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1 Introduction

Many models have been proposed to describe the diffusion process. One
for the linear Newtonian diffusion process is the well-known heat equation
; (HE)u; = uge. A typical example for the nonlinear diffusion process for
the Newtonian filtration problem is known as the porous medium equation
; (PE) u; = (v'ug),. Here we note that (PE) is equivalent to (HE) as
¢ = 0. Concerning the non-Newtonian polytropic filtration problem, the
following doubly nonlinear equation is proposed. ; (see [?7, Kalashnikov])(DE)
Uy = (u’fl'u,;,;|7’_2u:,;)m. In this note, we consider the following more generalized
equation which covers all these examples. '

() %;i ~ (e(u,up)uy), =0, (x,t) € R x[0,T],
) u(z,0) = up(x), z € R.

These equations have been studied by so many people and many inter-
esting results are obtained so far. Among them, concerning the regularity
of solutions for nonlinear problems, the Holder continuity of u has been well
known. However, as for the estimate for the derivative of u itself, little is
known. In our recent works [13], [14], [15] and [16], we constructed a time
local solution which is smooth with respect to time and space variables. Our
aim here is to investigate the structure condition on ¢(u,u,) which assures
the existence of time local smooth solutions of (E). Our main result is given
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‘in the next section, and the sketch of its proof is given in §3. This work is a
collaboration with Prof. M. Otani (Waseda Univ.).

2 Main Result

Throughout of this note, we always assume the following conditions.

(A.1) p(u,z) € C*(R x R), ¢(u,z), p,(u,2)z >0, V(u,z) € R x R,
and ¢(0,0) = 0.

(A.2) There exist functions g;(u, z), g2(u, 2) € L2, (R x R) such that

(¢2(u,2))
e(u,z)

(022(u, 2)2)’
@, (u,z)z

g1(u, 2), < g2(u, 2).

IN

(A-3) uo(e) € () H™(R)

m=0

Then main result is stated as follows.

Theorem (Local existence for (E)) Assume (A.1) and (A.3), then there
exists a number Ty € (0,T) depending only on |ug|pe, |uoe|re , |D2uo|pe
and |D3uo|pe such that (E) has a solution u belonging to C*([0,T] x R).
Furthermore if (A.2) is satisfied, then there exists a number T} € (0,7 de-
pending only on |ug|pe, |ugs|Le and |D2ug|p~ such that (E) has a solution
u belonging to C*°([0,T}] x R).

Remark Note that (A.2) is not so restrictive because of the existence of
the square power raised to the numerators in (A.2). In fact there are many
functions satisfying (A.1) and (A.2) such as ¢(u, z) = u?2% with /,p € IN.

3 Proof of main theorem

We here give the sketch of a proof of our main theorem. We first prepare the
following approximate equations for (E):

(E)E 3617': o Euim - ((Lp(ue,ui)ui)% = Oa (*L"t) € x [OaT]a (1)
u®(z,0) = up(2), z € (),
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(E)s{ 86};: - euf'L = ((‘P(UE,“i)Ui)w =0, (:L‘,t) €l x [OvT]v (l)
ut(z,0) = up(x), z e,

where ¢ is a positive parameter. In order to see that (E)® have C*°-solutions,
we have only to show the following proposition.

Proposition 3.1 For any T > 0, n € N and € € (0,1], (E)° has a unique
solution u belonging to H*(0, T; H*®=F+)(R)) for all k =0,1,...,n.

