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Ekeland’s variational principle and its smooth analogues are now classi-
cal tools for investigations of many non-linear problems in various areas in
mathematics (see for instance [8], [9], [1], [2], [5], [6]).

In this paper we present parametric versions of the Ekeland variational
principle [8], [9], [1], stating that the minimum point of the perturbffi func-
tion, under some conditions, can be $\mathrm{c}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{f}\mathrm{l}$ to depend continuously on a
parameter. We introduce a new smooth variational principle $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{v}\mathrm{i}\mathrm{n}_{\mathrm{f}_{3}^{\mathrm{r}}}$ bump
functions, called here modified smooth variational principle, which unifies
Borwein-Preiss’ variational principle [2] and Deville-Godefroy-Zizler’s vari-
ational principle [5] (concerning only existence of arbitrarily small mmooth
perturbations producing a point of minimum of the perturbed function). We
present also a parametric variant of this principle.

The tool for proving the parametric analogue of the Ekeland variational
principle is a parametric version of a Phelps’ lemma [18]. This parfrmetric
version produces ‘extremal selections’: this is, in fact, a selection theorem
for the efficient points set of images of a continuous mapping with respect
to a convex closed pointed cone. As a corollary we prove existence of a
continuous selection of the support points of a closed convex bounded set
depending continuously (in the Hausdorff sense) on a parameter (existence
of such support points is garanteed by B.ishop-Phelps’ theorem [18] $)$ .
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As an application of this parametric Ekeland’s variational principle we
present an analogue of Ekeland’s variational principle for minimax problems,
which can be considered as a minimax variational principle.

We present some.applications of the parametric modified smooth varia-
tional principle: the first one shows existence of a continuous selection of a
subdifferential mapping depending on a parameter. The second application
is about existence of a Nash equilibrium for convex functions after smooth
convex perturbations, when one of the sets forming the domain of the in-
volved functions is not compact. When $n=2$ this theorem is a ’perturbed’
version of Sion’s [19] minimax theorem, showing that the perturbed function
has a saddle point. As a third application we present a very easy proof of
a variant of Ky Fan’s inequality, in which smooth convex perturbations are
involved.

An advantage of these smooth perturbations is the possibility to wr\’ite
second order optimality conditions, when the norm of the space is second
order Fr\’echet differentiable (off $0$ ).

We recall the following definitions.
A multivalued mapping $F:Tarrow M$ , where $T$ is a topological space and

$(M, d)$ is a metric space is said to be Hausdorff upper semicontinuous (resp.
Hausdorff lower semicontinuous) at $x_{0}$ , if for every $\epsilon>0$ there exists and
open set $U\ni x_{0}$ such that $F(x)\subset$ {$z\in M$ : dist $(z,$ $F(x_{0}))<\epsilon$ } (resp.
$F(x_{0})\subset\{z\in M : di_{J}st(z, F(x))<\epsilon\})$ for every $x\in U$ , where dist $(., X)$ is
the distance function to the set X. $F$ is said to be Hausdorff continuous at
$x_{0}$ , if it is Hausdorff upper and Hausdorff lower semicontinuous at $x_{0}$ .

$F$ is said to be upper (resp. lower) semicontinuous at $x_{0}$ , if for every open
$V\supset F(x_{0})$ (resp. every open $V$ with $V\cap F(x_{0})\neq\emptyset$ ) there exists an open
$U\ni x_{0}$ such that $F(x)\subset V$ (resp. $F(x)\cap V\neq\emptyset$) for every $x\in U$ .

Firstly we present a parametric version of the Phelps lemma [18], which
is of independent interest, because it is a selection theorem for a multivalued
mapping with non-convex images.

Let $C$ be a closed, convex cone in a Banach space $(E, ||.||)$ . We shall say
that $C$ is a strongly pointed cone, if there exists $l\in S^{*}$ , such that $\sup l(C)=0$

and
$c_{n}arrow 0$ whenever $\{c_{n}\}\subset C$ and $l(c_{\mathrm{n}})arrow 0$ . (1)

Recall that the set of all $weakly\backslash$ efficient points of a set $Z\subset E$ with
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respect to $C$ is

$WEP_{C}(Z)=\{z\in Z:int(z+C)\cap Z=\emptyset\}$ ;

the set of all efficient points of $Z$ is

$EP_{C}(Z)=\{z\in Z:(z+C)\cap Z=\{z\}\}$ .
Define the set of all strongly efficient points of a set $Z\subset E$ with respect to
$C$ by

$SEP_{C}(Z)=$ { $y\in Z:(y+C)\cap Z=\{y\}$ and $x_{n}arrow y$ whenever
$\{x_{n}\}\subset(y+C)$ and dist $(x_{n}, Z)arrow \mathrm{O}\}$ .

We shall say that the set $Z\subset E$ is strongly bounded with respect to $C$ if
there exist $z\in Z$ and $\epsilon>0$ such that the set $(z+C)\cap(Z+\epsilon B)$ is bounded.

The proof of the following proposition is an interesting exercise, left to
the reader. .

Proposition 1 Let $C$ be a strongly pointed convex cone with non-empty in-
terior. If the set $Z$ is convex and strongly bounded with respect to $C$ , then
for every $y\in Z$ and for every $\epsilon>0$ the set $(y+C)\cap(Z+\epsilon B)$ is bounded.

