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Abstract. We consider a bistable $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}-\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{u}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}_{-}\mathrm{a}\mathrm{d}\mathrm{v}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$system describing the growth of biologi-
cal individuals which move by diffusion and chemotaxis. In order to know the dynamics of growth patterns
arising in this system, we use the singular limit analysis to study the transversal stability of travelling
hont solutions in a strip domain. It is shown that travelling front solutions are transversally stable when

the chemotactic effect is weak and, when it becomes stronger, they are destabilized. Moreover, numer-
ical simulations demonstrate that the destabilized solution evolves into complex patterns with dynamic
network-like structures.

1 Introduction
Some biological individuals have a tendency to move preferentially toward higher concen-

trations of chemicals in their environment, which is called chemotaxis. It is experimentally
observed, for instance, that bacteria called E. coli, which move by not only diffusion but
also chemotaxis and grow by performing cell-division, to exhibit complex spatio-temporal
colony patterns (Budrene and Berg [3, 4]).

For theoretical understanding of such chemotactic growth patterns, several continuum
a..s well as discr-.ete models have been proposed so far (see Woodward et al. [23], Stevens
[18], Ezoe et al. [5], Kawasaki and Shigesada [11], for instance). In the previous paper
(Mimura and Tsujikawa [13]), we considered a chemotaxis-growth model to investigate the
influence of the chemotactic effect on growth patterns under the situation where nutrients
are constantly supplied. For the density of biological individuals $u(t, \mathrm{x})$ and the concentra-
tion of a chemical attractant $v(t, \mathrm{x})$ at time $t$ and position $\mathrm{x}$ in the plane $\mathrm{R}^{2}$ , the model is
described by

$\{$

$\frac{\partial u}{\partial t}=d_{u}\triangle u-\nabla(u\nabla\chi(v))+f(u)$

$t>0,$ $\mathrm{x}\in \mathrm{R}^{2}$ ,
$\frac{\partial v}{\partial t}=d_{v}\Delta v+\alpha u-\beta v$

(1.1)

where the migration of individuals consists of two effects, ”randomly walking” by diffusion
and ”directed movements” by chemotaxis. $d_{u}$ and $d_{v}$ are the diffusion rates of $u$ and
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$v$ , respectively. $\chi(v)$ is the chemotactic sensitivity function of the chemical attractant,
satisfying $\chi’(v)>0$ for $v>0$ , in a sense that the flux rate of individuals is the response
to its chemical gradient distributed in space. Several plausible forms of $\chi(v)$ are proposed
(Ford and Lauffenburger [8]). A simple example is $\chi(v)=kv$ with a constant $k>0$ .
The growth term $f(u)$ takes the form $f(u)=(g(u)-\delta)u$ with growth rate $g(u)$ and
degradation rate $\delta$ modelling to the stress due to waste products (see [20], for instance
$)$ . If $g(u)$ includes the Allee effect (see [15], for instance), the functional form of $g(u)$ is
threshold-like. For suitable $\delta$ , we may assume $f(u)$ to take cubic-like nonlinearity, that is,
$f(u)$ satisfies $f(\mathrm{O})=f(u_{*})=f(u^{*})=0$ with two constants $u_{*}$ and $u^{*}(0<u_{*}<u^{*})$ where
$f’(\mathrm{O})<0$ and $f’(u^{*})<0$ . For the chemical attractant $\alpha$ is the production rate and $\beta$ the
degradation rate, which are both positive constants.

For the system (1.1) we consider the situation where (i) the chemical attractant diffuses
much faster than the movement of individuals; (ii) individuals mainly move by chemotaxis
rather than diffusion. In order to model this situation, we conveniently introduce.. a small
parameter $\epsilon>0$ to rewrite (1.1) in the following form:

$\{$

$\frac{\partial u}{\partial t}=\epsilon^{2}\triangle u-\epsilon\nabla(u\nabla x(v))+f(u)$

$t>0,$ $\mathrm{x}\in \mathrm{R}^{2}$ ,
$\frac{\partial v}{\partial t}=\triangle v+u-\gamma v$

(1.2)

where $\gamma$ is a positive constant and $f(u)$ has three zeros $0,$ $a$ and 1 $|_{\backslash }W<\alpha<\iota\lambda^{i},-$ Hereafter,
we simply specip $f(u)$ as $f(u)=u(1-u)(u-a)1$ with $0<a<l_{\sim}\mathbb{R}$ is noted that (1.2)
has three spatially constant equilibria $(u,v)=(\mathrm{O}, 0),$ $(a, a/\gamma)$ and $\xi$]$[_{x}11//’\gamma \mathrm{J}|$ for which $(0,0)$

and $(1, 1/\gamma)$ are both stable, while $(a, a/\gamma)$ is unstable, that is, (1.2) is a bistable system.
For the boundary condition to (1.2), it is biologically natural to impose

$\lim_{|\mathrm{x}|arrow\infty}(u,v)(t, \mathrm{X})=(0,0)$ $t>0$ . (1.3)

If there is no chemotactic effect in the system, (1.2) with (1.3) simply reduces to the
following scalar bistable reaction-diffusion equation

