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Ranks of algebras of continuous C*-algebra valued
functions |
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1 Introduction and Main Results

The (topological) stable rank of Rieffel[11] and the real rank of Brown and Pedersen[2] are
noncommutative generalizations of the dimension of a compact Hausdorff space. In fact,
when X is a compact Hausdorff space, the stable rank of C(X) is [9%‘—&] + 1, and the real
rank of C(X) is dim X, where dim X is a covering dimension of X. While it has been known
for some time that the covering dimension satisfies dim(X x Y) < dim(X) + dim(Y") for
compact Hausdorff spaces X and Y (see Proposition 9.3.2 of [9]), little is known about the
analogous situation for C*-algebras, namely the stable and real ranks of tensor products
of C*-algebras. In the case of real rank we can not hope such a product type theorem for
general C*-algebras as Kodaka and Osaka pointed out: In [4] and [8] there are examples
of two separable nuclear C*-algebras A and B such that

RR(A) = RR(B) =0 and RR(A® B) = 1.

In this talk we report results about the stable and particularly the real ranks of tensor
products of C*-algebras under the assumption that one of the factors is commutative.

This is a joint work[7] with M. Nagisa, H. Osaka, and N. C. Phillips.

Our main results are as follows:

(1) If X is any locally compact o-compact Hausdorff space and A is any C*- a.lgebra then
RR(Co(X) ® A) < dim(X) + RR(A).

(2) If X is any locally compact Hausdorff space and A is any purely infinite simple
C*-algebra, then RR(Co(X) ® A) < 1. ' ’

(3) RR(C([0,1])) ® A) > 1 for any nonzero C*-algebra A, and sr(C([0,1]?) ® A) > 2 for
any unital C*-algebra A.



(4) If A is a unital C*-algebra such that RR(A) = 0, such that sr(A4) = 1, and such that
K1(A) =0, then sr(C([0,1]) ® A) = 1.

(5) There is a simple separable unital nuclear C*-algebra A such that RR(A) = 1 and
sr(C([0,1]) ® A) = 1.

The result (1) is an analog and generalization of the inequality dim(X x Y) < dim(X) +
dim(Y). We do not expect equality because this can fail even in the case of compact metric
spaces (see [10]), and also for A = M, ([1]) or for purely infinite simple A (result (2) above).

As corollaries to (1), we give several related results. The one most closely resembling the
inequality for dimensions of products is the following: RR(Co(X) ® A) < RR(Co(X)) +
RR(A) for any unital A and any X.

The result (2) on purely infinite simple C*-algebras is mainly proved by N. C. Phillips.
So we skip over explaining about it.

The results (3), (4), and (5) are the main part of a closer investigation of tensor products
~ with C[0,1]. We show that sr(C[0,1] ® A) = 1 implies that both sr(A4) =1 and K;(4) =
0. One might therefore hope that sr(C([0,1]) ® A) = 1 would also imply RR(A) = 0.
Unfortunately, as our result (5) shows, this is not true.

2 Real rank of Cy)(X)® A

The essential point is‘ that it suffices to show that
RR(C(X)® A) < dim X + RR(A)

for any unital C*-algebra A and a compact Hausdorff space X. The various formulations
involving spaces that are only locally compact and C*-algebras without identities are then
derived from this result by compactifying and passing to ideals.

The basic case is X = [0, 1], which is done by a direct argument. The case X = [0, 1]
follows by induction, and the case of a finite complex follows by attaching cells. We pass
to a general compact space X by realizing it as an approximate inverse limit of finite
CW-complexes with dimension at most dim(X), following Mardesi¢ and Rubin [5].

Theorem 2.1 Let A be a unital C*-algebra. Then,
RR(C[0,1] ® A) < 1+ RR(A).

Sketch of Proof. Case 1: Take any elements fy, fi in C[0,1] ® A, where we assume RR(A).
Let £ > 0 be an arbitrary positive number. Since [0, 1] is compact, there is a § > 0 such
that

|s—t| <& implies |f;(s)— f;(£)l <e/3(j =0,1).
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Devide [0, 1] into 2N-intervals Wlth < 6. Set ty = 211“\, (k = —1,0,1,---,2N + 1).
Consider two open coverings of (0, 1): {U }X | such that U; = (tg;—3, t2), and {V;}; such
that V; = (tgz'_.g, t2i+1). We know that

UiNUiy1 = (tag,tas) C V4,
VinVia = (tais tairn) C Ui

Set agktj = filtawsi) (3 =0,1, k=0,1,---,N — 1), and agsn = fo(1), aen+1 = f1(1).
Since RR(A) = 0, there exist invertible elements by, by, - - -, bay41 such that ||a; — bs|| < §
for all j. Choose continuous functions {h;}; such that each support of h; is contamed m
U; and SN h; = 1 on [0,1]. Slmllarly, choose continuous function {k;}¥, such that each
support of k‘ is contained V; and 3%, k; = 1 on [0, 1]. Then, define

9o(t) = N1 hi(t)bgi—2,
g1(t) = 2N ki(t)boi.

