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1. INTRODUCTION

Let £* be the space of tempered distributions and u be the standard Gaussian
measure on £*. Being motivated by the distribution theory on infinite dimensional
space by Cochran, Kuo and Sengupta (CKS) [6], Asai, Kubo and Kuo (AKK) have
recently determined the best possible class C’ﬁ)%,l of functions u to constract white
noise triple,

[€l. € L*(€7, 1) C [E]3,

and to characterize white noise test function space [€], and generalized function
space [£]}; in the series of papers [1],[2],[3],[4],[5]. The notion of Legendre transfor-
mation plays important roles to examine relationships between the growth order of
holomorphic functions (S-transform) and the CKS-space of white noise test and gen-
eralized functions. It is well-known that a positive generalized function is induced
by a Hida measure v (generalized measure). A Hida measure can be characterized
by integrability conditions on a function inducing the above triple ([5]). See also
[20],[21],[25] for an overview of other recent developments in white noise analysis.
This short note is organized as follows. In Section 2, we give a short summary
of white noise analysis including AKK’s results. A certain class of convex functions
will be introduced to make use of Legendre transformation and dual functions for
our purposes. In Section 3, we restate the characterization theorems of the spaces
of white noise test and generalized functions given in [3],[5]. In Section 4, we give
a quick review of the basic facts on the theory of positive generalized functions
[12],{19],[29]. Finally, we discuss the characterization of a Hida measure (Theorem
4.5). In this connection, we present the grey noise and the Poisson noise measures
as typical examples inducing positive generalized functions (Examples 4.7 and 4.8,
respectively). Moreover, we mention breifly the relationship between [£], and L°-
space on (£*,v) (Proposition 4.6). :
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2. PRELIMINARIES

Let us start with taking a special choice of a Gel’fand triple:
£=8(R)C & = L*(R,dt) C & = S*(R)

just for convenience where S is the Schwartz space of rapidly decreasing functions
and S* is the space of tempered distributions. Consult excellent books [19],[24] for
more general constraction. Let A = 1 + t2 — d?/dt?. It is well-known that A is a
densely defined positive self-adjoint operator on &. So there exists an orthonormal
basis {e;}32, C & for & satisfying Ae; = (2j + 2)e;. For each p > 0 we define
|flp = |APflo and let £, = {f € & ; |flp < oo,p > 0}. Note that &, is the
completion of £ with respect to the norm |- |,. Moreover,

1

p= "A-l "op = 97 “iq,p”irs = 2(2.7 + 2)—(q—p) <oo

§=0

for any ¢ > p > 0. Then the projective limit space £ of £, is a nuclear space and
the dual space of € is nothing but £*. Hence we have the following continuous
inclusions:

ECECcECE CE, p20.
where the norm on £ is given by
1fl-p = [A7"flo-
Troughout this paper, we denote the complexification of a real space X by X.. Let
p be the standard Gaussian measure on £* given by

e~ HIER =/ '8 y(dz), £ €&
E*

The probability space (£*, 1) is called the white noise space or Gaussian space. Let
(L?) = L*(€*, n) denote the Hilbert space of p-square integrable functions on £*.
By the Wiener-It6 theorem each ¢ in (L?) can be uniquely expressed as

0=S L(f) =3 (®f),  f.€ESD (2.1)

and the (L2?)-norm ||¢||o of ¢ is given by

i 1/2
llello = (Z n!Ifnlﬁ) :

n=0

We now briefly recall notions and results discussed by Asai et al. [2],[3].

Definition 2.1. Let u be a positive continuous function on [0, c0). The function u
is called (log, 2 )-convez if log u(z?) is convex on [0, 0).
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Definition 2.2.

(1) Let Cj 1og be the class of all positive continuous functions on [0, c0) and

i 108%(") _
r—oo  logr

(2.2)
(2) Let Cy, % be the class of all positive continuous functions on [0, c0) and

logu(r)__OO
Jim VA (2.3)

(3) Let C, 31 be the class of functions u € C 3 such that

lim 2841 (2.4)

r—+00 r

(4) Let Cﬁ)% (or Cﬁ)%’l) be the class of all (log,z?)-convex functions in C,. 4

(or Cy 3,1), respectively.