$\frac{\partial u}{\partial t}=\epsilon^{2}\triangle u+f(u)$ $t>0,$ $\mathrm{x}\in \mathrm{R}^{2}$ (1.4)

with the boundary condition

$\lim u(t,\mathrm{x})=0$ $t>0$ . (1.5)
$|\mathrm{x}|arrow\infty$

The qualitative behavior of solutions of (1.4), (1.5) has been intensely investigated by
many authors (see Aronson and Weinberger [1, 2], for instance). Suppose that the initial
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data $u(\mathrm{O}, \mathrm{x})$ is given such that the region where $u(\mathrm{O}, \mathrm{x})>a$ is bounded and relatively
large. Then, the behaviour of solutions to (1.4) essentially consists of two stages: (i) There
occur internal layers which separate $\mathrm{R}^{2}$ into two qualitatively different regions where $u$

nearly takes the value either 1 or $0$ , and (ii) if $\int_{0}^{1}f(u)du>0$ (resp. $<0$ ), the region
where $u(t, \mathrm{x})$ is nearly 1 (we may call it the aggregating region) expands (resp. shrinks
$)$ uniformly (Jones [9, 10]). If $\epsilon$ is sufficiently small, the behavior of internal layers is
more precisely analyzed by using the singular limit analysis ([14]). Taking the limit
$\epsilon\downarrow 0$ , the layers become interfaces, say $\Gamma(t)$ , which are the boundary between two regions
$\Omega_{1}(t)=\{\mathrm{x}\in \mathrm{R}^{2}|u(t, \mathrm{X})=1\}$ and $\Omega_{0}(t)=\{\mathrm{x}\in \mathrm{R}^{2}|u(t, \mathrm{X})=0\}$ , and the time evolution of
$\Gamma(t)$ is approximately described by

$V(t)=\mathit{6}(c-\in\kappa(t))$ , (1.6)

where $V(t)$ is the normal velocity at $\Gamma(t)$ , which is oriented from $\Omega_{1}(t)$ to $\Omega_{0}(t)$ and $\kappa(t)$

is the curvature at $\Gamma(t)$ . $c$ is the velocity of the travelling front solution $u(x-ct)$ of the
1-dimensional problem

$\{$

$u_{t}=u_{xx}+f(u)$ $t>0,$ $x\in \mathrm{R}$

$u(t, -\infty)=1$ and $u(t, \infty)=0$ .

If $\int_{0}^{1}f(u)du>0$ (resp. $<0$ ), we know $c>0$ (resp. $<0$ ) (see Fife and $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{e}\mathrm{o}\mathrm{d}[7]$ , for
example). In particular, if the shape cf $\Gamma(0)$ is given by a ball with radius $r_{0},$ $\Gamma(t)$ is also
a ball with radius $r(t),$ satiswing the simple differential equation

$\dot{r}=\epsilon(c-\frac{\epsilon}{r})$ $t>0$ (1.7)

with $r(\mathrm{O})=r_{0}$ . Thus, in the absence of chemotaxis, the pattern dynamics is simply that $u$

expands uniformly and its shape becomes asymptotically disk-like.
In this paper, we assume $\int_{0}^{1}f(u)du>0$ or $0<a<1/2$ to consider the situation

where the aggregating region uniformly expands in the absence of a chemotactic effect,
and study how this effect influences the pattern expansion. More precisely speaking, since
several forms of the sensitive function $\chi(v)$ are proposed, as we already noted, it is our
purpose to understand the dependence on the functional form of $\chi(v)$ to the stability of
the expanding pattern. Let us first show some numerical computations of (1.2), (1.3). To
do it, we introduce a parameter $k>0$ so that $\chi(v)=k\chi_{0}(v)$ with $\max_{v>0}\chi_{0}’(v)=1$ ,
so that $k$ measures the intensity of the chemotactic effect. For computations, we specify
$\chi_{0}(v)$ as $\chi_{0}(v)=8v^{2}/3(3+v^{2})$ (see Schaaf [17], for instance).. The first case is restricted
to the radially symmetric situation with $|\mathrm{x}|=r$ , that is, the initial condition is given by
$u(\mathrm{O}, r)=1$ for $0<r<r_{0}$ and $u(\mathrm{O},r)=0$ for $r_{0}<r$ with some constant $r_{0}$ and $v(\mathrm{O}, r)\equiv 0$

for any $r>0$ . Because of radial symmetry, the solution of (1.2), (1.3) is represented as
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$(u, v)(t, r)$ where there occurs an internal layer in $u(t, r)$ , whose location is described by a
circle in such a way that $u$ takes nearly 1 inside and nearly $0$ outside of the circle. When
$k$ is small, it is obviously expected that the circle of internal layer uniformly expands with
asymptotically constant velocity. We note that the velocity is slightly slower than in the
case $k=0$ . When $k$ increases, the influence of chemotaxis on the expanding circle becomes
apparent by establishing a disk-like equilibrium solution. When $k$ is large, there is no more
disk-like equilibrium solution, the initial circle shrinks and finally becomes extinct ([13]).
These phenomena suggest that the chemotactic effect induces a suppression of expanding
patterns.

Next we numerically consider the stability of these radially symmetric patterns. Let
the initial shape of $u(\mathrm{O}, x)$ be slightly deformed from the circle. When $k$ is small, the
deformation instantly decays and the shape of pattern recovers to be circular. However,
when k..increases, the situation is changed. The initial circular shape is destabilized so
that there appears a flower-like pattern. When $k$ increases further, the circular shape
is destabilized to be a star-like one with multi-branches and then the resulting pattern
exhibits tip-splitting and coalescing phenomena, so that dynamic network-like structure
is observed (Figure la). When $k$ further increases, the instability of the circular shape
happends as similar as the initiation in Figure la and then each branch proceeds as if it
were a 2-dimensional travelling finger wave (Figure $1\mathrm{b}$ ). These numerical results indicate
that the chemotactic effect provides not only suppression of expanding of patterns but also
shape-destabilization of patterns.