Then, for t € [ta;,, ta],

[1fo(®) = oIl = [[fo(t) = hir1(£)bai — hiyabairal|
= ||hi1 (8) (fo(t) — bai) + hiya(fo(t) — baira)l|
<e/3+e/3<e.

Similarly, ||f1(t) — ¢1(t)|| < e. Moreover, since g1(t) = bai—1, go(t)* + g1(t)* > b;_,, hence
go(t)? + g1(t)? is invertible. Similarly, when t € [t t9i11], We have hiy1(t) = 1, hence
go(t)2 + g1(t)? > b2,. Therefore, these imply that

RR(C[0,1] ® A) < 1.

Case 2: RR(A) = n(> 1). We do the same argument as in Case 1 using the following
lemma:

Lemma 2.2 Let A be a unital C*-algebra with RR(A) = n. For anye > 0, N > n, and
o, a1, -+, 0N € Aga, there exist by, by, -+, by € Age such that ||a; — bi]] <€ for0 < i< N
and Z'“L” b? is invertible for 0 < k < N —n.
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Corollary 2.3 Let A be a unital C*-algebra. Then,

RR(C[0,1]" ® A) < n+ RR(A),

Next, we consider the case of that X is a finite CW-complex.
Recall that the definition of the pullb'ack.

Definition 2.4 Let A, B, and C be C* algebms andlet ¢ : A — C and vy : B — C be
*-homomorphisms. Deﬁne

A®yu) B={(a,b) € A® B: ¢(a) = 9(b)}.
When ¢ and 9 are understood, we simply write A ®¢ B.
One of examples for the pullback is the following:

Lemma 2.5 Let Xy be a compact Hausdorff space, and let X = Xy U, D™ be the compact
Hausdorff space obtained by attaching an n-cell D™ to X, via the attaching map b : S™1 —
Xo. (Here S™! is the boundary of D™.) Let Ay be any C*-algebra, set A = C(Xo) ® Ao,
B = C(D") ® Ao, and C = C(S"') ® Ay, and define ¢ : A — C and ¢ : B — C by
¢(f) = foh for f: Xo — C continuous and Y(f) = flgn-1 for f : D™ — C continuous.
Then

A Doy B = C(XoUp D™) ® Ay.

We need a result on the real rank of pullbacks. The first version of the next lemma
contains an error, that is, too much surjectivity is assumed. We are grateful to Takashi
Sakamoto for calling our attention to this.

Proposition 2.6 Let A, B, and C be unital C*-algebras, let ¢ : A — C be a unital *-
homomorphism, and let v : B — C be a surjective unital *-homomorphism. Then

RR(A®¢ B) < max(RR(A), RR(B)).

Using this proposition we can get the following result:

Proposition 2.7 Let A be a unital C*-algebra, and let X be a finite CW-complex of di-
mension n. Then

RR(C(X) ® A) = RR(C((0,1]") ® A).



12

We now pass from finite CW-complexes to compact Hausdorff spaces. For this; we use
the notion of an approximate inverse system of compact metric spaces, due to Mardesi¢
and Rubin ([5], Definition 1). An approximate inverse system of compact metric spaces
consists of a directed set A with no maximal element, for each A € A a compact metric
space X, with metric dy and a real number €, > 0, and for each A\, X' € A with A < N
a not necessarily continuous function px : X» — X,. Moreover, the following conditions
must be satisfied:

(1) dry (Pasng © Prors(2): Panne(2)) < €1, for Ay < A < Az and 2 € X

(2) pa, =1id for all A |

(3) For all A € A and all 7 > 0 there is X’ > X such that for all Ay > A; > XN and all
T € XAz: we have d)x(p»q op}\1>\2($)’p/\)\2(x)) < n.

(4) For all A € A and all n > 0, there is X' > X such that for all ¥ > )\’ and all
xZ, 7 e XAH, if d)\//(m, :C’) S €\ then d,\(pM//(m),pMu(m’)) < n.