Below we present the main result about extreme continuous selections.

Theorem 2 Let $X$ be a paracompact topological space, $F$ : $Xarrow 2^{E}$ be
a Hausdorff contiriuous multivalued mapping with closed, convex and $non_{}-$

empty images and $C$ be a strongly pointed closed convex $cor\iota e$ with non-empty
interior. Assume that for every $x\in X$ , $F(x)$ is strongly bounded with
respect to C. Then the multivalued mapping $WEP_{C}(F(.))$ has a continuous
selection. Something more, if $y’$ : $Xarrow Y$ is a continuous selection of $F_{f}$

then there exists a continuous selection of the multivalued mapping $(y’(x)+$
$C)\cap WEP_{C}F(x)$ .

If, in addition, for every $x\in X$ , $F(x)$ is strongly bounded with respect
to $C_{\epsilon}$ for some $\epsilon>0$ , where $C_{\epsilon}=\cup\{\lambda\overline{C\cap S+\epsilon B} : \lambda\geq 0\},$ ($S$ is the
unit sphere), then the multivalued mapping $(y’(x)+C_{\epsilon})\cap SEP_{C}F(x)$ has a
continuous selection.

The proof of this theorem uses Michael’s selection theorem [17] and the
following geometrical lemma, whose proof can be found in [7].
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Lemma 3 Let $F:Xarrow 2^{E},$ $G:Xarrow 2^{E}$ be Hausdorff continuous multival-
ued mappings with convex and closed images. Define $H(x):=F(x)\cap G(x)$

and assume that intH $(x)\neq\emptyset$ for every $x\in X$ . Then $H$ is Hausdorff con-
tinuous.

Proof of Theorem 2. Denote $D:=C\cap S$ and $H=l^{-1}(0)$ .
We shall prove that dist $(H, D)>0$ . Assume the contrary. Then there

exists $b_{\mathrm{n}}\in D$ such that dist $(b_{n}, H)arrow \mathrm{O}$ . It is well known and easy to prove
that dist $(b_{n}, H)=-l(b_{n})$ , and by (1) we obtain a contradiction.

Let $\epsilon\in(0, \frac{1}{2}dist(H, D))$ . Obviously $C_{\epsilon}$ is a closed, strongly pointed cone
with respect to the above definition.

Let $\{\epsilon_{n}\}_{n=1}^{\infty},$ $\{\epsilon_{n}’\}_{n=1}^{\infty},$ $\{\epsilon_{n}’’\}_{n=1}^{\infty}$ be sequences of positive numbers converg-
ing to $0$ such that the series $\Sigma_{n=1}^{\infty}\epsilon_{n}$ and $\Sigma_{n=1}^{\infty}\epsilon_{n}’$ are convergent and

$\epsilon_{n-1}<\epsilon_{n}+\epsilon\epsilon_{n}’$ $\forall n\geq 2$ . (2)

Let $e\in D$ .
The proof of the following Claim 1 is evident and is omitted.
Claim l.For every $\delta>0$ we have $\delta\epsilon B\subset C-\delta e$ .
Define inductively the mappings $H_{n},$ $F_{n}$

‘
$Xarrow 2^{E}$ by $H_{n}(x)=(F(x)+$

$\epsilon_{n}B)\cap\{y_{n-1}(x)-\epsilon_{n}’e+C\},$ $F_{n}(x)= \{y\in H_{n}(x) : l(y)\leq\inf l(H_{n}(x))+\epsilon_{n}’’\}$ ,
where $y_{n-1}$ : $Xarrow \mathrm{Y}$ is a continuous selection of $F_{n-1},$ $F_{0}:=F$ .

We will prove by induction that such a definition is possible.
Assume that for some $n,$ $F_{n-1}$ is define as above and is lower semicon-

tinuous with nonempty closed and convex images (for $n=1$ this is true).
By Michael’s selection theorem there exists a continuous selection of $F_{n-1)}$

denoted by $y_{n-1}$ (if $n=1$ , then we take $y_{0}=y’$ - the given selection by
assumption). Define $F_{n}$ as above with this $y_{n-1}$ in the definition of $H_{n}(x)$

(here we use Proposition 2.1 to assure that $H_{n}$ is bounded). We shall prove
that $F_{n}$ is lower semicontinuous , which will complete the induction, since
obviously $F_{n}$ has closed and convex images.

Let $x_{0}$ and $\alpha>0$ be given.
By Claim 1 and by the choice of $\epsilon_{n}$ and $\epsilon_{n}’$ it follows that $i,ntH_{n}(x_{0})\neq\emptyset$ .

