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1 Introduction

Let Q be a bounded polygon in R? or a polyhedron in R®. Let T > 0 and
Q=0 x(0,7) and S = 0Q x (0,T). We would like to propose a convergent
finite element scheme approximating the following convection problem (P): find
unknown density p(z,t) of some material : ()} — R satisfying

%t (u-gradp=0 i Q (1)

p(z,0) =p°(z) on (2)
with respect to known velocity u(z,t) of some incompresible flows:

divu=0 in @, (3)

u(z,t)=0 on S. (4)

In the construction of a convergent finite element scheme for the problem (P),
of courese, we assume some regulaity and boundedness on the velocities u besides
the incompressibility (3). But, what regularity on velocities we have to assume?
There may be many possibilties for the reply. Still, the most important one is
depend on its aim, certainly, to which the advection problem (P) is applied.
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1 INTRODUCTION

In fact, the problem (P) is a subtarget of another propblem (Q), the incom-
pressible Navier-Stokes problems with nonhomogeneous density, i. e., which is a
system governed by the density-dependent Navie-Stokes equation :

p {3—4 -. grad)u} — phu+gradp=pf in @Q,

together with two other equations, (1) and (3), where u,p and p are unknown
velocities, pressures and densities of the non-homogeneous liquids, respectively.
This problem (Q) admits at least a weak solution p,u, p satisfying

Cwe I (0, T {LA)Y) n 27 (0, T {H3()}) (5)

for the initial velocity ug € {L"Z(Q)}d’, the outer force f € I? (O,T; {LZ(Q)}d)

and
0< M; <p° <M, < o0 (6)

where M;,i = 1,2, are constants (cf., for example, A. S. N. Antontsev, A. V.
Kazhikhov and V. N. Monakhov [1] and P. L. Lions [10]) . So, in our paper
we shall choose conditions (5) and (6) on the velocity u and the density p°,
respectively. :

Beside, there are another conditions in our paper to be needed, because we
have to construct a finite element scheme for (P). Thus, conditions on discrete
velocities are also needed. Unfortunately, there may be no convergent scheme,
which approximates solutions of the problem (Q) So, from a convergent implicit
scheme, which approximates solutions of the classical Navier-Stokes equations
in the incompressible case with homogeneous density, we shall choose a suitable
condition on discrete velocities. For references it is useful to see the book [11] by
R. Temam.

In fact, let 7 > 0 be a time mesh and let U™ be an approximation of u(t,),0 =
to<ti <ty <+ <ty,=mnr-,N=[T/7]. Let U™ = U™ — U™'. Then we
consider the condition :

1T™17 + ol (U2 + 7l UPR) < eo < 00, (7)

where ¢y is independent of the time meshes 7 and the space meshes A > 0 used in
triangulations {73}, of the domain Q but depend on the initial value of uo and
the force term f. Here the notation || - || is the L? norm over the domain {2 and

NU™||x =\| > /K |gradUn|?dz.

K€Th

In this paper we propose a finite element scheme (P) : (12), and prove the
convergence of their discrete solutions to a weak solution of the problem (P) in
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1 INTRODUCTION

another paper [6] under these conditons from (5) to (7). The order of the error
of discrete solutions of (12) is studied under sufficient regularity conditions on u
and p in this paper.

It may be difficult to extend the scheme (12) to a finite element scheme ap-
proximating the density-dependent Navier-Stokes problem, although it is possi-
ble to extend (12) to a finite element scheme (Q), 1, g = pf, which approximates
the density-dependent Stokes problem (Q)s governed by the density-dependent
Stokes equation

8 v
p—gf —pAu+gradp=pf in @,

together with two other equations (1) and (3) under the two conditions (2) and
(4). Further, it is possible to give the order of the error of their discrete so-
lutions. Note that, in the density-dependent Stokes problem, u,p and p are
unknown velocities, pressures and densities of non-homogeneous liquids, respec-
tively. We shall consider a scheme (Q), : (12) and (21), approximating the
density-dependent Stokes problem, and show that the approximation U™ satisfies

>

n=1

2
< ¢ < 0, (8)

n

where ¢; is independent of the time meshes 7 and the space meshes h, but depend
on the initial value of uy and the force term f. If we assume the condition (8)
adding to the conditions (5), (6) and (7), then we get an increase in the order of
the error of discrete densities of our scheme (12).