To prove Proposition 3.1, we reduce (E)° to the following evolution equa-
tions in Hy = H*(R) :
Uet + € AU + 0(Ue, Uer) AU + 05 (Ue, Uen ) Uew Ale
(E)E — (}ou(us) uea})(uea:)27 te [07 T]7
ue(0) = uy. : '

Here A is an operator in Hy, defined by A = —(1% and D(A) = H***(R), and
the inner product of Hy is given by (u,v)m, = (u,v)2r) + (Aku, Akv)Lz(R).
In what follows we always assume uo € D(AY?) = H*+1(R) and for the
sake of simplicity we denote u. by u. In solving (E)°, we regard the terms
o, ) Aty 0, (U, Uy Uy Au and @y (U, Uy ) (Ues)? as perturbations for e Au. We
first solve the following equation with the perturbation ¢(u,u,)Au.

e | e A A= £, DT
u(0) = up,

where f is a given function in L*(0,T; Hy).

The difficulty in solving this equation lies in the fact that ¢(u, u,)Au is not
a small perturbation nor monotone perturbation for e Au. However, roughly
speaking, @(u,u,)Au can be decomposed into the monotone perturbation
part and the small perturbation part. In fact, we get

(p(uw,u,)Au, Au)g, _
= (e(u,uy)Au, Au)pr) + (A*(o(u, ug) Au), Ak“u)Lz(R)

- /ch(u,um)(Au)z de + /R o(u, u, ) (A 1)? da + Ry
> Ry,



18

2k . ' 0
R =) %C; / Di(o(u,uy)) - D*77 Au - A ude, D, = 5
' “JROT ‘ » X
J=1
Since the most singular part of the integrand of Ry is D, (¢(u, 1)) D=1 Ay
ARy R, can be handled as a small perturbation for €||Ak+1u“%2.

To solve (E)g, we introduce another auxiliary equation:

uy + eAu + do(u,u)Au = h+ f, t€[0,7], X € [0,1],
U(O) = Uyp.

h

If \(E); has a unique solution u”, we define the operator *F,; by the following

correspon dence:

AF,

o hut e —no@(u”, ul) Au”, 7o € R.

By making use of the property of ¢(u,u,)Au observed above, we can show
the following lemma.

Lemma 3.2 There exist a (sufficiently small) posilive number ng and a pos-
itive number R independent of X such that *F,, becomes a contraction map-

ping from K% into itself, where K} = {'U € L*(0,T; Hy); vl c2o,mm) < Ry

It is clear that *(E); with A = 0 has a unique solution, so °F,, is well

0
defined. Hence °F,, has a fixed point by the contraction mapping principle,
which implies that *(E); with A = 5, admits a unique solution, so ™F,,

is well defined. Hence *F,, with A = 27, admits a unique solution. Thus
repeating this procedure finite times, we can construct a unique solution of
1/71\¢
(E),-

To solve the original approximate equation (E)°, we next introduce an-
other mapping #S,, defined by the following correspondence:

!

rS h— u" v —n10,(u, u )u, Au,

m
where u” is the unique solution of the following auxiliary equation.

Uy + eAu + p(u,uy) Au + po, (U, uy)u Au = f,
W(E)s te€[0,T], A €0,1],

u\ o
u(0) = up.
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By using much the same arguments as for *F,,, we can show the following
Lemma 3.3. '

Lemma 3.3 There caist a (sufficiently small) positive number ny and a posi-
tive number R independent of p such that *S,, becomes a contraction mapping

from K% into itself, where K} = {v € L*(0,T; Hy); vl 20,131, < R}.

Then we can assure the existence of solutions of | (£)§ with 4 = L. Finally
we introduce the mapping W as follows.

W foul s oul,ul)(ul)?

where u/ is the unique solution of }(E);. Since W does not involve any small
parameter such as 5o for *F,, or n; for »S,, to control the size of the value of
W, we need the smallness of Ty. However, by the standard energy estimates
for (E)°, we can establish a priori bound for ||AY2u(t)| &, , which assures that
the local solution on [0, Ty] can be continued up to [0,T]. Thus the first step
is completed. | '

Step2 (A priori estimates)

We apply the “L*-energy method” introduced in ([13],[14]). Since the
presence of the term e Au does not disturb the following argument, it suffices
to establish a priori estimates for the original equation (E).