Indeed, assume that $intH_{n}(x_{0})=\emptyset$ . Then, by Claim 1 we have $y_{n-1}(x)+$

$\epsilon_{n}’\epsilon B\subset y_{n-1}(x)-\epsilon_{n}’e+C$ , therefore $int\{(F(x_{0})+\epsilon_{n}B)\cap(y_{n-1}(x_{0})+\epsilon_{n}’\epsilon B)\}=$

$\emptyset$ , whence $\epsilon_{n}+\epsilon\epsilon_{n}’\leq\epsilon_{n-1}$ , a contradiction with (2).
By Proposition 1 it follows that $H_{n}(x_{0})$ is bounded and since $intH_{7\iota}(x_{0})\neq$

$\emptyset$ , we have $intF_{n}(x_{0})\neq\emptyset$ . Let $z_{0}\in F_{n}(x_{0})$ . There exists $z_{1}\in intF_{n}(x_{0})$ such
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$\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}||z_{0}-z_{1}||<\alpha.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}l(z_{1})<\inf_{H_{n}}l(H_{n}(x_{0}))+\epsilon_{n}’’.\mathrm{L}\mathrm{e}\mathrm{t}\gamma\in(0,m(x_{0})+\epsilon_{n}’’-\iota(z_{1})),\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}m(x)=\inf l((x)).\mathrm{B}\mathrm{y}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{y}\mathrm{o}\mathrm{f}y_{n-1}\mathrm{a}\mathrm{n}\mathrm{d}F\mathrm{i}\mathrm{t}$

follows, applying Lemma 3, that $H_{n}$ is Hausdorff continuous. So there exists
$\delta>0$ such that $H_{n}(x)\subset\{z : l(z)>m(x_{0})-\gamma\}$ and $z_{1}\in H_{n}(x)$ for
every $x\in B(x_{0};\delta)$ . Hence $m(x):=$ inf $l(H_{n}(x))\geq m(x_{0})-\gamma$ and $l(z_{1})<$

$m(x_{0})+\epsilon_{n}’’-\gamma<m(x)+\epsilon_{n}’’$ for every $x\in B(x_{0};\delta)$ .
Therefore $z_{1}\in F_{n}(x)$ for every $x\in B(x_{0;}\delta)$ , which proves the lower

semicontinuity of $F_{n}$ at $x_{0}$ and the corectness of the definition.
For every $x\in X,$ $z\in H_{n}(x)$ we have $z=y_{n-1}(x)-\epsilon_{n}’e+c$ for some $c\in C$ .

Hence
$l(y_{n-1}(x)-z)=\epsilon_{n}’l(e)-l(c)\geq\epsilon_{n}’l(e)$ (3)

We need the following.
Claim 2. $Leis= \inf\{||x-y|| : x\in C\cap S, y\in l^{-1}(0)\}$ . Then the conditions

$x\in C,$ $r>0,$ $l(x)\geq-r$ imply $||x|| \leq\frac{f}{s}$ .
Proof. Let $x\in C,$ $r>0$ and $l(x)\geq-r$ . Then $s \leq dist(\frac{x}{||x||},$ $l^{-1}(0))=$

$l( \frac{-x}{||x||})\leq\frac{r}{||x||}$ , whence $||x|| \leq\frac{r}{s}$ $\blacksquare$

By Claim 2 and by (3) it follows

$||y_{n-1}(x)-z|| \leq\frac{\epsilon_{n}’l(-e)}{s},$
$\forall x\in X,\forall.z\in H_{n}(x)$ (4)

whence
$diamH_{n}(x) \leq\frac{2e_{n}’l(-e)}{s},$ $\forall x\in X$ . (5)

By (4) for $z=y_{n}(x)$ we obtain that $\{y_{n}(x)\}_{n=1}^{\infty}$ is a fundamental sequence.
Let $v(x)$ be its limit. Rom (4) it follows that this limit is uniform with
respect to $x$ , i.e. $y_{n}(x)$ converges uniformly on $x\in E$ to $v(x)$ , therefore $v$ is
a continuous mapping.

Since $y_{n}(x)\in F(x)+\epsilon_{n}B$ , we obtain that $v(x)\in F(x)$ for every $x\in E$ .
We shall prove that $(v(x)+intC)\cap F(x)=\emptyset$ for every $x\in E$ . Assume the

contrary: there exists $z\in(v(x)+intC)\cap F(x)$ for some $x\in X$ . Then for large
$n$ we have $[z, \frac{v(x)+z}{2}]\subset H_{n}(x)$ (here $\lceil p,$

$q$ ] denotes the segment with ends $p$ and
$q)$ , and therefore, $diamH_{n}(x)$ does not converge to $0$ , which is a contradiction
with (5) Therefore $v(x)$ is a weakly efficient point of $(y’(x)+C)\cap F(x)$ .

Assume that for every $x\in X$ , $F(x)$ is strongly bounded with respect to
$C_{\epsilon}$ for some $\epsilon>0$ . Then by the proof above when $C$ is replaced with $C_{\epsilon}$ ,
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we conclude that the multivalued mapping $(y’(.)+C_{\epsilon})\cap WEP_{C_{\zeta}}(F(.))$ has
a continuous selection. It is easy to see that $WEP_{C_{\epsilon}}(F(.))\subset SEP_{C}(F(.))$ ,
which completes the proof. $\blacksquare$

As a corollary of the above theorem we prove existence of a continuous
selection of the support points of a closed convex bounded set depending con-
tinuously on a parameter (the existence of such support points is garanteed
by Bishop-Phelps’ theorem [18] $)$ .

Theorem 4 Let $F$ : $Xarrow 2^{E}$ be a Hausdorff continuous multivalued map-
ping with closed, convex, bounded and $nonarrow empty$ values from a paracompact
topological space $X$ to a Banach space E. Then for every $\epsilon>0$ and ev-
$eryl\in E^{*}$ there exists a continuous selection of the multivalued mapping
$F_{l,\epsilon}$ : $Xarrow \mathit{2}^{E}$ defined by $F_{l,\epsilon}(x)=\{y\in F(x)$ : $\exists x^{*}\in B^{*}(l\cdot\epsilon)|$ : $\langle x^{*}, y\rangle=$

$\max_{z\in F(x)}\langle x^{*}, z\rangle\}$ . In particular the multivalued mappings which assigh to ev-
$eryx\in X$ the support points and the boundary points of $F(x)$ have continuous
selections.