The (inverse) limit ([5], Definition 2) X = lim(Xy, €x, pax, A) is the subspace of e X
defined by

X = {x = (z)) € IeaXy @ 22 = ;j>mApA,A/(acA/) forall A € A},
with the relative product topology. (See also Theorem 2 of [5].)

Lemma 2.8 Let (Xy, €x, Pax, A) be an approzimate inverse system of compact metric spaces,
with limit X. Let py : X — X, be the restriction to X of the projection Il epa Xy — Xi. Let
A be a C*-algebra, and let a : C(X\) ® A — C(X) ® A be given by an(f) = fopr. Then
for any fi, fay-. -, fn € C(X) ® A and any € > 0, there exist A € A and g1,G2,...,9n €
C(X,) ® A such that ||ax(gm) — fmll <€ for 1 <m < n.

In the following result, A denotes A if A is unital and the unitization A* of A if A is not
unital. By definition, we have RR(A) = RR(A).

Theorem 2.9 Let X be a normal locally compact Hausdorff space (in particular, a o-
compact locally compact Hausdor(f space), and let n = dim(X). Then for any C*-algebra
A we have _ N

RR(Cy(X)® A) < RR(C([0,1]") ® A) < dim(X) + RR(A).

Sketch of Proof. The inequality RR(C[0,1]*® A) < dim X + RR(A) follows from Theorem
2.1. Since RR(A) = RR(A), this gives the second half of the inequality. For the first half
of the inequality we may assume that X is compact and A is unital. Indeed, since X is
normal, dim X = dim 8X, where 5X is Stone-Céch compactification. So, we have

RR(Co(X) ® A) < RR(C(6X) ® A) < RR(C[0,1]" ® A).
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Note that RR(Co(X) ® A) is a closed two-sided ideal of RR(C(8X) ® A), and that real
rank of a C*-algebra is greater than or equal to real rank of any its closed two-sided ideal.

By Theorem 5 of [5], there exists an approximate inverse system of compact metric
spaces (X, €x,Pav,A), with limit X, such that each X, is a polyhedron (and thus in
particular a finite CW-complex) of dimension at most n. It follows from Proposition 2.7
that RR(C(X\) ® A) < RR(C(|0,1]™) ® A). _

Let N = RR(C([0,1]") ® A), let ag,a1,...,any € (C(X) ® A)sa, and let € > 0. By
Lemma 2.8, there is A € A, a unital *-homomorphism «a, : C(X,) ® 4 — C(X) ® A4,
and bo,bl, by € C(X)) ® A4, such that |laa(b;) — a4]| < £ for 0 < j < N. Replacing
b; by 3(b; + b*) we may assume each b; is selfadjoint without increasing ||ax(b;) — a;l|.
By Proposmon 2.7, there are co, ¢, - en € (C(Xh) ® A)se such that ||lc; — b;|| < £ for
0 < j < N and such that ¥ ¢ is 1nvert1b1e Then the elements a(co), aa(c1), - aA(cN)
are in (C(X) ® A)sq, and satlsfy laa(e;) — a5]] < € and g an(c;)? is 1nvert1b1e. This
proves that RR(C(X) ® A) < N. O

3 Lower bounds on rank
In this section we explain about the result (3) briefly.
Proposition 3.1 Let A be a nonzero C*-algebra. Then RR(C([0,1]) ® A) > 1

Sketch of Proof. Suppose that RR(C[0,1] ® A) = 0. We try to get a contradiction from
this assumption. We may assume that A is unital. Since A is a quotient C*-algebra, A is
non-zero C*-algebra with real rank zero. Take non-zero projection p, and consider a corner
algebra C10, 1] ® pAp of C[0,1] ® A. Then C[0,1] ® pAp has real rank zero from the fact
that any non-zero hereditary C*-subalgebra of a C*-algebra with real rank zero has also
real rank zero [2]. Replacing A by pAp, we may assume that A is unital.

Define f € C([0,1], A)se by f(t) = (2t — 1) - 14 for 0 <t < 1. By assumption, there is
an invertible selfadjoint element g € C([0, 1], A) such that ||f — g|| < . From the spectral
argument we can conclude that there exists a point ¢y € [0, 1] such that g(¢;) has 0 as a
spectral point. This is a contradiction to the invertibility of g. O

The following result is easily to be proved.
Proposition 3.2 Let A be any C*-algebra. Suppose that 37'( ([0,1]) ® A) = 1. Then
sr(A) =1 and K;(A) =0.

