

Our derived algorithm is surprisingly simple, compared to the existing algorithms which
pass over the database many times and use complicated and costly manipulation (generat-
ing and pruning) of candidates of ffequent sets. A major difference is that our algorithm
traverse the database only once, object by object (i.e., item by item) rather than the
traditional processing of transaction by transaction. Put it in another way, our algorithm
traverses the database vertically while the traditional algorithms traverse the database
horizontally, if we assume that the database is organized by transactions.
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The vertical traversal of database comes naturaUy ffom our initial straightforward
specification, where we were not at all concerned with efficiency and implementation de-
tails. In comparison, traditional algorithms were designed with an implicit assumption
that database should be scanned horizontaUy, which we believe is not essential. We can
preprocess the database to fit our algorithm by transposing it through a single pass. This
preprocessing can be done in an efficient way even for a huge database saved in external
storage (see [Knu97]). In fact, as such preprocessing need only be done once for a given
transaction database, we can easily amortize its costs over many data mining runs for the
discovery of interesting $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{r}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{s}$.

Efficiency

To see how efficient our algorithm is in practice, we shall not give a formal study of the
cost. Such a study needs to take account of both the distribution as well as the size of data
sample. Rather we use a simple experiment to compare our algorithm with an existing
improved Apriori algorithm [MT96], one of the best algorithms used in the data mining
community.

We start by considering the case of a $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}$ database which can be put in the memory.
We tested three algorithms in Haskell: our initial specification program, the functional
coding of the existing improved Apriori algorithm in $[\mathrm{H}\mathrm{L}\mathrm{G}^{+}99]$ , and our final derived
program. Our initial and final algorithms can be directly coded in Haskell by representing
sets using lists.

The input sample data was extracted from the Richard Forsyth’s zoological database,
which is available in the UCI Repository of Machine Learning Databases [BM98]. It
contains 17 objects (corresponding to 17 boolean attributes in the database) and 101
transactions (corresponding to 101 instances). We set the threshold to be 20 (20% of fre-
quency), and did experiment with Glasgow Haskell Compiler and its profiling mechanism.
The experimental result is as follows.

total time (secs) memory celk (mega bytes)

Our Initial Specification $131.2$ $484.1$

An Apriori Algorithm $10.88$ $72.0$

Our Final Algorithm $0.44$ $2.5$

It shows that our final algorithm has been dramatically improved comparing to our
initial one, and that it is also much more efficient than the functional coding of an existing
algorithm (about 20 times faster but using just 1/30 of memory cells).

What if the database is so huge that only part of database can be read into memory
at one time? Except for the preprocessing of the database to match our algorithm (to
be done just once as discussed above), our algorithm can deal with the partitioning of
database very well. If the database has $N$ objects $(\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s})\backslash$ , our algorithm allow it to be
partitioned into $N\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{r}$ sections. We only require that each of these sections be read
into memory, one at a time, which poses no problem practicaUy.

Parallelism

Our algorithm is quite suitable for parallel computation, which can be briefly explained as
$\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{s}$. Suppose that we have objects ffom 1 to $N$ , and $M$ processors of $P_{1},$

$\ldots,$
$P_{M}$ . We

can decompose the objects into $M$ groups, say 1 to $N/M,$ $N/M+1$ to $2N/M,$ $\ldots$ , and
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Figure 2: bee Structure for Tabulation

use $P_{i}$ to compute the tabulation tree for items from $(i-1)N/M+1$ to $iN/M$ . Certainty
all the processors can do this in parallel. After that, we may propagate information of the
single-item frequent sets from processor $P_{i+1}$ to $P_{i}$ for $\mathrm{a}\mathrm{U}i$ , to see whether these single-
item frequent sets in $P_{i+1}$ could be merged with frequent sets computed in $P_{i}$ . Note that
this parallel algorithm can be obtained directly ffom the sequential program tab in Figure
1 by parallelization calculation [HTC98], which is omitted here.

Practical Issues

The derived algorithm can be used practically to win over the existing algorithms.
To be able to compare our results more convincingly with those in data mining field, we
are mapping the algorithm to a $\mathrm{C}$ program and testing it on the popular benchmark of
sample database. The detailed results will be summarized in another paper. Here, we
only highlight one practical consideration.

A crucial aspect in practical implementation of the derived algorithm is the design of
an efficient data structure to represent the tabulation tree to keep memory usage down.
In fact, we can refine the current structure of tabulation tree to use less space. Notice
that each node of the tabulation tree is attached with a pair $(r, vss)$ where $r$ represents a
ffequent set, and $vss$ represents all the visits that contain $r$ . Naive implementation would
take much space. To be concrete, consider the example given in the beginning of Section
2. After traversing all objects ffom 1 to 11, we get the tree (a) in Figure 2. The $vss$

part in each node consumes much space. In fact, it is not necessary to store the detailed
visit content in each node. Instead, it is sufficient to store a list of indices to the visits,
as shown in tree (b) in Figure 2. PracticaUy, the number of indices in each node is not so
big except for the ro$o\mathrm{t}$ where we use the range notation to represent it cheaply, and this
would become smaller with each step down ffom parent to its children.

We can do further in many ways to reduce the size of the tabulation tree. (1) In
preprocessing phase, we may sort the objects of the database by decreasing frequency,
which should allow subrange notation of indices to be used in a maximized fashion. (2)
rf the size of $vss$ is within twice of the threshold least at a particular node, we may
keep negative information at the children nodes, as these lists would be shorter than the
threshold. (3) As nodes for 1-itemset take the most memory and these should perhaps be
kept offline in virtual memory and be paged in when required.
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5 Conclusion

In this paper, we have addressed a practical application of program calculation of func-
tional programs by deriving novel algorithms that are also practically fast. We have chosen
an important subproblem of finding ffequent sets as our target. This problem is of prac-
tical interest, and have been extensively researched by the data mining community in the
last six years. Many researchers have devoted much time and energy to discover clever
and fast algorithms. By program calculation of functional programs, we have successfuly
obtained a completely new algorithm that is ako practicaUy fast.

Our derivation of a new ffequent set algorithm did not depend on new tricks. In-
stead, it is carried out using a sequence of standard calculation techniques such as ffision,
accumulation, filter promotion and tabulation. These calculation techniques are quite
well-known in the functional programming community.
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