Proof. The same (using Theorem 2) as the proof of the Bishop-Phelps
theorem in $[18]_{\blacksquare}$.

Now we present a parametric Ekeland’s variational principle.

Theorem 5 Let $E$ be a Banach space, $X$ be a paracompact topological space
and $Y$ be closed convex subset of $E,$ $f$ : $X\cross Yarrow \mathrm{R}$ be a function with the
following properties:

$(a)$ the functions $\{f(., y) : y\in Y\}$ are $equi- \mathrm{c}ontinuous_{l}$

$(b)f(x, .)$ is convex and lower semicontinuous for every $x\in X$ ,
$(c) \inf_{y\in Y}f(x, y)>-\infty$ $\forall x\in X$ .

Then
$(d)$ for every $\epsilon>0$ there exists a continuous mapping $y_{0}$ : $Xarrow Y$ such

that
$f(x, y_{0}(x))= \min_{y\in Y}[f(x, y)+\epsilon||y-y_{0}(x)||]$ $\forall x\in X$ .
If, moreover, $f(x, .)$ is continuous for every $x\in X$ , then we have the

following localization property:
$(d’)$ for every continuous mapping $y’$ : $Xarrow Y$ , for every $\epsilon>0,$ $\lambda>0,$ $\delta\in$

$(0, \epsilon)$ there exists a continuous mapping $y_{0}$ : $Xarrow Y$ such that $f(x, y_{0}(x))=$

$\min_{y\in Y}[f(x, y)+\frac{\epsilon}{\lambda}||y-y_{0}(x)||]$ $\forall x\in X$ ,
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and
$(e)||y’(x)-y_{0}(x)||<\lambda$ whenever $f(x, y’(x))< \inf_{z\in X}f(x, z)+\epsilon-\delta$ ,
$(f)y_{0}(x)$ is the strong minimum point in $(d)$ for every $x\in X$ (it means

every minimizing sequence in $d$) is convergent).

Proof. Let $C$ be the following cone in $E\cross \mathrm{R}:C=\{(x, -t)$ : $t\geq$

$0,$ $t\lambda\geq(\epsilon-\delta)||x||\}$ . It is easy to see that the multivalued mapping $F(x)=$
$epif(x, .):=\{(y, t)\in E\cross \mathrm{R}:t\geq f(x, y)\}$ (the epigraph of $f(x,$ $.)$ ) is Haus-
dorff continuous and, in the case $(\mathrm{d}’)$ , the mapping $s$ : $Xarrow Y\cross \mathrm{R},$ $s(x)=$
$(y’(x), f(x, y’(x)))$ is a continuous selection of $F$ . By Theorem 2 there ex-
ists a continuous selection $(y_{0}, r_{0})$ of $(s+C)\cap WEP_{C}(F(.))$ . Therefore
int $((y_{0}, r_{0})+C)\cap epif(x, .)=\emptyset$ and $r_{0}(x)=f(x, y_{0}(x))$ . This proves
$f(x, y_{\delta}(x))= \min_{y\in Y}[f(x, y)+\frac{\epsilon-\delta}{\lambda}||y-y_{\delta}(x)||]$ . The condition $(y_{0}, r_{0})\in$

$(s(x)+C)$ proves (e).
Let $\{y_{n}\}$ be a minimizing sequence for the function $g_{2}(x, .)$ , where $g_{2}(x, y)=$

$f(x, y)+ \frac{\epsilon}{\lambda}||y-y_{\delta}(x)||$ . Putting $g_{1}(x, y)=f(x, y)+ \frac{\epsilon-\delta}{\lambda}||y-y_{\delta}(x)||)$ we
have $f(x, y_{\delta}(x))\leq g_{1}(x, y_{n})<g_{2}(x, y_{n})arrow f(x, y_{\delta}(x))$ . Hence $g_{2}(x, y_{n})$ -

$g_{1}(x, y_{n})arrow 0$ , i.e. $\delta||y_{n}-y_{\delta}(x)||arrow 0$ and (f) is proved. $\bullet$

The following theorem is an extension of Ekeland’s variational principle to
minimax problems and can be considered as a minimax $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\grave{\mathrm{t}}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ principle.
The proof is direct and uses Theorem 5 and Ekeland’s variational principle.

Theorem 6 Let $E_{1}$ and $E_{2}$ be Banach spaces, $X$ and $Y$ be closed non-empty
subsets of $E_{1}$ and $E_{2}$ respectively, $\mathrm{Y}$ be convex, bounded and $f$ : $X\cross Yarrow \mathrm{R}$

be a function with the following properties:
$a)$ the functions $\{f(., y) : y\in Y\}$ are equi-continuous,
$b)f(x, .)$ is continuous and concave for every $x\in\backslash X$ ;
$c) \sup_{y\in Y}f(x, y)<+\infty$ $\forall x\in X$ ,
$d) \inf_{x\in X}\sup_{y\in Y}f(x, y)>-\infty$ .
Let $\epsilon_{1},$ $\epsilon_{2},$

$\lambda_{1},$ $\lambda_{2}>0$ be given and $x’\in Xand$.$y’\backslash \in Y$ be such that:
$e) \sup_{y\in Y}f(x’y))<\inf_{x\in X}\sup_{y\in Y}f(x, y)+\epsilon_{1}$

$f)f(x’, y’)> \sup_{y\in Y}f(x’, y)-\epsilon_{2}$ .