Notation v :
For a demain G we write (f, g)G = /fgd:c. In particular, we write (f,g) =
Q

/Qfgdx. We denote by | f|l,c the L? norm of f over G. In paticular, for

G = Q, we write ||f|ll, = ||fllpo- For a d — 1 dimensional simplex F, we

write (f,g) = /F fgdo. Let H = L*(Q) and H = {LX(Q)}4, X = {HY(Q)}*,
V ={veX|divv =0}

Further, for the usual Sobolev space, W? () with 1 < p < oo we need semi-

1/p

1/p
norms, |v|;,c = {ZHD%“Z,G} , and a norm, ||v||yq {ZM’pa} ,

al=1
where D are differelnltial operators of order a, a denote multi-indexes. For the
case G = {) we drop the letter G from the surfixes of |v};, ¢ and ||v||m p.c and let
ZmP = {v e LP(Q) I v|g € Wm’p(K)}, m denotes a non-negative integer and p
satisfies 1 < p < oco. Generally, we call a function v € Z™* for some m and p a
piecewise smooth function. The dual space of a Banach space Z is denoted by Z*.
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2 DISCRETE DENSITIES AND VELOCITIES

| | )
Further, W™ (0, T; L7 (Q)) = {v € L7 (0,T; L9(Q)) | / 1D*v|[fq(qyds < 00} where
A ‘

D?v denotes s -th derivative of v in the sense of distribution.

2 Discrete densities and velocities

Let 75 = {K} be a decomposition of £ by triangulations for d = 2 or by tetra-
hedrons for d = 3. Here we denote by h the maximum of the diameters hx of
K € T,. The sequence of decompositons of Q, {73} is regular : there exists a
constant ¢; such that

lim sup sup Jue <e¢ <00, (9)
‘ h—0 KeT, MoK
where hq x is the largest diameter of spheres included in K.
Let k be a non-negative integer and Py be the totality of polynomials of degree
k. Our approximation method for discrete densities relies on the discontinuous,
finite element method induced by L. Lesaint and P.-A. Raviart [7], analyzed by
C. Johnson and J. Pitkaranta [5]. So we choose an approximating space G} of
discrete densities as follows.

Gp={a: Q- R|alk € P K €T}

We should construct an approximation space X} which approximates veloci-
ties well. For such a space we shall choose a special kind of spaces introduced by
M. Crouzeix and P.-A. Raviart [4].

Let [ be a non-negative integer and let us consider a family of subspaces
{Px | K € Ts} such that P, C Px C C*(K). We introduce a space defined by

q?h:{qS:Q—#quﬁlKePg_l}.

We call @) a discontinuous finite element space of degree [ — 1. Let W)}, be the
totality of functions v such that v|g € Pk for all K € T}, and

[0 —w)gdo =0 Ve (10)

for v; = v|K;, K; € Tyt = 1,2, such that F' = 0K; N JK,. Further, let W}, be
the totality of functions v of W}, such that

/qusda =0 Vécd, (11)

for K € T, and F such that F' = 02 N K. We define an approximation space
Xy = {Wh,o}d, which approximate velocities. For v € X, we define divy, : X5 —
®;, defined by :

(diviv,d) = Y (dive,¢) Vo€ .

KeTh
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3 A SCHEME AND ITS STABILITY

By this operator div, we define V}, = {v € X, | divyv = 0}, which approximates
the solenoidal space V. Here we call an element v of X}, a Crouzeix-Raviart
velocity of degree .

In our paper, the Crouzeix-Raviart velocities of degree | = 2k + 1 are applied
to discrete velocities in the scheme described below. Further let us notice that
the linear span of {a 03 | a; € G, t = 1,2 } coincides with a discontinuous finite
element space @, of degree | — 1 = k.

The upwind element and downwind element
For a discrete velocity U € X}, and a face element F, F C 0K, K € T, we can
choose a constant vector U, and a unit normal v to F' determined uniquely by

/U-VFdOZ/UF,,-I/FdUZO
F F

for the sake of conditions (10) and (11). Here, if [ U -vdo = 0, then Up, = 0 and
vr can be set any of unit normals to F. By vp both of the upwind element Ky
and the downwind associated with F' are determined. Here, we see F' = KyNKp.
By these elements, Ky and Kp, we can define the gap of a on F' by

(o] = alk, — k-

3 A scheme and its stability

First we propose a finite element scheme which approximates advection equations
well. Let sp,t5 : Vi, X Gy X G, =R be trilinear functionals defined by

d
Sh(vaal)QZ) = Z Z (vj%%aa2>f<a

KeTy, j=1

th(v,0q,q9) = Z <UMF7 [Ofl]g 042D>F-
FCQ

Now, our scheme is described as the following way.

(P)n: For U € Vj, and r™~ ! € Gy, find r™ € G}, such that

(57‘7253) + Sh(Un—-l,rn,a>

T

+th(Un—1,’I‘n,a) =< g"a> VYaé€ Gy, (12)

where ¢g" belongs to the dual spéce of G}, for each n. For the case: g" = 0 we
have a discrete scheme approximating to the problem (P) as h — 0 and 7 — 0.