Definition 2.3. The Legendre transform £, of a function u € C g is defined by

@) =int X7 150 (2.5)

>0 rt ?

Definition 2.4. The dual Legendre function u* of a function u € C, 1 is given by

W o)
u*(r) = i\;g e € C+‘%. (2.6)

Definition 2.5. Two positive sequences {a(n)}2, and {b(n)}32, are called equiv-

n=0 n=0
alent (denoted by a(n) ~ b(n)) if there exist positive constants K, K3, ¢, ¢, such
that

Kicla(n) < b(n) < K,cza(n) for anyn € N. (2.7)

Definition 2.8. A positive sequence {a(n)}3%, is a dual sequence of {b(n)}2, if
a(n)b(n) ~ (n!)~% holds.

According to Theorem 4.6 in (3], for a fucntion u € C_(f’)% we have

o~
£,(n)(n!)?’

Thus, {£,+(n)}2, is a dual sequence of {£,(n)}:2

n=0"

£, (n) (2.8)
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Definition 2.7. Two positive functions u(r) and v(r) on [0, oo) are called equivalent
(denoted by u(r) = v(r)) if there exist positive constants a;, as, ¢;, c; such that

ciu(ayr) < v(r) < cpu(agr) for any » > 0. (2.9)

The condition (2.3) is required for both v and u* to be equivalent to entire
functions, respectively. This requirement is essential for Theorem 3.1 and Theorem
3.2 which will be discussed later.

Next, we describe the spaces of test and generalized functions on the space £*
introduced by Cochran et al. in a recent paper [6]. Let {a(n)}32, be a weight
sequence satisfying the following two conditions [2],[4],[6]:

(A1) «(0) =1 and inf, 3¢ a(n)o™ > 0 for some o > 1.
1/n
(A2) lim, o (222) " =0,

n!
Let ¢ € (L?) be represented as in Equation (2.1). For p > 0 and a given function
u € C), |, define

oo 1/2
”50”11»1’ = (Z / ( ) |2) ’ f-n, € 82:» (2.10)

n=0

where |fa.], = |(A®")?f.]3. Note that since £,(n) and £,.(n) are dual sequences
of one another, we choose a(n) = (nlf,(n))™! ~ nl,.(n) as a weight sequence.
It is easy to check by (2.3), (2.4) and (2.5) that the above weight sequence with
assumptions, u € C'(2 11 and inf{u(r);r > 0} = 1, satisfies the conditions (A1) and
(A2). Let [£,), = {(,o E (L?); ||¢llup < 00}. Define the space [£], of test functions
to be the projective limit of the family {[,).; p > 0}. Its dual space [£]} is the
space of generalized functions. By identifying (L?) with its dual we get the following
continuous inclusion maps:

[l C L&l C (L) ClE C €L, P»20.

Note that the condition (2.4) is needed in order to have the continuous inclusion
[Ep)u C (L?) for p > 0. The canonical bilinear form on [E]u X [€]. is denoted by
{(-;-)). For each & € [£,]; there exists a unique F, € (E27); such that

symm

(@ o) =3 nl(Fn, 1)

n=0

and

lle

oo 1 1/2
u.,_,,=(z ()|F| ) : (2.11)

n=0
The Gel'fand triple [£], C (L?) C [€] is called the Cochmn-Kuo Sengupta space

(CKS-space for short) associated with a given weight functionu € C ; 1 (see [4],[5]).

We remark that some similar results have been obtained independently by Gannoun
et al. [7].
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Example 2.8. Let 0 < 8 < 1. If v(r) = exp((1 + B)r™7), then v € Cf,);,l- In

addition, the dual function is v*(r) = exp((1 — 8)r77). By Stirling formula, we
have for any n > 0

(1+8)n n/2 143
L cim) = (%) < (62 ) (2.12)

(nl)+p = n!

That is, £,(n) ~ (n!)~(*A). On the other hand, similarly we get £,.(n) ~ (n!)~(1-9),
Hence £,,(n) and £,.(n) are dual sequences of one another. This example induces
the Hida-Kubo-Takenaka space with 8 = 0 [9],[17],[18],[24]

(€)o C (L*) C (&),
and the Kondratiev-Streit space [13],[14],[19],
(€)p C (L) C (&), 0<B <L

’

See [10], [11] if B = 1.