Then there exist a continuous mapping $\tilde{y}$ : $Xarrow Y$ and a point $x_{0}\in X$

such that for $y_{0}=\tilde{y}(x_{0})$ we have
$g)f_{2}(x_{0}, y_{0})= \max f_{2}(x_{0}, y)=\min_{xy\in Y\in X}\sup_{y\in Y}f_{2}(x, y),$ wher‘$e$
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$f_{2}(x, y)=f(x, y)+ \lrcorner\lambda_{1}\epsilon||x-x_{0}||-\frac{\epsilon}{\lambda}\mathrm{A}2||y-\tilde{y}(x)||,\overline{\epsilon}_{1}=\epsilon_{1}+\frac{\epsilon}{\lambda}z_{2}$ diamY,
$h)x_{0}$ and $y_{0}$ are the strong minimum and strong maximum points $\mathit{0}f$ the

functions $\sup_{y\in Y}f_{2}(., y)$ and $f_{2}(x_{0}, .)$ respectively.
$i)||x_{0}-x’||<\lambda_{1},$ $||y’-y_{0}||\leq\lambda_{2}+||\tilde{y}(x’)-\tilde{y}(x_{0})||$ .

Below we present a smooth variational principle involving bump func-
tions, called here modified smooth variational principle, which unifies Borwein-
Preiss’ variational principle [2] and Deville-Godefroy-Zizler’s variational prin-
ciple [5] (concerning only existence of arbitrarily small smooth perturbations
producing a point of minimum of the perturbed function). As an advantage
it can be noted that this new variant is produced by Ekeland’s variational
principle [8] and has the same localization properties as the latter. Namely,
the ratio $\frac{\epsilon}{\lambda^{\mathrm{p}}},$ $p\geq 1$ , which appears in the Borwein-Preiss variational principle,
is replaced here by $\frac{e}{\lambda},$

$\mathfrak{B}$ in the Ekeland variational principle, but the price
for this is a new perturbation, which is also convex, if we work with norms
instead of bumps. This refines also the localization given in [5]. It is worth
to mention that the same precise localization for Deville-Godefroy-Zizler’s
variational principle, as well as the density part in the latter follows from
[13], where a prototype- of it was obtained, concerning $\delta$-minimum point of
the perturbed function. Another advantage of the presented here modified
smooth variational principle is that the sequence involved in it can be forced
to converge to the minimum of the perturbed function as fast as we like in
each step of the construction after the first one. This idea allows more precise
localization of the minimum point $v$ of the perturbed function; namely, un-
der additional assumptions, $v$ can be arranged to belong to the complement
of an arbitrary, given in the beginnin. $\mathrm{g},$

$\sigma$-porous set.
Variants of variational principles are obtained in [14] and [15] (without

localization). The reader can consult with [16] for a discussion about the
relationships between the variational principles, a complement to which is
the new one presented here with respect to the localization and unification.

We present here also a parametric variant of this modified smooth varia-
tional principle, which is of the spirit of [10] and [11].

Let $(E, ||.||)$ be a Banach space. A bornology $\beta$ of $E$ is a family of closed
bounded and centrally symmetric subsets of $E$ whose union is $E$ , which is
closed under multiplication by scalars and is directed upwards (that is, the
union of any two members of $\beta$ is contained in some member of $\beta$). We will
denote by $E_{\beta}^{*}$ the dual space of $E$ endowed with the topology of uniform
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convergence on $\beta$-sets. The most important bornologies are those formed by
all (symmetric) bounded sets (the Fr\’echet bornology, denoted by $F$), weak
compact sets (the weak Hadamard bornology) denoted by $WH$), compact
sets (the Hadamard bornology) denoted by $H$) and finite sets (the Gateaux
bornology, denoted by $G$).

Given a function $f$ : $Earrow \mathrm{R}\cup\{+\infty\}$ , we say that $f$ is $\beta$-differentiable at
$x$ and has a $\beta$-derivative $\nabla^{\beta}f(x)$ if $f(x)$ is finite and

$\frac{f(x+th)-f(x)}{t}-\langle\nabla^{\beta}f(x), h\rangle$ a $0$

as $tarrow \mathrm{O}$ uniformly in $h\in V$ for every $V\in\beta$ . We say that a function $f$ is
$\beta$-smooth at $x$ if $\nabla^{\beta}f$ : $Earrow E_{\beta}^{*}$ is continuous in a neighborhood of $x$ .

Recall that a function $b:Earrow \mathrm{R}$ is called bump function if $b$ is positive
on a bounded set, called suppb, and zero on the complement of suppb.

We shall use the following lemma, which is presented in [3] and $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\dot{\mathrm{h}}$ is
a straitforward generalization of [6, Section VIII, Lemma 1.3].

Lemma 7 Let $E$ be a Banach space that addmits a bump function which is
Lipschitzian and $\beta$ -smooth. Then there exist $a$

.function $d:W\prec$
.