In order to analytically understand the dependency of the chemotactic effect on these
properties, we consider the transversal stability of 1-dimensional travelling front solutions
$(u, v)(x-\theta t, y)$ with velocity $\theta$ of (1.2) in the strip domain $\Omega_{\ell}=\{(x, y)\in \mathrm{R}^{2}|-\infty i<x<$

$\infty,$ $0<y<\ell\}$ with width $P>0$ , where the boundary conditions are

$\{$

$(u, v)(t, - \infty, y)=(1, \frac{1}{\gamma})$ $t>0,0<y<\ell$

$(u, v)(t, +\infty, y)=(\mathrm{O}, \mathrm{O})$ $t>0,0<y<\ell$ ,
(1.8)

and

$\{$

$( \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y})(t, x, 0)=(0,0)$ $t>0,$ $-\infty<x<+\infty$

$( \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y})(t, x, \ell)=(0,0)$ $t>0,$ $-\infty<x<+\infty$ .
(1. $\cdot$..9)

This paper is organized as follows: In Section 2, we apply the singular perturbation
method to (1.2) with a sufficiently small $\epsilon>0$ and show the existence of l-dimensional
travelling front solutions $(U^{\epsilon}, V^{\epsilon})(z)(z=x-\epsilon\theta(\epsilon)t)$ . We note that $V^{\epsilon}(z)$ is smooth
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and $U^{\epsilon}(z)$ possesses a single internal layer, which becomes an interface as $\epsilon\downarrow 0$ . The
dependency of $k$ on the velocity $\theta(\epsilon)$ is shown in Figure 2. We will show that there is $k^{*}(\epsilon)$

with $\lim_{\epsilon\downarrow 0}k^{*}(\epsilon)=k^{*}=2\sqrt{\gamma}c/\chi’\mathrm{o}(\frac{1}{2\gamma})$ such that $\theta(\epsilon)>0$ for $0<k<k^{*}(\epsilon)$ , while $\theta(\epsilon)<0$

for $k^{*}(\epsilon)<k$ in Proposition 1 (ii). Consequently, one finds that chemotaxis plays the role
of suppression of expanding patterns.

In Section 3, we use the singular limit analysis as $\epsilon\downarrow 0$ and study the transversal stability
of the travelling front solutions $(U^{c}\vee, V^{\epsilon})(z)$ in the strip domain $\Omega_{\ell}$ . In order to show it, we
study the distribution of eigenvalues of the linearized eigenvalue problem of (1.2), (1.8),
(1.9) around the planar travelling front solution, depending on the parameters $k$ and $\ell$ .
Our result (Theorem 2) reveals that the transversal stability crucially depends on the
sign of $\chi_{0}^{\prime/}(v_{\mathrm{I}})$ where $v_{\mathrm{I}}$ is the value of the 1-dimensional travelling front solution $V^{\epsilon}(z)$ on
the interfacial point obtained by taking the limit $\epsilon\downarrow 0$ . If $\chi_{0}^{\prime/}(v\mathrm{I})\leq 0$ , the solution is stable
for any $k>0$ and $p>0$ . However, if $\chi_{0}’’(v_{\mathrm{I}})>0$ , the stability depends on values of $k$ .
When $k$ is small, travelling front solutions are always stable for any fixed $\ell>0$ , while they
are destabilized when $k$ increases. It should be noted that when they are destabilized, the
$\mathrm{f}\mathrm{a}s$test growing mode $m$ of the perturbations given in the interface is $O(\epsilon^{-\frac{1}{3}})$ for sufficiently
small $\epsilon>0$ , that is, the fastest growing wavelength 2$P/m$ is $O(\epsilon^{\frac{1}{3}})$ . This indicates that the
destabilized pattern does not initially depend on the width $\ell$ but on the smallness of $\epsilon$ . We
remark that this behavior is $\mathrm{o}\mathrm{b}_{\mathrm{S}\mathrm{e}\mathrm{r}\mathrm{V}\mathrm{e}}\mathrm{d}$ .also in usual activator-inhibitor reaction-diffusion
systems [19]. In Section 4, we give some remarks on our results.

2 Travelling front solutions
We will $\mathrm{b}\mathrm{r}’ \mathrm{i}\mathrm{e}\mathrm{f}\mathrm{l}\mathrm{y}$ demonstrate how 1-dimensional travelling front solutions of (1.2), (1.8)

can be constructed, by using the well known singular perturbation methods. To do it, we
introduce the travelling coordinate $z=x-\epsilon\theta t$ with $\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{C}\mathrm{i}\mathrm{t}\dot{\mathrm{y}}\epsilon\theta$ in (1.2). It turns out that
the travelling front solution $(u, v)(z)$ satisfies the following system:

$(0=v_{zz}+\epsilon\theta v+zu0=\mathcal{E}^{2}u_{zz}+6\theta u_{z}-\epsilon k[v-\gamma u\chi_{0}’(v)vz]z+f(u)$ $z\in \mathrm{R}$ (2.1)

$\mathrm{w}$i’t$\mathrm{h}|$ the boundary conditions

$(u, v)(- \infty)=(1, \frac{1}{\gamma})$ and $(u,v)(+\infty)=(\mathrm{O}, 0)$ . (2.2)

We first construct the outer and inner approximate solutions of (2.1) with (2.2), taking
the limit $\epsilon\downarrow 0$ .
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2.1 Outer and inner solutions
By putting $\epsilon=0$ in (2.1), the lowest outer solution $(u^{0}, v^{0})$ of (2.1) satisfies

$\{$

$0=f(u)$
$z\in$ R.