The stability to the solutions r*,n = 1,2,3, -+, N, is described below. We omit
the proofs of lemmas.



4 TRUNCATION TERMS

Lemma 1 (The discrete mazimum principle ) For the case : g" = 0, and for
each m =1,2,3,---, N, together with k = 0, we have

min {rm~1;K | K € T} <min {r"|g | K € T3}
< max {rm]K h K e 77,} < max {rle | K € ﬁ}.

Lemma 2 (L?-stability) For each m = 1,2,3,-:+, N, together with 0 < k we

have
I+ 35 161 + 75 (vF- l[rM}giz)F = 1|

n=1

—|-2TZ < gt rt>.

n=1

4 Truncation terms

Let m;, be the orthogonal projection from L?(f2) onto the subspace G;. We write
p" = mp(p™). Le us consider the errors €” = r™ — p" of r™.

To represent trucation terms it is convienient to introduce trilinear forms s},
and ¢} adjoint formally to s, and ¢, respectively. In fact, they are defined by

sp(v,an,00) ==Y Z (’03011; ?TQZ)K,

KeTyji=1
t;:,(vv 0‘17052) Z <'UMF'7 oy [az] >
FcQ

Clearly, these trilinear forms may be defined for piecewise smooth functions G,
and [, instead of a; and a5, respectively. Other trilinear forms L and [, are
also useful to describe our truncation terms for discrete densities ™.

Lh(vbvzavs) = Z (U1,U203>,

KeTh

lh(UhUz,Ua) = Z<U1,02U3>F>

Fcer

where vy, v, and v; are piecewise smooth scalar functions over domain 2. By
using these trilinear forms we can descrive truncation terms as follows.

Lemma 3 Let p be the ezact solution of the problelm (P) and p"(z) = p(z,t,).
Then

Bela) | gt en0) + U™, e a) =< ghya >, (13)
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5 ERROR ANALYSIS

n . é?)ﬂ n n—1 _n
<g,a>= p—-——;—,(x —l—sh(u -U ,p,CV)
+sh (U™ 0" =", ) + 13U, p" — 7, @)
_th(Un_laPnaa) "' Lh(divhUn_lapn - pn,a)

t ([m]2 =7 0) 4+ (U] 7 = 7a).

5 Error analysis

We can prove the order of errors for the above discrete densities r™ provided that
the exact solution p is smooth enough.

For velocities v € {H2(£2)}* we assume that
(H.1) there exists an operator

m e £ ({m@) 5w n e ({@) 0 (O} wio)
such that

dthHh’U = divhv,
”Hhv - v“h < h™lmy1, (14)

for allv € {H™1(Q)}*,1 < m < 2k+1, where c;, is independent of h and 7, but
depend on ¢;.

The hypothesis (H.1) is due to M. Crouzeix and P.-A. Raviart [4] and the
existence of finite elements velocities for k = 1,3 satisfying this hypothesis see

the examples in [4]. Let @" = II;(u"). For the error E™ of the discrete velocity
U™ defined by

Er=U"-4",n=1,2,3,---,N.
We assume that the discrete velocities U™ satisfy the estimates
(H.2).
“Em”% < ”EOHIZ'L + Olh2(2k+1) + C2T2 m = 172737 ) N; (15)

where C;,1 = 1,2, are independent of 7 and h.

When we apply an implicit standard finite element scheme to the Stokes
equation we get the above estimates (15). Considering each truncation terms in
Lemma 3 the following lemma holds true.

Lemma 4 Let g" be the right hand side of (13). Under the assumptions on p in
Theorem 1 there exists a constant C, which is independent of h and 7, such that

20 3(en, ) < v 3 (U ey
n=1 FcQ F

+e ( R+ TEHE"Hi) , (16)

n=1
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where a denotes a constant described in the nezt theorem.

After substituing o = 27¢" into the first identity in Lemma 3 and applying
the proof of Lemma 2 , adding from n = 1 to m we get

||eml|2+2115e“l|2+7§< Fo h}g'2>F

< l|6°l|2+2f2 <ghet>. (17)

n=1"

Applying Lemma 4 and the discrete Gronwall inequality we can prove the next
theorem below.