$\mathrm{R}^{+}$ and a
scalar $K>1$ such that

$i)d$ is bounded, Lipschitzian on $X$ and $\beta$ -smooth $cnX\backslash \mathrm{O}$ .
$ii)||x||\leq d(x)\leq K||x||if||x||\leq 1$ and $d(x)=2$ if $||x||\geq 1$ .

The proof of the following lemma is straightforward and is omitted.

Lemma 8 Let $\alpha$ be given. Then for every $\epsilon>0$ there exists $p\in(1,2)$ such
that

$\alpha||x||<\alpha||x||^{p}+\epsilon$ $\forall x\in E$ .

In what follows we use the notation $B(x;r)$ (resp. $B[x;r]$ ) for an open
(resp. closed) ball with center $x$ and radius $r$ .

Theorem 9 (Modified smooth var\’iational principle). Let $E$ be a Banach
space that addmits a bump function which is Lipschitzian and $\beta$ -smooth, $f$ :
$Earrow \mathrm{R}\cup \mathrm{t}+\infty\}$ be a lower semicontinuous function bounded below and let
$\epsilon>0,$ $\lambda>0$ be given. Suppose that $x_{0}$ satisfies the condition:

$f(x_{0})< \inf f(E)+\epsilon$ .

21



Then for the function $d:Earrow \mathrm{R}_{+}$ produced by Lemma $\mathit{1}_{f}$ we have: there exist
$\lambda_{0}\in(0, \lambda),$ $\mu_{0}\in(0,1)$ and $x_{1}\in B(x_{0};\lambda_{0})$ such that for every $i=1,\mathit{2},$

$\ldots$ ,

for every sufficiently small $\mu_{i}\in(0,1),$ $\lambda_{i}\in(0, \lambda_{0})$ (possible chosen afler
$x_{1},$

$\ldots,$
$x_{i})$ there exist $x_{i+1}\in B(x_{i};\lambda_{i})$ and $p_{i}\in(1,2)$ such that $x_{n}arrow v$ , where

$v\in B(x_{0};\lambda),$ $\sum_{i=0}^{\infty}\lambda_{i}\leq\lambda_{f}\sum_{i=0}^{\infty}\mu_{i}\leq 1$ and

$f(v)+\Delta(v)\leq f(x)+\Delta(x)$ $\forall x\in E$ , (6)

$\triangle(x)=\frac{\epsilon}{\lambda}\sum_{i=1}^{\infty}\mu_{i-1}[d(x-x_{i})]^{p_{i}}$ . (7)

Proof. Choose $\lambda_{0}<\lambda$ and $\mu_{0}<1$ such that

$f(x_{0})< \inf f(E)+\lambda_{0}\mu_{0^{\frac{\epsilon}{\lambda}}}$ .

By Lernma 1 and Lemma 2 define inductively functions $f_{n}$ : $Earrow \mathrm{R}$

satisfying
$f_{n}(x)=f_{n-1}(x)+ \frac{\epsilon}{\lambda}\mu_{n-1}[d(x-x_{n})]^{p_{n}},$ $f_{0}:=f$ ,

where $x_{n}\in B(x_{n-1}, \lambda_{n-1})$ is produced by Ekeland’s variational principle:

$f_{n-1}(x_{n})<f_{n-1}(x)+ \frac{\epsilon}{\lambda}\mu_{n-1}||x-x_{n}||$ $\forall x\neq x_{n}$ ,

$\lambda_{n}\in(0, \lambda-\Sigma_{i=0}^{n-1}\lambda_{i}),$ $\mu_{n}\in(0,1-\Sigma_{i=0}^{n-1}\mu_{i})$ are chosen possibly after $x_{n}$ , and
$p_{n}\in(1,\mathit{2})$ is such that

$\frac{\epsilon}{\lambda}\mu_{n-1}||x||<\frac{\epsilon}{\lambda}\mu_{n-1}||x||^{p_{n}}+\mu_{n}\lambda_{n}\frac{\epsilon}{\lambda}$ $\forall x\in E$ .

It is a routine matter to prove that $\{x_{n}\}$ is a fundamental sequence and
its limit $v\in B(x_{0}, \lambda)$ satisfies (6). $\blacksquare$

It is clear that $d$ in the previous theorem can be replaced by $||.||$ . So we
have a variant of Borwein-Preiss’ variational principle [2].

Theorem 10 (Parametric modified smooth variational principle). Suppose
that $T$ is a paracompact topological $space_{f}X$ is a convex closed and nonempty
subset of a Banach space $E,$ $||.||$ and the function $f$ : $T\cross Xarrow \mathrm{R}$ satisfies
the conditions:
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(i) the function $f(t, .)$ is convex and continuous for $every.t\in\tau_{i}$

(ii) the functions $\{f(., x):x\in X\}$ are equi-continuous.
Given $\epsilon>0,$ $\lambda>0$ , let $x_{0}$ : $Tarrow X$ be a continuous mapping, such that

$f(t, x_{0}(t)) \leq\inf f(t, X)+\epsilon$ , $\forall t\in T$ .
Then for every $\alpha>0$ , there exist $\lambda_{0}\in(0, \lambda),$ $\mu_{0}\in(0,1)$ and a continuous

mapping $x_{1}$ : $Tarrow X$ such that $x_{1}(t)\in B(x_{0}(t), \lambda_{0})$ for every $t\in T$ and for
every $i=1,2,$ $\ldots$ , for every sufficiently small $\mu_{\dot{\mathrm{t}}},$

