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Some applications of computer algebra to

vector bundles on projective spaces

*

Universita degli Studi di Firenze Vincenzo Ancona

Abstract

During the past years the results and the techniques of computer algebra have become
more and more useful in algebraic geometry, in particular in the study of algebraic
vector bundles on complex projective spaces, which are strictly related (by means of
presentations or resolutions by direct sums of line bundles) to matrices whose entries are
homogeneous polynomials. The obvious strategy consists in translating the problems on
vector bundles to problems on matrices (mostly related to computation of syzygies, which
is the core of the current Computer Algebra systems intended for algebraic geometry).

Here we give some examples in the case of mathematical instanton bundles and their
moduli spaces.

0 Notations

- P?%: the complex d-dimensional projective space;

- O: its structure sheaf;

- O(-1) (resp. O(1)): the tautological line bundle (resp. its dual) on P?;

- S;: the vector space of homogeneous polynomials of degree j in d variables
(in particular Sy = C);

- Mat(k,r;S;): the vector space of k x r-matrices with entries in S;;

- E*: the dual of a vector bundle (or a vector space) E;

- E(—1) (resp. E(1)): the twisted bundle E ® O(1) (resp. E® O(1)).

1 Mathematical instanton bundles

Definition 1 A (mathematical) instanton bundle E on P?"*1 with cy = k is the coho-
mology bundle of a monad

O(=1)F B on+2k 4 o(q)k (1)

where A, B are matrices in the space Mat(k,2n + 2k; S1), i.e. their entries are homoge-
neous linear forms in the coordinates of P2"+1,
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The fact that (1) is a monad means the following two conditions on A, B:
i) A and B have rank k at every point x of P27 +1;
ii) A-Bt*=0.
The condition i) shows that at every point = the ’linear map
B'(z): C*F - c? 12k
is injective, and the linear map
A(z) : C*n+2k  CF
is surjective; by ii) we get ImB*(z) C KerA(z); finally the fiber of E at z is given by
E(z) = KerA(z)/ImB*(z).

There is an important relationship between the instanton bundles on P2 and the
~solutions of the Yang-Mills equation on the 4-dimensional sphere S*; we refer to the
fundamental paper [AW] for details. |

Let S* be the kernel of the map O2n+2 4 O(1)* in (1); then the monad (1) gives
rise to the exact sequences ‘

0— S* — 02k A o)k 0 (2)
0—>O(—1)’“B:>S*—>E—>O (3)

The equations (2) , (3) are called the display of the monad.

An istanton bundle F is called symplectic if there is an isomorphism ¢ : E — E* with
" = —o.

It is still an open problem whether a general instanton bundle E is stable. This is true
on P? (easy) and P® ([AO1]); moreover the so called special symplectic instanton bundles
are stable ([AO1]). The stable instanton bundles with ¢, = k define a moduli space
M Ip2n+1(k) which is an open subset of the corresponding Maruyama moduli scheme.
The closed points of M Ipz.+1(k) correspond to isomorphism classes of bundles.

Example 2 (/0S]) Let xo, ..., ZTn,Y0,---,Yn be homogeneous coordinates on P2"+1; the
following pair A, B € Mat(k,2n + 2k; S1) '

0 ... 0 yn ... Yo 0 0 —Xn ... —Xy
0O Yo ... wy O 0 —Zy ... —Xp 0

Yn .. Yo 0 0 —Zp —Zo 0 0
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Zo zn, 0O 0 wo Yo 0 0
0 =z T, O 0 o Yn O
B =
. 0O 2 ... =z, 0 ... 0 y ... yn O
0 ... 0 =z ... zon. 0 ... 0 Y ... Yn

represent an instanton bundle which is special symplectic, hence stable.

Theorem 3 Two instanton bundles corresponding to pairs of matrices (A, B) and (C, D)
are tsomorphic if and only if there is a triple:

(@, P, R) € GL(k) x GL(2n + 2k) x GL(k)

such that:
C = QAP!
D = RBP!.

2 Computation of H(E ® E*) and H?(E @ E*)

The Zariski tangent space to the moduli space M Ip2~+1(k) at a point corresponding
to the bundle E is the vector space H!(E ® E*); it is possible to describe it in terms of
matrices.

Let (A, B) be the pair which detects F, and ¢ € C be a parameter; let moreover
‘A’,B' € Mat(k,2n + 2k; S1) such that:

(A+eA")- (B+€eB') =0 (mod €?) (4)

i.e.
A-Bt+ A -Bt=0

Definition 4 A first order deformation of E is a pair (A + €A’, B + eB') verifying (4).