$0=v_{zz}+u-\gamma v$

(2.3)

From the first equation of (2.3) with the boundary conditions (2.2), we may take $u^{0}(z)$ as

$u^{0}(_{Z})=\{$

$0$ $(z>0)$

1 $(z<0)$ .
(2.4)

Substituting it into the second equation of (2.3), we obtain $v^{0}(z)$ as

$v^{0}(_{Z})=$

’

$\frac{1}{2\gamma}\exp(-\sqrt{\gamma}z)$ $(Z>0)$

(2.5)
$\mathrm{Y}\frac{1}{\gamma}-\frac{1}{2\gamma}\exp(\sqrt{\gamma}z)$ $(Z<0)$ ,

which belongs to $C^{1}(\mathrm{R})$ . $(u^{0}, v^{0})(z)$ is called an outer solution of (2.1), ( $2.2\rangle$ in R. Since
$u^{0}(z)$ is discontinuous at $z=0$ , it is not a good approximate solution of (2.1) in a
neighborhood of $z=0$ , so that we have to look for another approximate solution there.

In order to construct an approximate solution in a neighborhood of $z=\mathrm{C}$, we introduce
the usual streched variable $\xi--z/\epsilon$ and rewrite (2.1) as

$\{$

$0=\tilde{u}_{\xi\xi}+\{\theta-k\chi’\mathrm{o}(\tilde{v})\tilde{v}z\}\tilde{u}\xi-\epsilon k\{x^{\gamma}\mathrm{o}(\tilde{v})\tilde{v}_{z}\}z\tilde{u}+f(\tilde{u})$

$\xi\in \mathrm{R}$ ,
$0=\tilde{v}_{\xi\xi}+\epsilon^{2}\{\theta\tilde{v}\xi+\tilde{u}-\gamma\tilde{v}\}$

(2.6)

where $(\tilde{u},\tilde{v})(\xi\rangle=(u,v)(\epsilon\xi)$ . Putting $\epsilon=0$ in (2.6) and noting $v^{0}(0)=1/2\gamma$ , we obtain

$\{$

$0=\tilde{u}_{\xi\xi}+\{\theta-k\chi \mathrm{o}i\tilde{v})\tilde{v}_{z}\}\tilde{u}\xi+f(\tilde{u})$

$\xi\in \mathrm{R}$

$0=\tilde{v}_{\xi\xi}$

(2.7)

with the boundary conditions

$\{$

$\tilde{u}(-\infty)=1$ , $\tilde{u}(+\infty)=0$

$\tilde{v}(\pm\infty)=\frac{1}{2\gamma}$ .
(2.8)
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Since the second equation of (2.7) with (2.8) leads $\tilde{v}(\xi)\equiv 1/2\gamma$ , the first equation of (2.7)
is

$0= \tilde{u}_{\xi\xi}+\{\theta+\frac{k}{2\sqrt{\gamma}}\chi_{0}’(\frac{1}{2\gamma})\}\tilde{u}\xi+f(\tilde{u})$. (2.9)

In order to solve the equation (2.9) with (2.8), we need the following lemma:

LEMMA 1 (Fife and $\mathrm{M}\mathrm{c}\mathrm{L}\mathrm{e}\mathrm{o}\mathrm{d}[7]$ ). For any fixed $\zeta\in(0,1)$ , there uniquely exists $c$ such
that the following problem has a unique monotone decreasing solution $W(\xi;c)$ :

$\{$

$0=W_{\xi\xi}+CW\xi+f(W)$ $\xi\in \mathrm{R}$

$W(-\infty)=1,$ $W(+\infty)=0$ , $W(\mathrm{O})=\zeta$ .
(2.10)

$Furthermore_{f}if \int_{0}^{1}f(u)du>0$ (resp. $<0$), then $c>0$ (resp. $<0$).

Lemma 1 indicates that a solution $\tilde{u}$ of (2.9) with (2.8) is given by $\tilde{u}(\xi)=W(\xi)$ with
$\theta^{*}(k)=c-k\chi_{0}/(1/2\gamma)/2\sqrt{\gamma}$ . $(\tilde{u},\tilde{v})(z/\epsilon)$ is called an inner solution in a neighborhood of
$z=0$ .

2.2 Existence of 1-dimensional travelling front solutions

By matching the outer and inner solutions obtained above, travelling front solutions of
the problem (2.1), (2.2) can be constructed (see Fife [6], Mimura et al. [12], for example
$)$ . The result is stated as follows:

THEOREM 1. Fix $k>0$ arbitrarily. There is $\epsilon_{0}>0$ such that for any $\epsilon\in(0, \epsilon 0)(2.1)$ ,
(2.2) has a solution $(U^{\epsilon}, V^{\epsilon})(z)$ with $\theta=\theta(\epsilon;k)$ satisfying

$\lim_{\epsilon\downarrow 0}\theta(\epsilon;k)=\theta*(k)=c-\frac{k}{2\sqrt{\gamma}}x_{0}/(\frac{1}{2\gamma})$. (2.11)

