Topological groups，k－networks，and weak topology

广西大学刘川（Chuan Liu）${ }^{1}$
神奈川大学 酒井政美（Masami Sakai）
東京学芸大学 田中祥雄（Yoshio Tanaka）

Let G be a topological group．Then，we give affirmative answers to（Q1）， and partial answers to（Q2）and（Q3）in the following questions．
（Q1）（A）Let G have a σ－hereditarily closure－preserving k－network．Is G an \aleph－space ？
（B）Let G be a k－space with a star－countable k－network．Is G an \aleph－space ？
（Q2）Let G be the quotient s－image of a metric space．Is G paracompact （or，meta－Lindelöf）？
（Q3）（A．V．Arhangelskii）．Let G be a sequential space．Does G contain no（closed）copy of $S_{\omega_{1}}$ ？

Let us recall some definitions which will be used in this paper．
A family $\left\{A_{\alpha}: \alpha \in I\right\}$ of subsets of a space X is hereditarily closure－ preserving（simply，HCP）if $\bigcup\left\{c l B_{\alpha}: \alpha \in J\right\}=c l\left(\bigcup\left\{B_{\alpha}: \alpha \in J\right\}\right)$ ，whenever $J \subset I$ and $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in J$ ．

Let \mathcal{P} be a cover of a space X ．Then， \mathcal{P} is a k－network for X ，if whenever $K \subset U$ with K compact and U open in $X, K \subset \cup \mathcal{P}^{\prime} \subset U$ for some finite $\mathcal{P}^{\prime} \subset \mathcal{P}$ ．When a k－network \mathcal{P} is a closed cover，then \mathcal{P} is called a closed k－network．

Recall that a space is an \aleph－space（resp．\aleph_{0}－space）if it has a σ－locally finite k－network（resp．countable k－network）．

Following［GMT］，a space X is determined by a cover \mathcal{C} ，if $F \subset X$ is closed in X iff $F \cap C$ is closed in C for every $C \in \mathcal{C}$ ．We use＂X is determined by $\mathcal{C} "$ instead of the usual＂X has the weak topology with respect to \mathcal{C} ＂．Obviously，every space X is determined by any open cover，or any HCP closed cover of X ．

[^0]A space is a k-space (resp. sequential space) if it is determined by a cover of compact subsets (resp. compact metric subsets). As is well-known, every k-space (resp. sequential space) is precisely the quotient image of a locally compact space (resp. (locally compact) metric space).

A space X has countable tightness $(=t(X) \leq \omega)$ if, whenever $x \in c l A$, then $x \in c l B$ for some countable subset B with $B \subset A$. As is well-known, $t(X) \leq \omega$ iff X is determined by a cover of countable subsets.

Let us recall canonical quotient spaces S_{α}, and the Arens' space S_{2}.
For an infinite cardinal α, S_{α} is the space obtained from the topological sum of α convergent sequences by identifying all the limit points to a single point. In paricular, S_{ω} is called the sequential fan.

Let $L=\left\{a_{n}: n \in \omega\right\}$ be an infinite sequence with a limit point $\infty \notin L$. Let $L_{n}(n \in \omega)$ be an infinite sequence with a limit point $a_{n} \notin L_{n}$. Then, S_{2} is the space obtained from the topological sum of L and these L_{n} by identifying each $a_{n} \in L$ with the limit point a_{n} of L_{n}.

We assume that spaces are regular and T_{1}, and maps are continuous and onto.

Results

Lemma 1. ([JZ]) Let X be a space with a σ-HCP k-network. Then, X is an \aleph-space if and only if X contains no (closed) copy of $S_{\omega_{1}}$.

Every Fréchet space X with a σ-HCP k-network (equivalently, X is a Lašnev space [F]) need not be an \aleph-space; see Example 16(1). But, we have the following among topological groups.

Theorem 2. Let G be a topological group. If G has a σ-HCP k-network, then G is an \aleph-space. (Affirmative answer to (A) in (Q1))

Corollary 3. Let G be a topological group which is the closed image of an \aleph-space. Then, G is an \aleph-space.