We denote by V(4 gy the vector space of pairs (A’, B’) corresponding to first order
deformations of of E = (A, B):

‘/(A,B) = {(A”B’) = Mat(k,2n+2k’ Sl) !A’B,t +Al 'Bt — 0}

From now on, let r = 2n + 2k.
The Lie group GL(k) x GL(r) x GL(k) acts on the pairs (A, B) € Mat(k,r;S;)®? by
GL(k) x GL(r) x GL(k) £ GL(Mat(k,r;S;)%?)
(Q,P,R) — P(Q.P,R)
where:
Mat(k,r;51)®2 "25%  Mat(k,r; ;)92
(A, B) —  (QAP!,RBP™1)
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By the theorem 3 two instantons E' and F on P2?"*! are isomorphic if and only if the
corresponding pairs are in the same orbit of p.
The action p induces an action p' of the Lie algebra gl(k) x gl(r) x gl(k) on V(4 ) by

p’(Q,P,R)(A/’ B') = (C',D")

with
P(1+c@,I+ePI+er)(A+ €A B+ eB') = (A+¢eC',B+eD') (mod €?)

that is

A+eC' = (I+eQ) - (A+eA')-(I+eP) (mod €2)

B+eD' = (I+€eR) - (B+eB')-(I+eP)"t (mode?)
Since

(I+€eP)™! = (I —eP) (mod €)

we get:

A+eC' =A+e(A+QA+ APY)  (mod €?)
B+eD' =B+¢B +RB—BP) (modée?)

It follows that (A’, B') and (C',D’) € V{4, p) are equivalent under the action of p' if and
only if there exists (Q, P, R) € gl(k) x gl(r) x gl(k) such that :

C' =QA+ A + AP
D' =RB+ B — BP.

Let U := Mat(k,k;C) ® Mat(r,r;C) & Mat(k, k; C); we define the following subspate
of ‘/(A,B):

Wans ={(M,N)€Vap|IX,2Y)eU|M=XA+AZ; N=YB - BZ'}.

Then

Theorem 5 H'(E ® E*) ~ V4 5)/W(a,B)-

For the proof one uses the long cohomology exact sequences resulting from (2), (3). The
details can be found in [A] or in [AO2].

An algorithm for constructing a basis of the vector space H'(EQE*) = V{4,5)/W(4,B)
consists of the following three steps:

(1) costruction of a basis of V4 B);
(2) costruction of a system of generators of W4 py;
(3) construction of a basis of a complement U4 p) of W4 ) in V(4 B):

U(A,B) o~ HI(E®E*)
The only nontrivial step is (1). For this let T € Mat(k?,2kr; S1):

T=(N N)
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where N; € Mat(k?, kr; S1) is defined by

B 0 0
B
N=|
0
0 0 B
and Ny € Mat(k?, kr; S1):
[ A 0 0
0 A
: 0
0 0 A
No=1] ...
A, O 0
0 A
0
\ 0 0 Ay )

where _Aj is the j-th row of A.

Theorem 6 V(4 p) is isomorphic to the vector space Syz1(T) of the linear syzygies of
the matriz T. :

It is easy to implement an algorithm on Macaulay [BS] that computes a basis of
V(a,B) (the built-in command ”tensor” constructs the matrix 7" from the matrices A and

B).

Next we deal with H?(E ® E*).
Let us consider the following vector space:

Za,py = {D € Mat(k,k; S2) | 3(E, F) € Mat(k,r;51)®* | D = AE* + FB'}.
Then
Theorem 7 H?*(E® E*) ~ Mat(k, k; S2)/Z(a,p)-

Again we refer to [A], [AO2] for the proof.

Hence the space H?(E ® E*) can be easily computed by finding a complement of
Z(A,B) in Mat(k, k; Sz)
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3 The Kuranishi map
Let E be an instanton corresponding to a pair (A, B); the Kuranishi map:
K: U— H*(E® E*)

where U C H'(E ® E*) is a neighborhood of the origin is a holomorphic map such that
the germ at 0 of K~1(0) is the versal deformation of E [FK]. When E is stable the
above germ is also isomorphic to the germ of the moduli space M Ipz~+1(k) at the point
corresponding to E. It follows that the point is smooth if and only if K =0. By 5 and
7 K can be seen as a map

V(A,B) R Mat(k, k; Sz)

K: UcC -
W(a,B) Z(A,B)

The vanishing of K at a point (A(1), B(1)) € V(4 p) means that the "first order” instanton
(A+€A(1), B+ €B(1)) extends to a "formal” instanton (M, N) where

M =3 52046, A =4
N =%520¢Bg, Bo=B

are formal power series such that M - N* = 0. The last identity means

ZA(J) SJ)—0(8—12 )

In particular for s = 2 the second order obstruction for the formal extension is given by
Aqy- By +A@)-B'+A- Bl =0
Hence
Remark 8 If the map '
K,: \79:)) R Mat(k, k; Ss)
Wap  Zap

defined as the product
Kg((A/, B/) mod W(A,B)) = A Blt mod Z(A,B)
1s not identically zero, the point corresponding to E in the moduli space is singular.