The solution $(U^{\epsilon}, V^{\epsilon})$ is represented as

$U^{\epsilon}(z)=W(z/\epsilon)+p^{\epsilon}(z)$ and $V^{\epsilon}(z)=v^{0}(z)+q^{\epsilon}(z)$ ,

where $(p^{\epsilon}, q^{\epsilon})$ becomes an error $tem$ with respect to small $\epsilon>0$ by the following conver-
gences;

$\{$

$\lim_{\epsilon\downarrow 0}U^{\epsilon}(Z)=u^{0}(z)$ unifomly in $(-\infty, -\delta)\cup(\delta, +\infty)$

$\lim_{\epsilon\downarrow 0}V^{\epsilon}(Z)=v^{0}(z)$ $unifo7mly$ in $\mathrm{R}$

(2.12)
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with any small constant $\delta>0$ and

$\{$

$\lim_{\epsilon\downarrow 0}\tilde{u}^{\underline{\Leftarrow}(\xi})=W(\xi)$ in $C_{c.u}^{2}.(\mathrm{R})$ -sense

$\lim_{\epsilon\downarrow 0}\tilde{v}^{\epsilon}(\xi)=\frac{1}{2\gamma}$ in $C_{c.u}^{2}.(\mathrm{R})-sen\mathit{8}e_{f}$

(2.13)

where $(\tilde{u}^{\epsilon},\tilde{v}^{\epsilon})(\xi)=(U^{\epsilon}, V^{\epsilon})(\epsilon\xi)$.

By (2.11), we immediately obtain

PROPOSITION 1. (i) When $\int_{0}^{1}f(u)du\leq 0(c\leq 0),$ $\theta^{*}(k)<0$ always holds for any $k>0$ .

(ii) When $\int_{0}^{1}f(u)du>0(c>0)$ , there is the $C7^{\urcorner}itiCal$ value $k^{*}=2 \sqrt{\gamma}C/x’\mathrm{o}(\frac{1}{2\gamma})$ such that

$\theta^{*}(k)>0$ for any $0<k<k^{*}$ , while $\theta^{*}(k)<0$ for any $k>k^{*}$ .

For the case (ii) of Proposition 1, the dependency of $\theta^{*}(k)$ and $\theta(\epsilon;k)$ on $k$ is shown in
Figure 2. The uniquness of travelling front solution of (2.1), (2.2) is numerically confirmed,
although it has been still unsolved. Since $\epsilon c=\epsilon\theta(\epsilon;0)$ is the velocity of the travelling
front solution of (2.1), (2.2) in the absence of chemotaxis $(k=0),$ $(2.11)$ indicates that
chemotaxis suppresses the expansion of patterns.

3 Transversal stability of travelling front solutions

In Section 1, by numerical simulations, we found that chemotaxis effects destabilization
of patterns. For this purpose, we study the transversal stability of travelling front solutions
$(U^{\epsilon}, V^{\epsilon})(z)$ in a strip domain $\Omega_{\ell}$ . We first define the linealized stability of travelling front
solutions of (1.2), (1.8), (1.9) as follows:

DEFINITION. A travelling front solution of (1.2), (1.8), (1.9) is $transver\mathit{8}ally$ stable
except for translational invariance in $x$ , if and only if zero is a simple eigenvalue of the
eigenvalue problem associated with the linealized system of (1.2), (1.8), (1.9) around the
travelling front solution and the remaining spectrum is contained in a closed sector lying
in the left half of the complex plane (see Volpert et al. [22], for instance). The travelling
front solution is unstable if it is not stable.

We only study the distribution of eigenvalues of the eigenvalue problem of the linearized
system of (1.2), (1.8), (1.9) around the travelling front solutions $(\hat{u}^{\epsilon},\hat{v}^{\epsilon})(z, y)=(U^{\epsilon}, V^{\epsilon})(z)$

with velocity $\epsilon\theta(\epsilon;k)$ in the strip domain $\Omega_{\ell}=\mathrm{R}\cross(\mathrm{O}, \ell)$ . Here we write $\theta(\epsilon;k)$ as $\theta(\epsilon)$
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for simplicity. The eigenvalue problem for $(p, q)(Z, y)$ associated with (1.2), (1.8), (1.9) is
given by

$\{$

$\lambda p=$ $[ \epsilon^{2}(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial y^{2}})+\epsilon\theta(\epsilon)\frac{\partial}{\partial z}-\in k\{(\chi_{0}’(\hat{v})\xi\hat{v}^{\epsilon}z)\frac{\partial}{\partial z}$

$+( \chi_{0}’(\hat{v}^{\vee}\sim)\hat{v}z\epsilon.)_{z}\}+f’(\hat{u})\zeta]p-\mathcal{E}k[\hat{u}\chi \mathit{6}/\mathrm{o}(\hat{v}\Leftarrow.)(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial y^{2}})$

$+ \{\hat{u}^{\epsilon}x_{0}’(’\hat{v}^{\mathcal{E}})\hat{v}_{z}^{\mathcal{E}}+(\hat{u}^{\epsilon\prime}x_{0}(\hat{v}^{\epsilon}))_{z}\}\frac{\partial}{\partial z}+(\hat{u}^{\epsilon\prime\prime}x_{0}(\hat{v}^{\in})\hat{v}_{z})\xi z]q$

$\lambda q=p+\{(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial y^{2}})+\epsilon\theta(\epsilon)\frac{\partial}{\partial z}-\gamma\}q$

(3.1)

with the boundary conditions

$\{$

$p(\pm\infty,y)=0,$ $q(\pm\infty,y)=0,0<y<\ell$

$\frac(z,p\frac{\partial p}{\partial y,\partial y\partial p}(z,0)=0)=0,$

’

$\frac{\partial q}{\frac,\partial y\partial y\partial q}(z,0)=(z,p)=00,$

’

$z\in \mathrm{R}z\in \mathrm{R}$

.