Remark 4. For a space X, the following decomposition theorems hold. (1) is due to $[\mathrm{M}]$ or $[\mathrm{Ln}]$, and (2) is due to [LT1].
(1) Let X be a space with a σ-HCP k-network. Then X, as well as every closed image of X, is decomposed into a σ-discrete space and an \aleph-space.
(2) Let X be a Fréchet space with a star-countable k-network (more gen-
generally, point-countable k-network of separable subsets). Then X is decomposed into a closed discrete space and a space which is the topological sum of \aleph_{0}-spaces. (The Fréchetness of X is essential; see Example 16(2)).

Let us consider topological groups having certain point-countable covers. The parenthetic part is due to [NT].

Lemma 5. Let $t(X) \leq \omega$. If X contains a copy of $S_{\omega_{1}}$ (resp. $\left.S_{\omega}\right)$, then X contains a closed copy of $S_{\omega_{1}}$ (resp. S_{ω}).

For an infinite cardinal α, a space X is α-compact if every subset of cardinality α has an accumulation point in X. Clearly, Lindelöf spaces (resp. countably compact spaces) are ω_{1}-compact (resp. ω-compact).

Corollary 6. Let $t(X) \leq \omega$. If X is determined by a point-countable (resp. point-finite) cover of ω_{1}-compact (resp. ω-compact) subsets, then X contains no copy of $S_{\omega_{1}}$ (resp. S_{ω}).

In particular, $S_{\omega_{1}}$ (resp. S_{ω}) can not be embedded into any ω_{1}-compact (resp. ω-compact) space of countable tightness.

Let us say that a cover \mathcal{P} of X is a cs-cover of X if, for every infinite convergent sequence C in X, some $P \in \mathcal{P}$ contains at least two points of C. We note that $S_{\omega_{1}}$ has a point-countable $c s$-cover of two-point sets.

Theorem 7. Let G be a sequential group with a point-countable $c s$-cover of ω_{1}-compact subsets. Then, G contains no copy of $S_{\omega_{1}}$. (Partial answer to (Q3)).

Corollary 8. Let G be sequential group with a point-countable k network of ω_{1}-compact subsets. Then, G contains no copy of $S_{\omega_{1}}$.

Lemma 9. Let G be a sequential topological group satisfying (a) and (b) below. Then, G is the topological sum of ω_{1}-compact subsets.

In particular, if each element of \mathcal{F} is cosmic (resp. compact), then G is the topological sum of cosmic subspaces (resp. σ-compact subspaces). Here, a space is cosmic if it has a countable network.
(a) G contains no (closed) copy of $S_{\omega_{1}}$.
(b) G has a point-countable cover \mathcal{F} such that $\mathcal{F}^{*}=\left\{\cup \mathcal{F}^{\prime}: \mathcal{F}^{\prime} \subset \mathcal{F}, \mathcal{F}^{\prime}\right.$ is finite\} determines G; and, any finite product of elements of \mathcal{F} is ω_{1}-compact.

Theorem 10. Let G be a topological group. If G is a k-space with a
point-countable k-network \mathcal{P} of cosmic subspaces, then G is the topological sum of cosmic subspaces.

In particular, if G is a k-space with a star-countable k-network, then G is the topological sum of \aleph_{0}-subspaces. (Affirmative answer to (B) in (Q1)).

Remark 11. In the previous theorem, the property " G is a k-space " is essential. According to [Tk2], under (CH) there exists a countably compact topological group G in which every compact set is finite, but G is not metrizable (cf. [Tk1]). Hence, the topological group G has a star-countable k-network of singletons, but not even a σ-space.

Let us recall that every CW-complex, more generally, every space dominated by k-and- \aleph_{0}-subspaces is a k-space with a star-countable k-network ([IT]). (Conversely, every k-space with a star-countable k-network is a space dominated by k-and- \aleph_{0}-subspaces ([S])). Then, the following holds by Theorem 7 and [T3; Corollary 6].

Corollary 12. Let K be a topological group. If K is a CW-complex, then K is the topological sum of countable CW-subcomplexes.