(1) Estimate for |[u(x,t)||pe@mxio,m))
Multiply (E)® with ¢ = 0 by |u]""?u, then by the integration by parts,
we get

1 d ) o -
Ol = —0 =) [ el do

< 0.

Hence [|u(t)||r@m) < lluollLrm) for all 7 € [2,00), then letting r — oo,
we deduce

lu@llzr@)y < |luollrmy for all r € [0,00] and ¢ € [0,T].  (2)
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(i) Estimate for |juy(z,1)||reo@muio,m)):
Multiply (E)® with € = 0 by —A,u = —(|us|""*us)s, then we have

1d ) .
;J{HD,U,G)”D(R) + JO + Jl - ‘]‘27 (3)
Jo=(r=1) [ ol o)l (D27 do 20,
= (= 1) [ ol wadudud (D2 dv 2 0,
Jy =~ / Py th) [t | (Jtte|" 1) d.
r—1

ho= = [ewu) (el ), do

—1 7 L - — 1 ‘
= :, + 1 / (Puu.lua;|7+l dlL' + :T—-_!—:—I / (puzlug:ruxDzu d.’L'

where we get

Jy < CO/|1L$|7'+2 dz,

. ~—1 . .
JE = : . gom(u,u,,;)|uwl'umDiy dx
r—1 1
_ r+2 .
= T [eulmu) (gl ™) do
< 1

r + 9 / I‘Puuz(ua um)un: + %,zz(’d, U'a;)D;Z;“"H'U'wIT_*—Z dx

There exists a constant C. depending on € such that
2
|Puus (U U )y + Puzz (U, up) Dyu| < Ce

Hence we find

J: o< == / LT da. 4
: S 3. | x (4)
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Thus, in view of (2),(3) and (4), we derive

H'U, ( )”L R)(H“u ( )”L’"(R) < (CO + r+ 2) / lun:' 2 da.
By dividing both sides by ”'u,;,,.(t)||£7(lm, we get

d C.
aHu:v(t)“Lr(R) < (Co—l-

)HU: 2o my sl 2 r
Hence letting » — oo, we obtain

sl < losliemy + Ce | o).

Then it is easy to show that there exists a positive number Ty =
To(luollemys |tosliLeomy) < T independent of € such that

luw(Wllzomy < 2||uosllpem) for all ¢ € [0, Tp). (5)
Lstimate for ||DZu(x,1)||Lemx(o,1)):

We differentiate (E)® once with respect to the x-variable to obtain (E),
and 1‘1‘1ultip1y (E). by —Ayuy = —(|D2u|""?D2u),.. Then we obtain

. (HHDZ v rmy = — /D (u, Uy )(|D3u|7“2Dfu)q dz

D%(‘P(“) un))ua:) = (99 + (P;lll)Dqsll, ’ .
+a‘1(u"u9}) + (l-)('U,, 'U’.'L‘)D:f-u + (1,3('1,&, U;;;)(D;ZJ'LL)2

So we h ave

APy o= S+ T+ ®
Jo=(r—1) / (go(u,um) + ¢, (u, ug;)un,) |D2u|""?(D3u)? dx
20,

Jy = —/(1,1(u,-u,:,,.)(|Diu|"‘2Diu)_.,; dz,
Jp = — /(1,2(11,,'u,m)Df_,u(lDiul"—gDiu)m dx,

J3 = — / as(u, e )(D2u)?(|D2u|" "2 D2u), dz.
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By using integration by parts and (2) and (5), we get
J = — / (alu(u,ux)uw +alz(u,um)DZu>IDE,uIT—ZDiu

e / |D2u| " u,| de + C, / \D2|” da, m

g, o= - / a3, up) D?u - (|D?u| "2 D), dz
= — /a2(u,ul) r—1

”
= 1 f ‘ 2 2.7 7.
= (alu(u, Uy ) Uy + a1, (u, uT)D%u) |Diul" da

r

= C3/|Diu|T dz + C4/|Di,u|"+1 dz, (8)