Proposition 3.3 Let A be a unital C*-algebra. Then sr(C([0,1]?) ® A) > 2.
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Proof. Suppose that sr(C([0,1]*) ® A) = 1. Then sr(C(S*) @ C([0,1]) ® A) = 1 by
Proposition 2.7. So sr(C(S') ® A) = 1 and K;(C(S') ® A) = 0 by Proposition 3.2.
Therefore 0 = K;(C(S') ® A) = Ki1(A) @ Ko(A), whence Ky(A) = 0. Since A is stably
finite (because sr(A) < sr(C(S') ® A) < 1) and unital, this is a contradiction. a

4 Stable rank of C([0,1]) ® A)

~ In this section we explain about results (4) and (5). We need the following two technical
lemmas. ‘

Lemma 4.1 For every € > 0 there is § > 0 such that whenever A is a unital C*-algebra,
u, v € A are unitaries, and p € A is a projection, with ||up —vp| < 8, then there is a path
t — z, of unitaries in A with 29 = 1, zyup = vp, and ||z — 1|| < € for allt € [0, 1].

Lemma 4.2 Let A be a unital .O”‘-algebm with K1(A) = 0, sr(A) =1, and RR(A) = 0.
Then for every € > 0 there is § > 0 such that whenever a, b € inv(A) satisfy ||al], ||b]] <1
and ||a — b|| < &, then there is a continuous path t — c; in inv(A) such that

co=a, ¢ =b and |c—al<e

Theorem 4.3 Let A be a unital C*-algebra with K;(A) =0, sr(A) =1, and RR(A) = 0.
Then sr(C([0,1]) ® A) = 1.

Proof. Let a € C([0,1]) ® A, and let € > 0. We have to approximate a within € by an
invertible element of C([0,1]) ® A. Scaling both a and €, we may assume that ||a|| < 1.

Choose § > 0 as in the previous lemma for { in place of €. Choose 0 ={p < t; < -+ <
t, = 1 such that

la(ty) — alt;) < 2 and Jla(t) — a(t;_1)]| < &

for1 < j<nandt € [tj_1,t;]. Using the fact that sr(A) = 1, choose ¢y, i, .. ., ¢, € inv(A)
such that ~
€ &

llej — alty)]| < min(3, 5)-

Then ||¢; — ¢j-1]| < 6. For each j, use the previous lemma to choose a continuous path
t — b(t) € inv(A), defined for t € [t;_1,t;], such that

b(tj—1) = cj—1, b(t;) =c;, and ||b(t) — ¢l < 5
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The two definitions at ¢; (one from the j-th interval, one from the (j+ 1)-st interval) agree,
so ¢ — b(?) is a continuous invertible path defined for ¢ € [0, 1]. Moreover, for ¢ € [t;_1,;]
we have

() — a@®) | < 116(t) — cjmrll + llej—1 — alts—)l| + lla(ts-1) —a(®)l| < §+ 5+ 5 =

O

We now give a example of a simple separable unital C*-algebra which satisfy the hy-

potheses of this theorem but are not AF. In partmular sr(C([0,1]) ® A) = 1 does not
imply that A is AF, even if A is nuclear. '

Example 4.4 Ezample 4.11 of [6] gives a simple separable unital nuclear C*-algebra A
satisfying K1(A) = 0 and RR(A) = 0. It also has sr(A) = 1. It thus satisfies the hypotheses
of Theorem 4.83. It is not AF because Ky(A) contains torsion. , i

The following result induces the fact that sr(C[0,1] ® A) = 1 does not imply that
RR(A) =0. ‘

Theorem 4.5 Let A =lim A, be a direct limit of interval algebras of the following form.

Let (yo, 41, - -.) be a dense sequence in [0,1], let 1 = k(0) < k(1) < - -- be integers such that
k(n)|k(n+1) for all n, let A, = C([0, 1], My)), and let ¢npi1 : An — Any1 be the unital
‘maps given by

¢‘n,n+1 (a) = dia‘g(a’ a,...,a, a‘(yn))7
where a(yn) stands for the constant function on [0,1] with that value. Then we have
sr(C([0,1]) ® A) = 1.

Example 4.6 By Theorem 9 of [3], there is a simple C*-algebra A of the form considered
in Theorem 4.5 such that RR(A) = 1. The theorem gives sr(C([0,1]) ® A) = 1. O
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