Example 2.9. Let

where

exp; (r) := exp(r), exp,(r) := exp(exp,_,(r)) for k > 2
and by (n) is the k-th order Bell number [1],[2],[3],[4],[6],[15]. Then its dual Legendre

function u; is equivalent to the function

wi(r) ~ exp 24/rloge V7],

where log, (r) is given by
log, () := log(max{e,r}), log,(r) :=log,(log,_,(r)) for k> 2.

Then, u}, € Cf’)%’l.

Details of £,, (n) can be found in [15],[16]. The Gel’fand triple
€., € (L*) C[€];,
is called the Bell number space of order k [6] and

[€lu, C (€)p C (L%) C (€); C [ELL,.
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Remark. We point out here that
(€)1 C[Elu C (€0 C (L7) C (€); C [E] C ()

holds for any u € C\7), ..

3. GENERAL CHARACTERIZATION THEOREMS

The ezponential function (or coherent state) ¢,(-) is given by

1
¢f = e(’e)_%iﬂg = Z E—;(:'®n:,£®n), 6 E gc'

n=0 """

Since it is well-known that the exponential functions {¢¢ ; £ € .} span a dense
subspace of [€], D € [E], is uniquely determined by its S-transform:

Sé(&) = «¢7 ¢$»’ 6 € gw

Now we are in a position to state the characterization theorems of test and gener-
alized functions under very general assumptions. We remark that these theorems
were examined in [22],[27] for the Hida-Kubo-Takenaka space case and [13],[14] for
the Kondratiev-Streit space case.

Theorem 3.1 ([3],[5]). Let u € C'ﬁ)l,l be increasing with u(0) = 1. A function
F : &, — C is the S-transform of some ¢ € [E], if and only if
(F1)z — F(2z£ +1n) is entire holomorphic in z € C for any &,n € &,

(F2)' For any a,p > 0, there ezists a constant K > 0 such that
|F ()] < Ku(alél2,)? for any € € &.. (3.1)

In addition, in that case,

1

lellsg < K*(1— ae’llip,qllns) (3.2)

for any q < p satisfying ae?||i, JI}s < 1.

Theorem 3.2 ([5]). Suppose that u € C'_(:)%,l and inf,.5ou(r) = 1. A function
F : &, — C is the S-transform of some ¢ € [E]}, if and only if

(F1)z — F(2€ +n) is entire holomorphic in z € C for any &,n € &,

(F2) there ezist nonnegative constants K,a and p such that

|F(€)] < Ku*(al¢?)? for any £ € E.. (3.3)

In addition, in that case,

- (3.4)

124",—q < K? (1 - aezll%w"%s)

lle
for any q > 0 satisfying ae®||i,,ll%s < 1.
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Remark. In [8], Hida introduced the infinite dimensional analogue of Fourier
transform, so-called T -transform, given by

TE(E) = (B,649), £ €&, (3.5)

It is well-known that the T7®(z£ +n) is entire holomorphic in z € C for any £,7 € &..
In addition, there is a nice relationship between 7 -transform and S-transform:

S8(8) = T(~i6) expl—5(6,8)], £ €&.. (3.6)

and

Ta(E) = 58 expl-5(6,6), £ € £ (3:7)

Therefore, Theorems 3.1 and 3.2 remain valid even if the S-transform is replaced
by the 7T -transform.

4. CHARACTERIZATION OF PoOSITIVE GENERALIZED FUNCTIONS

Definition 4.1. A measure v on £* is called a Hida measure if [£], C L*(v) and
the mapping ¢ — [, ¢(x)v(dz) is coninuous on [£],.

Suppose @ € [£]}, is induced by a Hida measure v on £*. Then

(@0) = [ elew(da), ¢ € €L

In paticular, take ¢ = €i<®¢>, £ € £. Then, we have the 7 -transform restricted to
£ by

To(¢)|e == <<d5,ei<m,£>» = /‘ ei<m’E>V(dm)’ (el

It is clearly seen that T7®()|¢ is equal to the characteristic function C(¢) of v. Thus
in order to see the existance of a measure v, we only need to check that the function
T P(£)|e satisfies the following conditions:

(1) T&(£)|e is continuous on &.