Js = = [ ay(u,u)(D2u)? - (ID2ul " D2u), da
r—1
- "./a"'*(“’”““)'rﬂ
r=17/r/ 2 2, 1" 2
= r + 1 (al?m(uyuva:)um + a:sz(u,um)Dxu) |D$’U,| Dm'U, dCU
= G5 [ID3ul™! da+ Cy [ [D2u? da. (9)

(1D5ul" Dyu)s da

Then (6)-(9) give,

r— d '
llDiU(t)HLr(lR)ggl_lD:fU(t)HLr(R) |
< Chllusllor @I Daull gy

+C7(1 + “Diu”Lm(Rx[O,T]) -|' ”D?u”ioo(Rx[oyT]))“DEUHZ,(R) de

Dividing both sides by ||D_z_u(t)||’5(1m and letting r — oo, we obtain
IDzu(t)llL m)
< |1 D2uo|l oo (my + Cillusllem) |
t -
+Cr [ (ID25) oy + D2 oy + 1D2() [Fer ) s

Then it is easy to show that there exists a positive number 77 =
TI(HUO“L‘”(R), “u()a:HL""(R)a HD%'UJOHLoo(R)) S T such that
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“DZ (llrem) < 2”D2U0HL°° (r) for all t.E[O,Tl].
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(10)

Here we note that the constants C; (¢ = 1,2,---,7) depend on the

initial data but not on €.

Estimate for ||D3u(x,1)||Le@mxo,n))

In order to derive the a priori bound for ||D3u(z,t)||L- under assump-

tion (A.2), we rely on the following interpolation inequality:

ID3u(z, )l < V2D3u(z, )12 - | Djule, )]|15

(11)

That is to say, we have only to establish a prioﬁ bounds for || D3u(z, t)]| 2

and || Diu(z,t)| L2

Estimate for sup ||D u(x,t)||L2(m)
0<t<Ty

We differentiate (E)® twice with respect to x-variable to obtain D2(E)°®,

and multiply D%(E)® by -D2u. Then we get

S IDNWIEm = = [ Dlplu, u)u)Dlu de,

D(p(u,ua)ua) = (0 + o) Dyu+ (50; + 3pszus) DjuDiu

+b1(u, Uy, Dzu) + ba(u, u_,,;)Df_u.

So we have
||D u()|22my +Jo = Ji + J2
Jo= [ (ol u2) + oy wa)us) (D2)? =0,

Ji = /b1 U, Uy, D2u)Diu dz,

2df

Jy = — /62 u u7)D3uD4u dz,

&~
I

-5 /cpz (u,uy)D2uD3uDiu de,

Js= =3 /(,ozz(u, Uy )ty D2uD>uDu da.

(12)
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It is easily follows from (2), (5) and (10) that
J, = /(bl.lL('u,‘uw,Dzu)u:v+b12(u,u;E,Df_u)DZ_u
| b1, (0, Uy, Diu)Dfu) D3y dzx
< Cs [(luel +1D2u] 4 |D2u)| D2l de.

Repeating the same arguments with a priori bounds for ||u,||pe(r) and
|| D2u||Loo(r), We easily obtain the following L*-bound.

sup_[luz(t)|lzery, sup [|Dgu(t)llemy < Coo (13)
te[0,T] tefo,T}]

’

Therefore we get
Ji < 2CsCy|| Diull ey + Csll D3ullL: my- (14)
As for Jy, (2) , (5) and (10) yield.
Jy, = — / by(u, Uy ) D3uDiu da
= .——/ bz('zt,ux)%(Diu)i dz
= -12-/ (bgu(u, um)uf,,.+blz(u,ux)DZ.u)(D2u)2

Cuo [ (fue] + D3]} DEuf? da. | (15)