For $(p, q)(Z, y)\in L^{2}(\Omega_{\ell})\cross L^{2}(\Omega_{\ell})$ , we define $(p_{m}, q_{m})(z)(z\in \mathrm{R}, m=0,1,2, \cdots)$ by

$p_{m}(z)= \int_{0}^{\ell}p(z, y)\mathrm{Y}_{m}(y)dy$ , $q_{m}(Z)= \int_{0}^{l}q(z, y)Y_{m}(y)dy$ ,

where

$Y_{m}(y)=\{$

$\frac{1}{\sqrt{\ell}}$ for $m=0$

$\sqrt{\frac{2}{p}}\cos(\frac{m\pi y}{\ell})$ for $m\geq 1$ .

Then $(p, q)(Z, y)$ is expanded as

$p(z, y)= \sum_{m=0}p_{m}(Z)\infty Y_{m}(y)$ , $q(z, y)= \sum q_{m}(zm\infty=0)Y_{m}(y)$

in $L^{2}(\Omega_{\ell})$ . It thus follows from (3.1) that the equations for $(p_{m}, q_{m})(z)$ with $\omega=m\pi/\ell$ are
given by

$\{$

$\lambda p_{m}=(L\epsilon-\epsilon\omega)22-\omega q_{m}p_{m}N^{\epsilon}$
,

$z\in \mathrm{R}$

$\lambda q_{m}=p_{m}+(M\epsilon-\omega)2qm$

$p_{m},$ $q_{m}\in c^{2}unij(\mathrm{R})$ ,

(3.2)
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where

$L^{\epsilon} \equiv\Xi^{2_{\frac{d^{2}}{dz^{2}}}}+\in\{\theta(\epsilon)-k\chi’\mathrm{o}(V\epsilon)Vz\epsilon\}\frac{d}{dz}-\in k\{\chi_{0}’(V\epsilon)V^{\epsilon}\}_{z}z+f/(U^{\epsilon})$,

$N^{\epsilon,\omega} \equiv\epsilon k[U\epsilon x/0(V^{\in})\{\frac{d^{2}}{dz^{2}}-\omega^{2}\}+\{U_{z}\epsilon/(\chi_{0}V^{\epsilon})+2U^{c}.\chi_{0}(/\prime V\epsilon)V_{z}^{\epsilon}\}\frac{d}{dz}+\{U\epsilon\chi_{0}(\prime\prime V^{\in})V_{z}^{\epsilon}\}_{z}]$ ,

$M^{\epsilon} \equiv\frac{d^{2}}{dz^{2}}+\epsilon\theta(\epsilon)\frac{d}{dz}-\gamma$.

For the eigenvalues of (3.2), we obtain the following lemmas:

LEMMA 2 There is a constant $C_{1}>0$ and for any given $d>0$ there is $\epsilon_{1}>0\mathit{8}uch$ that any
eigenvalue $\lambda\in \mathrm{C}$ of (3.2) satisfies either $Re\lambda<-C_{1}$ or

$|\epsilon^{2}\omega^{2}+\lambda|<d$ for $0<\epsilon<\epsilon_{1}$ and $\omega>0$ . (3.3)

This lemma indicates that the distribution of eigenvalues of (3.2) is divided into two
classes as $\epsilon\downarrow 0$ , that is, one class is the distribution of eigenvalues of the order $O(1)$ which
have negative real part and the other is of the order $o(1)$ . Therefore, one knows that the
distribution of the latter eigenvalues is critical for the stability of travelling front solutions.
By (3.3), we may assume that there is a positive function $d(\epsilon)$ with $\lim_{\epsilon\downarrow 0}d(\epsilon)=0$ such
that

$|\epsilon^{2}\omega^{2}+\lambda|<d(\in)$ . (3.4)

For eigenvalues of (3.2) satisfying (3.4), we have the following key lemma:

LEMMA 3. For sufficiently $\mathit{8}mall\epsilon>0$ , let $\lambda_{m}$ be an eigenvalue of (3.2) which satisfie8 (3.4).
Then, there exist8 a continuous function $\tau_{m}(\epsilon, p, k)$ such that $\lambda_{m}=\epsilon\tau_{m}(\epsilon,\ell, k)sati\mathit{8}fying$

$\lim_{\epsilon\downarrow 0}\{\tau_{m}(\epsilon,\ell,k)-\tau m*(\epsilon,\ell,k)\}=\mathrm{c}$

with
$\tau_{m}^{*}(\epsilon,p, k)\equiv-\epsilon(\frac{m\pi}{\ell})2+\frac{k}{4\sqrt{\gamma}}(\frac{1}{\sqrt{\gamma}}-\frac{1}{\sqrt{\gamma+(m\pi/p)2}})\chi_{0}(’/\frac{1}{2\gamma})$ . (3.5)

When $m=0$ , we know $\tau_{0}^{*}(\epsilon, p, k)=0$, which corresponds to the zero eigenvalue of (3.2)
with the eigenfunction $(U_{z}^{\epsilon}, V_{z}\epsilon)(z)$ where $(U^{\epsilon}, V^{\epsilon})(z)$ is the travelling front solution of (1.2).
Lemmas 2 and 3 are proved in the next section. By using these lemmas with (3.5), we can
easily arrive at the following theorem:

THEOREM 2.
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(i) When $x_{0}’’( \frac{1}{2\gamma})\leq 0$ , for any fixed $p>0$ and $k>0$ , there is $\epsilon_{0}>0$ such that if
$0<\epsilon<\epsilon_{0},$ $\lambda_{m}<0$ holds for any $m>0,$ $i$ . $e$ . the travelling front solution $i\mathit{8}$ stable,

(ii) When $\chi_{0}^{\prime/}(\frac{1}{2\gamma})>0$ , for any fixed $\ell>0$ and $k>0$ , there is $\epsilon_{0}(p, k)>0$ such that for
any $0<\epsilon<\epsilon_{0}(p, k)$ , the travelling front solution $i\mathit{8}$ unstable.

It follows from Theorem 2 and (2.13) that transversal stability of travelling front solutions
depends on the sign of $\chi_{0}^{\prime/}(v_{\mathrm{I}})$ where $v_{\mathrm{I}}$ is the value of $v$ on the interface. In fact, when
$\chi_{0}’’(v_{\mathrm{I}})>0$ , the travelling front solution is destabilized as $k$ increases. Let $\ell$ be any fixed
and $\lambda_{m_{0}(\epsilon)}$ be the largest eigenvalue. Then, it follows from (3.5) that for sufficiently small
$\epsilon,$

$m\mathrm{o}(\epsilon)$ satisfies

$| \epsilon^{\frac{1}{3}}m_{0}(\epsilon)-\frac{p}{2\pi}(\frac{k\chi_{0}’’(\frac{1}{2\gamma})}{\sqrt{\gamma}})^{\frac{1}{3}}|<\delta(\epsilon)$ ,

where $\delta(\in)$ is a positive function satisfying $\lim_{\epsilon\downarrow 0}\delta(\epsilon)=0$ . Therefore, it turns out that the
fastest growth wavelength $\mu_{0}(\epsilon)=2\ell/m_{0}(\epsilon)$ satisfies $\mu \mathrm{o}(\epsilon)=O(\epsilon^{\frac{1}{3}})$ for sufficiently small
$\epsilon$ . This implies that the wavelength $\mu_{0}(\epsilon)$ does not depend on the width $p$ but on the
smallness of $\epsilon$ , that is, when $\epsilon$ is sufficiently small, the destabilzed pattern initially exhibits
any fine structure with $O(\epsilon^{\frac{1}{3}})$ .

Let us apply this theorem to two specific forms of $\chi_{0}(v)$ . First, we take a simplest form
$\chi_{0}(v)=v$ . Since $x_{0}^{\prime/}(v)\equiv 0$ , the travelling front solution is always transversally stable
for any $k>0$ . We next take $\chi_{0}(v)=8\sqrt{3s}v^{2}/9(s+v^{2})$ , for which there is some value
$s^{*}=3/4\gamma^{2}$ such that $x_{0}^{\prime/}( \frac{1}{2\gamma})\leq 0$ for $0<s\leq s^{*}$ and $\chi_{0}^{J}(’\frac{1}{2\gamma})>0$ for $s^{*}<s$ . For the latter

case, the bifurcation curves of $\tau_{m}^{*}(\epsilon, \ell, k)=0(m=1,2, \cdots)$ are drawn in the $(k, P)$-plane,
as in Figure 3. This indicates the following:

(i) Let $k=k_{m}(\epsilon, \ell)$ be a solution of $\tau_{m}^{*}(\epsilon, \ell, k)=0(m=1,2, \cdots)$ . Then it holds
that $k_{1}(\epsilon, l)<k_{2}(\epsilon, \ell)<\cdots$ for any fixed $\ell>0$ .

(ii) There is the critical value $k_{*}( \epsilon, \ell)=4\epsilon\gamma\sqrt{\gamma+(\pi/\ell)^{2}}(\sqrt{\gamma}+\sqrt{\gamma+(\pi/\ell)^{2}})/x_{0}’’(\frac{1}{2\gamma})$

such that when $k<k_{*}(\epsilon, \ell),$ $\lambda_{m}<0$ holds for any $m>0$ , while when $k_{*}(\epsilon, p)<k,$ $\lambda_{m}>0$

for some $m>0$ .

Figure 3 shows that for any fixed width $P>0$ , the travelling ffont solution is transver-
sally destabilized as $k$ increases. Let us show some numerical simulations for the problem
(1.2), (1.8), (1.9) with $\chi_{0}(v)=8v^{2}/3(3+v^{2})$ in $\Omega_{\ell}$ with suitably large $P>0$ . When $k$ is
small, the travelling front solution is transversally stable. When $k$ increases to satisfying
$k>k_{1}(\epsilon, p)$ , it becomes unstable (Figure $4\mathrm{a}$). When $k$ increases further, the travelling front
solution evolves into a complex pattern (Figure $4\mathrm{b}$), where two features can be obse.rved
in the dynamics of patterns, one is tip-splitting to generate a branching pattern and the
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other is coalescing of these branches, by which network-like structures appear. When $k$

still increases further, the situation is drastically changed. The destabilized travelling front
solution exhibits fingering-like pattern (Figure $4\mathrm{c}$ ). As was noted before, the interfaces
are initially destabilized with small wavelengths of the order $O(\epsilon^{\frac{1}{3}})$ , but in the next stage,
this fine structure breaks and there appear fingering-like branches with. the width of the
order $O(1)$ .