(2) T®(¢)|¢ is positive definite on E.

Definition 4.2. A generalized function & € [£]% is called positive if (&, p)) > 0 for
all nonnegative test functions ¢ € [£],.

Hence for any nonnegative test function ¢ € [£].,

(@0) = [ ole)wide) 20
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Thus & is a positive generalized function. In the following, Theorem 4.3 says that all
of positive generalized functions is generalized functions induced by Hida measures
on £*. ,
Theorem 4.3. Let u € Cf)L L

(R}
equivalent:

and & € [E]%. Then the following statements are

(a) @ is positive.
(b) T is positive definite on .
(c) @ is induced by a Hida measure. That is, there exists a finite measure v on

&* such that [E], C L'(v) and

(@)= [ eawidn), e

Remark. For the Kondratiev-Streit space, the equivalence of (a) ~ (c) has been
discussed in [19]. The equivalence of (a) and (c) was examined originally in [12] and
[29] only for the case of the Hida-Kubo-Takenaka space.

Next, our problem is how to characterize Hida measures on £*. For this purpose,
based on Lee’s idea [23] (see also [3],[5],[19],[26]), we shall define another norm as
follows. Let A,, be the space of all functions ¢ on £ satisfying the following
conditions:

(Al) ¢ is an analytic function on £ .
(A2) There exists a nonnegative constant C such that

lo()? < Cu(|z|?,) for any z € £, .
For ¢ € A, ,, its norm is defined by

o |
lela., = sup lp(@)u(lzl,) " (4.1)

for a function u € C4 og- Define the space A, of test functions on £* by

A, = projlim A, ,.

p—oo

Proposition 4.4. Suppose that u € CS:)% 1+ Then {|| - la, ;P 2 1} is equivalent to
{ll - lup;p = 1}. As a result, A, = [€]. as vector spaces

Remark. This proposition implies that
A = [ELL

and they have the same inductive limit topology. Moreover, for the constraction of
spaces A, and A}, the Wiener-It6 decomposition theorem is not used and a measure
on £* is not refered at all.

We are in a position to state our characterization theorem of Hida measure in
terms of positivity and integrability condition. The proof of Theorem 4.5 is based on
simple applications of S-transform (7 -transform, equivalently the Bochner-Minlos
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Theorem), the dual functions given in (2.6) and some technical estimations. See [5]
for details.

Theorem 4.5 ([5]). Suppose thatu € C’+ 1,1+ A measurev on " is a Hida measure

inducing a positive generalized function D, E [E]5 if and only if v is supported in £
for some p > 1 and

/g.'u(lmlz—p)%”(dm) < oo.

i 4

Remark. See [23] for the Hida-Kubo-Takenaka space and [19] for the Kondratiev-
Streit space.

Proposition 4.6. Let u € C( 11 and v be a Hida measure on £* inducing a gen-

eralized function &, in [E]}. Then [€le C Nicocoo L*(E*,v). In addition, for each
1 < s < 00, the inclusion mapping [E], — L°(v) is continuous.

Example 4.7. (Grey noise measure)

Let 0 < A < 1. The grey noise measure on £* is the measure v, having the
characteristic function

La(gh) = [ é=On(de), ¢e&,

where L, (t) is the Mittag-Lefller function with parameter A;

n

(—1)
ZI‘ (14 An)

Here I is the Gamma function. This measure was introduced by Schneider [28]. It
is shown in [19] that v, is a Hida measure which induces a generalized function ®,,

in (€);_,. Therefore by Theorem 4.5 and Example 2.8 the grey noise measure vy
satisfies

/;' exp( (2= A)|z|Z, )VA(d:z:) < 00

for some p.

Example 4.8. (Poisson measure)
Let P be the Poisson measure on £* given by

exp(A(eif(t) - 1)dt) = /g e=P(de), ¢e€ &
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It has been shown [6] that the Poisson noise measure induces a generalized function
in the Bell number space of order 2. Thus by Theorem 4.5 and Example 2.9 we
have the integrability condition

‘/;* exp(|m|_m/log |:c|_p)'P(dm) < o0

r

for some p.
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