In order to estimate J5, we note that Z, = {(u,2) € RxR; ¢.(u,z) #
0} C Z = {(u,z) € R x R;p(u,z) # 0}. Indeed, p(u,z) = 0 implies
@.(u,z) =0, since p(u,z) > 0. Then we get

.]3 = _5/ (roz(u,'dq,)Dz’U,Diquu d:v
i ZZ b it
1 .
S Z/Z Lp(uvufl)(D?'U,)2 (]J;

, 2
+ 25/ M—lDiul‘leﬁulz dz.
Jz @ ,

Uy Uz )
M L 2 . v,
Here, by assumption (A.2), L‘P—;(%’—;-%)— < g1(u, u,), there exists a positive
constant I{; depending on ||u|| peo(0,13;000(R)) and ||tz || Lo 0,770 (R)) such
that
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, .
S(u, 2 AR ,
] <l € (16)
p(u, z) L (RxR)
Consequently we obtain
]. . - v ¢ : « |
Jy < 7ot 1611(Cu) | D3ull 72 my - (17)

To estimate J4, we now note that Z/_ = {(u,z) € RxR; ¢,.(u,2)z #
0} C Z! ={(u,2) € RxR;p,.(u,z) # 0}. In fact, since ¢,(u,2)z > 0,
@,(u,z)z = 0 implies that (goz(u,z)z)z = .. (u,2)z + @,(u,z) = 0.
Then ¢,(u,z) = 0 or z = 0 gives ¢,,(u,z)z = 0. Hence we find that
@, (u,z)z = 0 implies ¢,,(u,z)z = 0. Then we get

.]4 = —3/ sozz(UqUo)'U/;Dqu?,UD;;u da
25
1
S Z.L; sz(u’uﬂ;)um(D::u)2 d{L’

2
19 ' (Lpzz('u'vua:)ua;)
z u(uug)ug

| D2uf?| D3ul? da.

. z 2 M *
Here, by assumption (A.2), (eez(w2)2) ga(u, u,), there exists a posi-

wz(u,z)z
tive constant I{, depending on ||u||Leo(o,1y;000(r)) and ||te| Lo (0,73;00 (R))
such that

2
22Uy 2)2 - :
1(90 (v, 2)z) < galu, ug)| Lo rxr) < K. (18)
¢:(u,z)z L (RxR)
Consequently we obtain
Jy < Z']O» + 9[‘2(611)ZHDiui'liZ(R)- a (19)

Thus, in view of (12),(14) (15), (17) and (19), we derive

D) e
< 2C3Cs|| Dau(t)]rar) | |
+(Cs + Cro + (16K, + 9K,)(Cur)?) [ D3u(t) |22y
| for all t € [0.T3].  (20)
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We divide both sides of (20) by || D3u(t)||r2(r) to get,

—HD (b2 m)
gz@@+pﬁcwﬂmm+wmcmywuum
Then Gronwall’s inequality gives

sup [ D3u()lzwy < (Cra+ | Djuollra(ry)e™” (21)

0<t<T -

Here we note that the constants appeared in this step depend on
2 Fe ‘
l|woll oo gy || tos || oo (R) > | D20 || Lo (R)s K1, (2 but not on e.

(vi) Estimate for sup ||Dju(z,?)||r2(r) :
. U<t<fl1

In order to obtain the a priori bound for ||Dju(?)||72(g), we multiply
D?(E)® by D3u and repeat much the same arguments as above to get

2(H||D4u iew = — /Di(go(u,u_q,.)u:,;)Diu dz,

Df(so('u Usp ) U )
= (¢4 @.u,)D3u + do(u, u,, Du) + dy(u, Uy, D2u) D3 u

+ (otpz(u, u,) + dgozzu_.,,) (D:,‘.u)
—I—(Ggoz(u,u(,) + 4, (u, u,)u, )D‘ZUD41L
+dy (1, Uy ) Dipu.