$\lambda_{i}>0$ (possibly chosen after
$x_{1},$

$\ldots,$
$x_{i})$ there exist $p_{i}\in(1,\mathit{2})$ and a continuous mapping $x_{i+1}$ : $Tarrow X$ with

$x_{i+1}(t)\in B(x_{i}(t);\lambda_{i})$ for every $t\in T$ such that $x_{i}(t)$ converges uniformly to
a continuous mapping $v$ : $Tarrow X$ with $v(t)\in B(x_{0}(t);\lambda)$ for every $t\in T$ ,

$\sum_{i=0}^{\infty}\lambda_{i}\leq\lambda,$ $\sum_{i=0}^{\infty}\mu_{i}\leq 1$ and

$f(t, v(t))+\triangle(t, v(t))\leq f(t, x)+\Delta(t, x)$ $\forall x\in x,\forall t\in T$

$wh.ere$

$\triangle(t,x)=\frac{\epsilon+\alpha}{\lambda}\sum_{i=1}^{\infty}\mu_{i-1}[d(x-x_{i}(t))]^{p}\cdot.$ .

Here $d$ is either the norm $||.||$ , or the function produ $\mathrm{c}ed$ by Lemma 7, if $E$

has a $\beta$ -smooth Lipschitz bump function.
As an advantage of Theorem 10 comparing with the analogous parametriza-

tion of Borwein-Preiss variational principle in [11] we note that the assump-
tions on the boundedness of certain level sets in [11] (when $p>1$ ) are missing
in Theorem 10.

In the next theorem we establish a continuous selection theorem for the
subdifferential of a convex function depending on a parameter. ‘

Theorem 11 Let the Banach space $E$ have Fr\’echet differentiable norm off
$0$ . Suppose that $X$ is a paracompact topological space and the function $f$ :
$X\cross Earrow \mathrm{R}$ satisfies the conditions:

(i) . for every $x\in X$ the function $f(x, .)$ is convex, continuous and
bounded below on $E$ ;

(ii) the functions $\{f(., y):y\in E\}$ are equi-continuous.
Then for every $\gamma>0$ there exists a continuous mapping $v:Xarrow E$ , such

that the multivalued mapping $F(x):=\partial_{y}f(x, v(x))\cap B[0, \gamma]$ has a continu-
ous selection, where $\partial_{y}f$ denotes the usual subdifferential with respect to the
second variable.
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Proof. Let $v$ and $\triangle$ be the mapping and function produced by Theorem
10, with $\lambda=2,$ $\epsilon=\alpha=f2’ Y=E,$ $d=||.||$ . Then by the necessary condition
of a minimum, $0\in\partial_{y}[f(x, v(x))+\Delta(x, v(x))]=\partial_{y}f(x, v(x))+\Delta_{y}’(x, v(x)))$

which shows that $-\Delta_{y}’(x, v(x))$ is a continuous selection of $F$ . Obviously
$||\triangle_{y}’(x, v(x))||\leq\gamma$ . $\blacksquare$

In the next theorem we establish existence of a Nash equilibrium for
convex functions after smooth perturbations, when one of the sets is non-
compact. It can be regarded as a generalization of Sion’s minimax theorem
[19] for Nash equilibrium problems.

Theorem 12 Let $X_{2,)}\ldots X_{n}$ be $C\mathit{0}nvex$ compact sets in Banach spaces, $X_{1}$

be a closed convex bounded subset of a Banach space. Denote $X=X_{1}\cross$

.. . $\cross X_{n},$ $x=(x_{1}, \ldots, x_{n})$ , $x_{\dot{i}}=(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}),$ $X_{\hat{i}}=X_{1}\mathrm{x}$

. . . $\cross X_{i-1}\cross X_{i+1}\cross\ldots\cross X_{n},$ $\forall i=1,$ $\ldots$ , $n$ . Let $f_{i}$ : $Xarrow \mathrm{R}$ be convex
lower semicontinuous functions with respect to the variable $x_{i}\in X_{i}$ and the
functions $\{f_{i}(\ldots , x_{i}, \ldots) : x_{i}\in X_{1}\}$ be equicontinuous on $X\backslash |$ for every $i=$

$1,$
$\ldots$ , $n$ . Then for every $\epsilon>0$ there exist convex Lipschitz functions $b_{i}$ :

$X_{i}arrow \mathrm{R}$ with a Lipschitz constant less than $\epsilon$ , which are differentiable, if the
norm of $E_{i}$ is differentiable off $0$ , and there exist points $\overline{x}_{i}\in X_{i}$ such that
the point $\overline{x}=(\overline{x}_{1}, \ldots,\overline{x}_{n})$ is a Nash equilibrium for the functions

$\overline{f_{i}}(x)=f_{i}(x)+b_{i}(x_{i}),$ $i=1,$ $\ldots,$
$n$

$i.e$ .
$f_{i}(\overline{x}_{1}, \ldots , \overline{x}_{i}, \ldots , \overline{x}_{n})+b_{i}(\overline{x}_{i})\leq f_{i}(\overline{x}_{1,)}\ldots x_{\dot{f})}\ldots , \overline{x}_{n}).+b_{i}(x_{i})$

for every $x_{i}\in X_{i}$ and $i=1,$
$\ldots,$

$n$ .