The map K5 can be explicitely computed.
Let Ua,p) and U(’A’B) be subspaces of Vi 4 gy and Mat(k, k; S2) respectively isomorphic
to HY(E @ E*) and H?*(E ® E*) (Ua,p) is a complement of Wa,B) in V(4 By, U(’A’B) a
complement of Z(4 ) in Mat(k,k;S2)). Let {(A;, B;)}i=1,...,s be a basis of U4 py, and
{Xi}i=1,..,s be the coordinates of an element (A’, B') of U4 ). Then

L)

A -B" = ZXA ZX -Bt) = ZZXXA ¥:i

1=1 j=1
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Let {Ci}i=1,.. .~ be a basis of Mat(k,k;S2) such that {C1,...,C;} is-a basis of U(’A’B).

We write
N

4By =3 %C
=1
so that
. il s N . .
A B =333 XXy
=1 j=1 (=1

If we denote by (A’ - B't)y the projection of A’ - B on U}, .., we get
(4,B) (A,B)

s s t
(A" BYy, =2 > Y X X;¥7Cr

i=1j=11=1

In the end, the computation of the map K, has been reduced to that of the coefficients
Y} of the quadratic forms

s

Ziyﬁjxixj, I=1,...,t

=1 j=1

(the corresponding algorithm on Macaulay [BS] has been implemented by G.Anzidei and
A. Pizzotti: see [A]).

Remark 9 One can also study the moduli spaces of symplectic bundles (which is a sub-
‘space of the full moduli space); then H?(E ® E*) must be replaced by h7(S?’E) (j = 1,2).
It 1s easy to find results analogous to 5, 7, 8 and the corresponding algorithms.

4 Examples of singular and reducible moduli spaces

In spite of the vast literature concerned with vector bundles on projective spaces, the
first examples of of singular points of their moduli spaces were found by G. Ottaviani
and the author in [AO2], performing some computation along the above lines. Of course
one difficult point is to guess which bundles correspond to singular points. We give here
two explicit examples. |

Example 10 Let E be the istanton of the example 2 withk = 3 on P?; then h}(EQE*) =
57 and h*(E ® E*) = 3. We find for K, the following three equations

2125 + 2226 + 2327 + 2428 =
2129 + 22210 + 23211 + 24212 =

Z1213 + 22214 + 23215 + 24216 =
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- Example 11 Let E be the instanton on P° given by the following matrices

0 —Xyg Iy T4 I3 0 0 —Ty —T1 —XT9
A= —XTg Iy Trg4 XT3 0 0 —T2 —T1 —Xo 0
Iy T4 I3 0 —T3 —T9 —T1 —T9 0 0

To 1 2 0 0 zx3 x4 T —X0 0
B = 0 zop 21 zo O 0 3 T4 =5 —xo

0 0 g 1 T9 —I3 0 I3 Ty Is
Then h'(E ® E*) =55, h>(E ® E*) = 1 and K is given by the equation
2129 + 2324 = 0.

It follows by 8 that the above examples give singular poihts of the corresponding
moduli spaces.

(After the paper [AO2] appeared, other singularities in moduli spaces of vector bun-
dles on P¢ were found: [M], [Ma], [AO3))

The algorithms explained above are also useful for the study of the irreducible com-
ponents of the moduli spaces M Ipzn+1 (k).

Theorem 12 ([AO04]) MIps(4) contains (at least) two irreducible components of dimen-
ston 65 and > 68. ‘ :

Remark 13 The same technique shows that for k = 4,5,6,7, 8 M Ips(k) contains com-
ponents of different dimensions, therefore it is reducible.

