Optimizing multiple selection with a randam number of objects－full information case

Katsunori Ano

Nanzan University

We consider the generalization of the no－information secretary problem to the full－ information case，allowing also multiple choices and a random number of objects．The goal is to maximize the probability of choosing the overall best．Previously，different au－ thors studied no－information cases with multiple choices and fixed number of objects；or， as Porosinski（1987）did，extended Presman and Sonin＇s secretary problem with random number of objects to the full－information case with a single choice．He showed that if（ P ） $d_{j}(x) \geq 0$ implies $d_{j+k}(y) \geq 0$ for $k \geq 1, y \geq x$ ，then the problem is monotone，where $d_{j}(x) \equiv P(N=j)-\int_{x}^{1} \sum_{k>j} P(N=k) y^{k-j-1} d y$ ．It is reasonable to expect that if single－ choice problem is monotone，then two－choices，three－choices，\cdots, m－choices problems are also monotone．We investigate this monotonicity related to the condition（ P ）through a recursive function on m constructed from the optimality equation．As an example，the case of uniform number of objects is studied．This case satisfies（ P ）．The optimal stop－ ping rules is shown to be a threshold rule with multiple threshold values，which can be described as follows：The optimal stopping time，when we can make m more choices，is $\tau_{m}=\min \left\{j \geq 1: x \geq s_{j}^{(m)}\right\}$ ，where the threshold value $s_{j}^{(m)}$ is a unique solution in $[0,1]$ of the equation

$$
h_{j}^{(m)}(x)=h_{j}^{(1)}(x)+\sum_{n>j} \int_{x \vee s_{n}^{(m-1)}}^{1} x^{n-j-1} h_{n}^{(m-1)}(y) d y
$$

with $h_{j}^{(1)}(x)=\sum_{n \geq j} x^{n-j} d_{n}(x) . s_{j}^{(m)}$ is nonincreasing in j and in m ．