4 Concluding Remarks
The numerical simulations suggest that chemotaxis has two effects; one is suppression of

expanding patterns; the other is destabilization of disk-like patterns. For understanding
these properties, we have studied the existence and transversal stability of l-dimensional
travelling front solutions in the strip domain. As was shown in Figure 2, that the velocity of
travelling front solutions is positive for small $k$ , while it is negative for large $k$ . This clearly
explains that the chemotactic effect inhibits the expansion of patterns. We have shown
in Theorem 2 that transveral stability of travelling front solutions depends on the sign of
$x_{0}’’(1/2\gamma)$ of the chemotactic sensitivity function $\chi 0$ . When we speciw $\chi 0(v)=8v^{2}/3(3+v^{2})$ ,
it finds that $\chi_{0’}’(1/2)=2304/2197>0$ with $\gamma=1$ , that is, $\chi_{0}$ satisfies the condition (ii)
of Theorem 2 in this case. If $k$ is small, the travelling front solution is transversally
stable. However, when $k$ increases, it becomes unstable through static bifurcation. If $k$

increases further, the destabilized pattern exhibits tip-splitting and coalescing phenomena
alternatively so that network-like pattern appears, as in Figure $4\mathrm{b}$ . If $k$ still increases, the
pattern shrinks and generates finger-branched structures as in Figure $4\mathrm{c}$ . This corresponds
to finger-branched pattern obtained iri Figure $1\mathrm{b}$ . We should note that each branch grows
as if it were a 2-dimensional travelling finger-like solution with constant velocity. In
fact, the existence of 2-dimensional travelling finger solutions are $\mathrm{n}\mathrm{u}\mathrm{m}\dot{\mathrm{e}}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ confirmed.
When $k$ is suitably large, we demonstrate in Figure 5 that the velocity of l-dimensional
travelling front solutions is negative, while the velocity of 2-dimensional travelling finger-
like solutions is positive. For the possibility of existence of such 2-dimensional finger-like
solutions, there are three plausible reasons by using the results obtained in [13]. (i) The
travelling finger-like solution in $\mathrm{R}^{2}$ is regarded as a heteroclinic orbit connecting two stable
states; one is $(0,0)$ at $y=\infty$ and the other is $(U_{p}(x), V_{p}(x))$ at $y=-\infty$ where $(U_{p}(x), V_{p}(x))$

is the 1-dimensional stable equilibrium pulse solution. (ii) The equilibrium pulse solution
is transversally stable in the strip domain. This suggests that the side parts of a finger
stably exists. (iii) 2-dimensional disk-like equilibrium solutions are unstable under 2-mode
disturbance. As in Figure 6, a disk-like equilibrium solution destabilizes to form a peanut
shape. It seems that this is the onset of travelling finger-like solutions. The rigorous
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treatment of this solution will be a feature work.
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Captions

Figure 1: Time evolution of $u(t, \mathrm{x})$ under non-radially symmetric initial conditions,
where the curve means the contour $C(t)=\{\mathrm{x}\in \mathrm{R}^{2}|u(t, \mathrm{x})=0.1\}$ . Parameters are
choosen as $\epsilon=0.05,$ $a=0.1$ and $\gamma=1.0$ and the system size is $20\cross 20$ . $(\mathrm{a})$ Formation of
network-like pattern $(k=2.0)$ . $(\mathrm{b})$ Formation of finger-like pattern $(k=5.0)$ .

Figure 2: Dependency of the velocity $\theta^{*}(k)$ on $k$ of travelling front solution where $\square$

means the numerical velocity solved by (2.6). The parameters except for $k$ are the same
as the ones in Figure 1.

Figure 3: Bifurcation curves $k=k_{m}(\epsilon, \ell)(m=1,2, \cdots)$ of the flat travelling front
solution where $\chi_{0}(v)=8v^{2}/3(3+v^{2})$ . The parameters except for $k$ are the same as the
ones in Figure 1. Here $m$ is the mode number of perturbations and $k_{1}^{*}( \epsilon)=\lim_{\ellarrow\infty^{k}}1(\epsilon,$ $p_{)}$ .

Figure 4: Time evolution of $u(t, \mathrm{x})$ , where the curves depict the contour $C(t)=\{\mathrm{x}\in$

$\Omega_{\ell}|u(t, \mathrm{x})=0.1\}$ , where the parameters are the same as the ones in Figure 1 except the
system size $10\cross 30$ . $(\mathrm{a})$ Destabilized travelling front solution $(k=1.0)$ . $(\mathrm{b})$ Formation of
the network-like pattern $(k=2.0)$ . $(\mathrm{c})$ Formation of the finger-like pattern $(k=5.0)$ .

Figure 5: $\phi$ means the velocity of 2-dimensional travelling finger-like solutions, where
the parameters are the same as the ones in Figure 1. –means the velocity $\theta^{*}(k)$ of
1-dimensional travelling front solutions as $\epsilon\downarrow 0$ .

Figure 6: Time evolution of $u(t, \mathrm{x})$ under non-radially symmetric initial conditions,
where the curve means the contour $C(t)=\{\mathrm{x}\in \mathrm{R}^{2}|u(t, \mathrm{X})=0.1\}$ . Parameters are the
same as the ones in Figure 1 except $k=5.0$ and the system size $20\cross 20$ .
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