We sketch the proof of the above theorem. First we explicitly exhibit an istanton
F in MIps(4) with h2(F ® F*) = 0 (see [AO2]). Hence MIps(4) is smooth at F, of
dimension h'(F ® F*) = 65. On the other hand we construct another pair (C’ D) as
follows; we define C' as

To 2T1 T2 Y 3y1 Y2
O = o T1 T2 Yo Y1 Y2
o T1 T2 Yo Y1 Y2
o X1 T2 Yo Y1 Y2
Then we put
[ 1 )
1
7= 1
1
1
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0 J
(1)

D=A-Q

It is easy to check that the rank of C and D is 4 at every point of P° and C - D! = 0.
Hence C and D define an instanton bundle E, which is symplectic.
By using Macaulay [BS] one computes

and finally we define

h%(S?E) =0
h'(S%E) = 68

From 9 it follows that F is a smooth point of the moduli space of symplectic bundles,
whose dimension at the point E is 68. As a consequence, the full moduli space M Ips(4)
has dimension > 68 at E. In particular, £ and F belong to different irreducible compo-
nents.

5 The Brill-Noether locus

Let ) be a moduli space of stable bundles on P% (or more generally on any algebraic
variety), so that the points of ) are (isomorphism classes of) vector bundles. Then it is
possible to define interesting subvarieties of ) just picking out the bundles satisfying a
given property. In particular the set

Z=BN(QY,m)={FecY:HF)>m}

is a closed subvariety of ) which we call the Brill-Noether locus of level m. ‘

The Zariski tangent space to £ = BN (Y, m) at a point F such that H*(F) = m is
a subspace Tz r C H'(F ® F*) which can be obtained in the following way. Using the
Cech cohomology it is easy to find a natural bilinear map

a:HYF)x H(F® F*) — H'(F) (5)
which induces a linear map
B:HYF®F*) — (HY(F))* @ H'(F).

Then
TZ,E = Ker ﬂ

If E is a stable instanton bundle it is easy to check that H°(E) is always zero; hence in
order to obtain a non trivial Brill-Noether locus we must replace F by E(1), which does
not affect the moduli space. Taking Y = MIp2.+1(k) and F = E(1) the Brill-Noether
map (5) takes the form

a:HY(EQ1)) x H(E ® E*) — HY(E(1)) (6)
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We want to compute the above map starting with a pair of matrices (A, B) which detects
E. Let us consider the following vector spaces (recall r = 2n + 2k):

Sa={M € Mat(r,1;S1) | A- M =0}

Tp = {M € Mat(r,1;$1) | 3C € Mat(k,1;C) | M = Bt - C}
Ry = {R € Mat(k,1;S;) | 3N € Mat(r,1;S;) | R=A-N}
then:

Theorem 14

i) HY(E(1)) = S4/Ts

i) HY(E(1)) = Mat(k,1;52)/Ra.

Sketch of the proof. The 1bng exact cohomology sequence associated to (2) shows that
HO(S*(1)) = Sa, HY(S*(1)) = Mat(k,1;S2)/Ra, and H’(S*(1)) = 0 for j > 2; then the

long exact sequence associated to (3) gives H°(E(1)) = H°(S*(1))/Tg and HY(E(1)) =
CHY(S*(1)).
Recall that by the theorem 5 H'(E ® E*) ~ V{4, 5)/W(a,B)-
The partial multiplication map ‘

I SA X ‘/(A,B) — M(lt(k’, 1; Sz) .
M (A",B") — A-M
satisfies ,
M eTp = p(M,(A",B') € Ry
and
(A’,Bl) € W(A,B) = ,u(M, (AI,B,) €E Ry

According to the theorem 14, p induces a bilinear map
o HYE(1)) x H\(E ® E*) — HYE(1)) (7)

Theorem 15 The bilinear map o coincides with the Brill-Noether map (6).

Proof. Let m = dimcH°(E(1). A pair (A',B’) € H'(E ® E*) belongs to Tz g if
and only if any section M of E(1) extends to a section of the first order deformation
(A+ €A’, B+ eB'). That is, for every M € Mat(r,1;S1) with A- M = 0 there exists
M' € Mat(r,1;S1) such that

(A+eA) - (M +eM') (mod €)

or
A M+A- M =0,

which is exactly the thesis.



126

If My, ..., M,, are representatives of a basis of H*(E(1), a pair (4’, B') € Mat(k,2n+
2k; S1)®? belongs to the Brill-Noether locus if it satisfies the system

A-B't-i—Al'Bt = 0
CAMj+A-M, = 0 (j=0...,m)
(where the unknown are A’, B’ and Mj, ..., M,,). The above equations are equivalent to

the computation of the linear syzygies of a suitable matrix; the corresponding algorithm
can be easily implemented.
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