So we have
||D4 WlZewy +Jo=T1+ L+ s+ o+ Js (22)
Jo = /(gp(u uy) + . (u, u;,,.)u‘.,,._)(D"E.u)2 >0,
/do (u ul,Dzu)Dsu dz,

2di

/d1 Uy Uy, D2u) D2 uDsu de,

:_@/@l“q«Du)+ D%D4ﬁﬁum



Jy = —4'/ ©rr Uy ((Dfu)2 + %Diquu) Dlu dz,
Jg = — /dg(u,u;,;)Di.qu:u dz.
The integration by parts and estimates (2), (5) and (10) yield
J, = - /do(u,um,Diu)Diu dx
- / (d()u_(u,u,,,.,Diu)um + do:(u, uy, Dfu)Diu
| +doy (U, Uy, Dizt)D_fu) Diu da
< Cu [(jual + |D2ul + | D2ul)|Dlul de
Therefore, by virtue of (13) and (21), we get
Ji < 3CuCis|| Dau(t)| 2 m).- (23)
Similarly we get
J, = — /(ll(u,u_,,.,Df:u)Dgqu;u dx
= /‘(dlu(u,'u,f,,., D2u)ug + dyz(u, g, D2u)D2u
| +dio(Uy Uy Dfu)Diu) D3uD?u dx
+ /(l,l(u,um,Diu)(D:u)Zd:L‘
< Cig / (1 + |D,3u|) |D3u||D2u) dx + Ciz /(D:u)2 dx

< Crsl|Diullamy | Dyull e gy
+C16|| D3ull 3y | Daullzzwy + Crrll Dpulliemy

Here we note
/(D?u)stu de = /B(Di’lt)zDi’(tDi’u da
< 3||D2ull | Dgvell 2y | D2l Loy »
whence follows

1Dulltamy < 3IDMulloml Davllaw)- (24)

27
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Then we get

Jy < Cuel|Djull w1 D5ull 2 r)
+(3Cks || Diulloe(ry + Cur) [ DsullZa ). (25)

Using again the fact that Z, C Z, we now have

5 . ‘
Jy = —~G/Z sz(u"uz)('é(-Di.u)z + Di’LLDi.'LL) Dlu d:c

1 ‘
< '2'/ o t/,,u_,L.)(Ds.u)‘3 da

+ 36/ L—;—(]D ul* + | D2ul? |D4'u| ) dz.

Hence by (16) and (24), we get

J3 <

xu”:lzl‘”(R) ' ”Df;“”i?(n)

1 , ,
< 5ot Cisl| DyullF2(ry- (26)
In order to estimate Jy, recall the fact that Z;, C Z, then we have

3
o= =4 [ e (F(D3) + D2uDiu) Diu do

1 , .
-2-/ c,ozcu,'u;v,.)u;q,.(Dzu)l dz

IA

2
‘Pzz
n 16/ ) (|D3u|4+ |D2uf’| Diul?) da
Hence by (18) and (24), we get

1 ) . |
Jo < 5Jo 4 160K Diulleemy | Daull 22wy

L '
< SJo+ Cuoll Doull ey 0

As for the last term Js, the integration by parts gives

Js = — /dz(u,um)Diqu:u dx



(vii)
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/a’z (u, Uy (D4'u) ) dz

r

—2-/ (],gu(u,’um)'u,w + (],-k(u,'u,l.)D:‘iu)(D‘,,'f_'u,)'2 dx
Thus, in view of (22),(23),(25) (26), (27) and (28), we derive

2111|D w(fewy < CallDyu)lzzmy + Cooll Daut)|Zz(ry,
for all t € [0.T1].  (29)
Consequently, by Gronwall’s inequality, we obtain

sup || D2u(®)|lemy < (Ca + | Divollr2(ry) e (30)
0<t<T

Here we note that the constants appeared in thls step depend only on
the initial data and so on but not e.