Theorem 1 Assume (5), (7), (15) and that a solution p of the problem (P)
satisfies

p e C([0,T};C¥ (7)) nCt ([0, T, W™ (Q)) nC* (0, T} H).  (18)

In the case: k = 0, we further assume (6). Then there exists a constant C,
independent of T and h such that

eI < O(Iet + BV + A28+ 1 r32) = 1,2,3,.., N,
where C s independent of T and h, (19)

where a = 1/2 for the case: (8) does not hold, and a = 1 for the other case: (8)
holds.
6 The Stokes equations

Here we consider a scheme for the modified densﬂ:y—dependent Stokes problem
(Q), governed by

(oYt pAutgradp=g in Q,
T %% +(u-grad)p=0_ in Q, (20)
divu=0 in Q,

with the boundary condition: u = 0 on S and the initial conditions: p(z,0) =
p°(z) and u(z,0) = u’(z) on Q, where g € L?(0,T; X*). The modified density-

dependent Stokes problem (Q)g with the case ¢ = pf reduces to the density-

dependent Stokes problem (Q); previously described in the introduction.
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Let us consider bilinear forms a; : X, x X, — R and b, : X x Gro = R
defined by ‘

ap(v,w) = gradv, gradw
Kze;‘h ( )K’

by(v,a) = — Z (divhv,a)K,
KeTh
where Gro = {a € G, | (1,a) =0 }.

For the above problem (Q), we consider a scheme (Q), :
(1) for r** € G, and U™! € V, find r™ € G, satisfying (12) with the case
k=0,
(2) then, for r*~1,r" € G} and Urt eV, find U € X}, and P™ € G, satisfying

Q——é—g——’l’l + pap (U™, v) + by(v, P*) =< g™, v > Vv € X,

(21)
(U, a) =0 VYa € Ghpo.
In the above, §" approximates g(z,t,), in some sense, and satisfying
|<§" v > < CTlolln + Colloll Yo € X, (22)
with some constants C, forn =1,2,3,---, N, where each C, may depend on g".

We have the stabiliy for the above scheme as follows.

Lemma 5 Assume (22). Then, for each n, we have a unique solution r™, U™ and
P™ of the problem (Q),. Further, using Gy with k =0 and m = 1,2,3,---, N,

we have

m - 5U'ﬂ 2 m ™m "
2¢ar 32| 2 3 D0
n=1 n=1
< U+ O3 1T + Oir 32 G5

n=1 n=1

Here C},C{ are independent of h and T.

This is obtained by substituting v = 26U" into (21) through the discrete
maximum principle on . Applying the discrete Poincaré inequality we get

Lemma 6 There exists a constant Cs, which is independent of h and T, such

that, form =1,2,3,---, N,

T e (mw% Nl e |03|2) .

n=1 n=1



7 ERRORS ON DISCRETE VELOCITIES

7 Errors on discrete velocities

We consider the errors of discrete velocities and densities of the density-dependent
Stokes problem (Q)y,,. Let U™ be the discrete solution of the scheme (Q), 1, where
g = pf. Already we have define the errors E™ of discrete velocities U™. The error

of the discrete pressure P" is defined by Ef = P™ — p™. Then, for v € X},

5

néE‘TL,
L) 1 pran (B, 0) + bu(v, B3) = 3 (17, 0),
J=1

<np,v>= ((rn'—pn)fnav)

" ( sun )
<1,V >= pu -"—7—_—'0

< Mg,V >= —[ ((Au”,v) + (gradu”,gradv)),
< Mgyv >= u(grad(ﬁ" - u”),gradv)

< Mg, >= (gradp",v) + (divv,p“).

Now, we see

<7750 > < | flleo@ (Il + BC1(m) 16,2000 0]

|< 3,0 >| £ Co(m)l[illooa (JIr™]l + fle™]) ol

+hC(m)llo ]| (Hlilleo@lpls,2.00.0 + 1200l l10.0)

n 1!IUI|2d8
+Ip{oo,QJ t [[oll;

|< n3,v > < phCi(ns)|[u" |2,00,0 V]|,
|< ng,v > £ phCi(na)|u” |2,00,0 [V]|k,
|< n5,v > <hCI(75) " |1,00,0 V]l 55

where the constants C(n;),j = 1,2,-- -, areindependent of 7, h,n = 1,2,3, - - -

Applying Lemma 5 to the above estimates we get the result below.
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Lemma 7 Assume (18) on p and
weC <{0,T], {02(ﬁd)}d) net <[0,T], {C(‘ﬁ)}d) AW (0,T5H).  (23)

Then there exist constants Cy, Cy and Cs, which are independent of h and T, such
that

|E™E < IEYJR + Cir i Tk

h2
+CQT + 037

Combining (16), (17), (23) and the discrete Gronwall inequality, we get the
theorem below.

Theorem 2 Assume (18) and (28). Then there exists a constant C, which is
independent of m =1,2,3,---, N, h, 7, such that

h'Z
eI+ BRI < 0 (R + 12+ 7+ )
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