Proof. From Theorem 10 applied with $d$ equal to the norm in $X$ , for every
$i=1,$ $\ldots$ , $n$ there exists a continuous mapping $y_{i}$ : $X_{\hat{i}}arrow X_{i}$ and a function
$\Delta_{i}$ : $Xarrow \mathrm{R}$, which is convex and Lipschitz on $x_{i}\in X_{i}$ with a Lipschitz
constant less than $\epsilon$ (an.d differentiable, if the norm of $E_{i}$ is differentiable out
of $0$) such that

$(f_{i}+\triangle_{i})(x_{1}, \ldots, y_{i}(X_{i}^{\wedge}), \ldots, x_{n})\leq(f_{i}+\Delta_{i})(x)$ , $\forall x\in X,$ $\forall i=1,$
$\ldots,$

$n$ .

The composition mapping

$X_{2}\cross\ldots\cross X_{n}\ni x_{\hat{1}}arrow(y_{2}(\varphi_{2}(x_{\hat{1}})), \ldots, y_{n}(\varphi_{n}(x_{\hat{1}})))\in X_{2}\cross\ldots\cross X_{n}$ ,
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where $\varphi_{i}(x_{\hat{1}})=(y_{1}(x_{\hat{1}}), x_{2}, \ldots , x_{i-1}, x_{i+1}, \ldots , x_{n}),$ $i=2,$ $\ldots$ , $n$ is a continu-
ous mapping from the compact convex set $X_{2}\cross\ldots\cross X_{n}$ to itself and from
Schauder’s fixed point theorem it has a fixed point $\overline{x}_{\hat{1}}=$ $(\overline{x}_{2}, . . , , \overline{x}_{n})$ . If we
put $\overline{x}_{1}=y_{1}(\overline{x}_{\hat{1}})$ and $b_{i}(x_{i}):=\triangle(\overline{x}_{1}, \ldots, x_{i}, \ldots,\overline{x}_{n})$ , then $\overline{x}_{i}=y_{i}(\overline{X}_{t}^{\tau})$ for every
$i=2,$ $\ldots$ , $n$ , and the proof is completed. $\blacksquare$

As an advantage of the smooth perturbations in the above theorem, we
would mention the possibility to write second order optimality conditions at
the Nash equilibrium point for the perturbed functions, when the norm of
the space is second order Fr\’echet differentiable (off $0$). For example, in the
setting of [12], such optimality conditions can be written in terms of second
order subdifferentials, if the sets $X_{i}$ are defined by equalities and inequalities,
and all involved functions are of class $C^{1,1}$ .

As a next application we give a short proof of a variant of the Ky Fan in-
equality considered in [1, Theorem 6.3.2], when a perturbation of the function
is involved.

Theorem 13 Let $X$ be convex, compact and nonempty subset of a Banach
space $(E, ||.||),$ $f$ : $X\cross Xarrow \mathrm{R}$ be a function such that

$a)f(., y)$ is lower semicontinuous for every $y\in X$ ;
$b)$ $f(x, .)$ is concave for every $x\in X$ .
$c)$ the functions $\{f(., y) : y\in X\}$ are lower semicontinuous and equi-

upper semicontinuous.
Then for every $\epsilon>0$ there exists $x_{\epsilon}\in X$ and a function $\Delta.\cdot X\cross \mathrm{Y}arrow \mathrm{R}$

which, with respect to the first $variable_{1}$ is coniinuous and with respect to
the second variable is convex, Lipschitz with a Lipschitz constant less that $\epsilon$ ,
and differentiable; if the norm of $E$ is differentiable off $0$ , such that for the
function $f_{\epsilon}(x, y)=f(x, y)-\epsilon\triangle(x, y)$ we have

$f_{\epsilon}(x_{\epsilon}, y)<f_{\epsilon}(x_{\epsilon}, x_{\epsilon})\forall y\in X,$ $y\neq x_{\epsilon}$ ,

and every maximizing sequence for the function $f_{\epsilon}(x_{\epsilon}, .)$ is convergent to $x_{\epsilon}$ .

Proof. For given $\epsilon>0$ , by Theorem 10 applied for $-f$ and $\epsilon/\mathit{2}$ with
$\lambda=1,$ $\alpha=\epsilon/2,$ $d=||.||$ we obtain: there exists a continuous mapping
$\tilde{y}_{\epsilon}$ : $Xarrow X$ and a function $\Delta$ : $X\cross \mathrm{Y}arrow \mathrm{R}$ of type (7) such that

$-f(x,\tilde{y}_{\epsilon}(x))+\triangle(x,\tilde{y}_{\epsilon}(x))\leq-f(x, y)+\Delta(x, y)$ $\forall x\in X,\forall y\in X$ ,
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By Schauder’s fixed point theorem, there exists a fixed point $z_{\epsilon}\in X$ of $\tilde{y}_{\epsilon}$ ,
i.e. $\tilde{y}_{\epsilon}(z_{\epsilon})=z_{\epsilon}$ . Therefore

$f(z_{\epsilon}, y)-\triangle(z_{\epsilon}, y)\leq f(z_{\epsilon}, z_{\epsilon})+\triangle(z_{\epsilon}, z_{\epsilon})\forall y\in X$.

and the proof is completed. $\bullet$
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