Estimate for ||[D™u(z2,t)||1~ (m > 4):

The basic method to establish a priori bounds for ||D™u(z,t)||L~ with
m > 4 is essentially the same as that for the case m = 4. So we here
show how to derive the a priori bound only for the case m = 4.
First we note that D?(E)® gives
(D), = (99-}-904 )D u + e1(u,ty, Diu, D2u)
+ e3(u, Uy, D2u)Diu

Multiplying this by —A,(D3u) = —(|D3u|"~2D2u),, we obtain

1Dzt R)GHIID4 Dz w) |
= Jy + J + Jo, (31)
Jo=(r—1) / (cp('u,um) + @, (u, uy)u, )|D4u!’ 2(D3u)? da
>0,
Jy = /cl(u u,,D2u Du)(|Diu|""2D2u),, dz,

= — /62 (u, 1y, D2u) Diu(| Diu|" "2 Du),, du.

r
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By the integration by parts, we get

]l = / (61“4('1/,, Uy, Dg%'ll,, D?U)Uq + elz(uyu:l:a Di'll, D?'U)D,z'u
+e1o(t, Uy, D2u, D2u) D3y
te100(t, Uy, D2u, Diu)Di‘U,) |D2u|""2Diu da
< Oy / <|'u,:,,.| + |D2u| + |D3u| + |Di'¢t|)|Dizt|""1 du.
< O (Ilallrmy + 1D2ull oy + 1 D2ullr e ) | Diull ey
+ Cosl| Dyuel| 7wy, (32)
J, = —/ez Uy Uy, D2ut) - L (|D4ul )e d
_1 _
S /eg(u,um,Diu)(lDﬁuV)(,; dz.
roo.
= / (ezu(u, Uy D20 )y, + egz(u,u;,;,D_Eu)D_f_u
+e9, (U, Uy, D2u)D? u)|D4u| dx
< Cy / (l'll,_f,;f_Jr |D2u| + |Df‘,fu|)|Dz.u|"‘1 dz.
< Coa(ltallzey + 1D2ull iy + D2l o) | D2l gy

(33)

.Z

”}f;o:v (31) - (33) together with (2), (5), (10)

Since ||v|lrr < ||
and (13) give

d o,
m”Dg“’(t)HL"(ﬁ) < 025(1+||Di‘U,HL1‘(R)).

Hence, by Gronwall’s inequality, we get

sup || Dsu(®)lrmy < (CosT 4 sup ”D;'UU“U‘(R))GCZE’T. (34)
gifiﬂ 2srsee

Here we note that the constants depend only on the initial data but not
on €. Thus a priori estimates for solutions of approximate equations
independent of ¢ are established. To complete the proof of Theorem,
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we have only to apply standard arguments for convergence.

We can derive the local estimate for ||D2u(x,t)||pe(rx[o,z]) Without

- assuming (A.2) as follows.

(viii)

Local estimate for ||D3u(z,)|| Lo rx[073))

In order to derive the a priori bound for || D3u(z,t)|| L=, we differentiate
(E)® twice with respect to x-variable to obtain D2(E)", and multiply
D(E)° by —A, D3u = —(|D2u|"2D3}u),. Then we get

Dy = — [ DRy u)u) (D2u 2 D2), da,

Ds(tp(u” U:,;)’U,m) = (L,Q + LszU'L)Dzu + (5‘102 + 380zzua:> D;Z,UD?’LL
+b1(u, Uy, D2u) + ba(u, uy) Dyu.