In the previous corollary, "K is a topological group " is essential, and the topological group K need not be metrizable; see Example 16.

Now, every quotient finite-to-one image of a locally compact metric space need not be paracompact, nor even meta-Lindelöf; see [GMT; Example 9.3]. But, we have the following among topological groups.

Theorem 13. Let $f: X \rightarrow G$ be a quotient s-map such that X is a locally separable metric space. If G is a topological group, then G is a paracompact space (actually, G is the topological sum of cosmic subspaces). (Partial answer to (Q2)).

In the previous theorem, the topological group G need not be metrizable by Example 16(3).

Similarly, we have the following since G is determined by a point-countable cover of compact subsets.

Theorem 14. Let $f: X \rightarrow G$ be a quotient s-map such that X is a locally compact paracompact space. If G is a sequential topological group, then G is a paracompact space (actually, G is the topological sum of σ compact subspaces).

Remark 15. Let G be a topological group. Then, G is metrizable if the following (a), (b), or (c) holds. (Cf. [LST]).
(a) G is a k-space with a point-countable k-network, and G contains no closed copy of S_{ω}, or no S_{2}.
(b) G is the quotient compact image of a metric space.
(c) G is a Fréchet space with a point-countable k-network. In párticular, G is a Lašnev space, or a Fréchet space which is the quotient s-image of a metric space.

Example 16. (1) A Lašnev CW-complex K, but K is not an \aleph-space.
(2) A CW-complex K which is not Fréchet, and K has the following properties. (Cf. [LT1]).
(a) K contains no copy of S_{ω}.
(b) K has a point-countable closed k-network.
(c) K has a star-countable k-network of separable metric subsets.
(d) K can not be decomposed into a σ-discrete space and a space with a σ-HCP k-network, or star-countable closed k-network.
(3) A topological group G which is a countable CW-complex (hence, an \aleph_{0}-space), and G is the quotient countable-to-one image of a locally compact, separable metric space. But, G is not metrizable, not even Fréchet.

References

[A] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys, 21(1966), 115-162.
[F] L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95(1985), 487-490.
[GMT] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
[IT] Y. Ikeda and Y. Tanaka, Spaces having star-countable k-networks, Topology Proc., 18(1993), 107-132.
[JZ] H. Junnila and Y. Ziqiu, \aleph-spaces with a σ-hereditarily closurepreserving k-network, Topology and its Appl., 44(1992), 209-215.
[Ln] S. Lin, Spaces having σ-hereditarily closure-preserving k-networks, Math. Japonica, 37(1992), 17-21.
[LST] C. Liu, M. Sakai, and Y. Tanaka, Metrizability of GO-spaces and topoloical groups, pre-print.
[LT1] C. Liu and Y. Tanaka, Spaces with a star-countable k-network, and related results, Topology and Appl., 74(1996), 25-38.
[LT2] C. Liu and Y. Tanaka, Star-countable k-networks, compact-countable k-networks, and related results, Houston J. Math., 24(1998), 655-670.
[M] T. Mizokami, Some properties of K-semistratifiable spaces, Proc. Amer. Math. Soc., 108(1990), 535-539.
[NT] T. Nogura and Y. Tanaka, Spaces which contain a copy of S_{ω} or S_{2} and their applications, Topology Appl., 30(1988), 51-62.
[S] M. Sakai, On spaces with a star-countable k-network, Houston J. Math., 23(1997), 45-56.
[T1] Y. Tanaka, Closed maps on metric spaces, Topology and its Appl., 11(1980), 87-92.
[T2] Y. Tanaka, Point-countable covers and k-networks, Topology Proceedings, 12(1987), 327-349.
[T3] Y. Tanaka, k-networks, and covering properties of CW-complexes, Topology Proceedings, 17(1992), 247-259.
[Tk1] M. G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian group, Izvestiya VUZ. Matematika, 34(1990), 68-75.
[Tk2] M. G. Tkachenko, Personal communication.

[^0]: ${ }^{1}$ Current address：Ohio University，Athens，Ohio 45701，U．S．A