So we have
Ld, 4 \ ‘
F D@l my + o = I+ T2 | (35)
Jo = /(7 — l)( (u, uy) + @2 (u, u:,;)um)lDiurf_z(Df;u)z >0,
Jy = -—/b1 w, ) (| D3| "2 Diu), d,
Jy = — /bgu up) D3u(|D3u| "2 D3u), u dz,
Jy = /(5902 + 322Uy )u D*uD? u(ID ul’ *Diu ) dx,
By virtue of (2), (5) and (10), it is easy to see that

Jy

/ (bh,,(u, Uy Uy + b1y u:,,.)Diu) |D3u|""*D3u dx
ot [ (] + |D2u) | D3ul ™ de

< Car(Juelzrmy + D2ulzrmy) 1030l . (36)

INA
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S
- /b2(u,um) : Z————(|D2_u|’)m dz

r
7'_"'1

/ (b‘zg(U, 'Uf:v)u:v + blz(“) u,,)D,zu,) ID?UI’
CQgIDg‘U;IZr(R), (37)

- / (6992 + 3@22”.1:)1);,2;“ 7—‘—(|D3U|7 )a; d.’L‘

r
5(r—1 | o
(7 ) / (th,z(ug U;:;)U;v + ‘Pzz(u, u%)D%fu) DEUIDEUV dz
r .

3(r—1)
B 7'

+ / ((<pu,zz(U, U YU + P2z (U, U ) D2u)ug Diu
oz (1, up) (D2u)?) | Dl da
—I—Q—;——l—) / (5(,02 +}3g0;z(u,ux)ux)Diungur' dz
Cag / |D3u|" da + Cy / | D3| da
Cao I.Dfiulir(n) + C:%OID.‘:;UILm(R)|D2’U'|"Lr(m (38)

Thus, in view of (35),(36) (37) and (38), we derive

: g A
< Car([uslormy + [D2ulir ) | D2u(0)ll57 ()

+ (Cas + Coo + C:ao|D2’l”'|L°5(Ryx[o,Tz]))HD;::U'("')IIL*(R),

By dividing both-hands side by || D3u(t)||77 (my> we get

d. . .
— || D3u(t)]| -
1Dzl w) N
< Cz7(|ua;|Lr(R) + lDf.u|Lr(R.))

+(Cas + Cae + Col Diul oo mxjo ) | Dou(t) || 1wy

Hence letting » — oo, we can obtain
D30 (t)]| oo ()
* t - i
< |1 Djuollpeo(my + 031/0 IDZu(s) oo (ry + [1DZu(s) |70 1y ds

for all t € [0.73).
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Here we note that the constants in this step depend only on the initial
~data but not one.

Then it is easy to show that there exists a positive number T =

To (ol poorys [tos ]| Lo )y || D2uo|| oo () s | Datio || oo (ry) < T such that

| D2u()||lzemy < 2||D3uollpeo(m) for all ¢t € [0, T3]
Concluding remarks

(1) Our arguments here can work also for initial boundary value problems
for the same generalized porous medium equations. In fact, for Neuman-
n problems with the homogeneous Neumann condition u,(z,#) = 0 on the
boundary 81, the same assertion of Theorem holds good, provided Lhat the
initial data satisfies the compatibility condition:

D Yug(a,t) lay=0, for k=0,1,2,-
and ¢ (u, u,) satisfies the additional assumption
D! D¥*p(.0) =0, for alli,j=0,1,2-
As for the Dirichlet problems with the homogeneous Dirichlet boundary con-
dition, in order to derive the same assertion of Theorem, we need to assune
the additional assumption on ¢(u,u,) such that
2+l i — 0 for ;=
D Dip(0,-) =0, for allz,7=0,1,2,---,
together with the compatibility condition on ug :
D*yg(a,t) |ay= 0,  for all k=0,1,2,--
(2) With slight modifications, our argument works also for the multi-dimension
case. However we need much more heavy calculateions than those exploited

here.

(3) The following perturbation problem can be also treated within our frame-
work.
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ou ‘

apy { D) = (Pl uu + fu), (60 € Rx[0,7),
u(z,0) = wup(x), z € R,

under the following condition: There exist functions d;(u, z), da(u, 2) €

Lt (R x R) such that-
(f-(u, 2))? l(./zz(u,z)y
< dy(u,z), | < dy(u, z).
o(u, z) 1 2) o(u, 2) 2(1,2)
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