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Abstract

In this article there are introduced and discussed two basic geometrical structures of

the state space of classical thermodynamics. One of them is the so-called contact structure
which is related to the first law of thermodynamics. The other is the metrical (Riemannian)

structure related to the second law of thermodynamics. It is shown how these structures can
be introduced either on the phenomenological or statistical way.

1 Introduction

The basic problem of any physical theory is to find the proper set $M$ of all plausible states,

i.e. the so-called state space of the system. The other necessary ingredient is the structure of

this space. The structure is usually defined by means of a tensor, vector or covector field, or by

connection. The group preserving the geometrical structure of $M$ is considered as the symmetry

group of the theory. From this point of view any physical theory can treated as a branch

of geometry in the broadest meaning of this word. This approach is well known for instance

in classical mechanics, special and general relativity, electrodynamics, gauge fields, quantum

mechanics, and so on.
Contrary to the above-mentioned theories the situation is not so clear in thermodynamics.

First of all there are two: phenomenological and statistical approaches to the thermal phenom-

ena. For the second, the situation is relatively simple only for homogeneous equilibrium systems.

It complicates remarkably for general nonequilibrium systems where one has to deal with a big

number of macroscopic variables of various types.

The aim of this paper is to study some general aspects of classical thermodynamics from

geometrical point of view. We shall show that the contact and the metric geometries can be

associated with the first and second laws of thermodynamics, respectively. These two structures

can be defined on the so-called thermodynamic phase space (TPS). For a thermodynamic system
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having $n$ macroscopic degrees of freedom, TPS is a $(2n+1)$-dimensional manifold. Its contact
structure may be given by a nondegenerate Pfaff form $\theta$ , for instance by $\theta=dU-TdS+$

$PdV-\mu dN$ for $n=3$ in the energy representation. It is important that all variables in
$\theta$ are treated as independent. The basic idea is to take the state space as big as possible,
i.e. to keep thermodynamic parameters independent as long as possible. Without that we
would not be able to find the full group of symmetries of thermodynamics, and in particular
the continuous symmetries. Only when we wish to draw thermodynamic conclusions from our
considerations, we impose constraints on the thermodynamic parameters resulting from the laws
of thermodynamics, and thus we reduce the description to some submanifolds of TPS.

The developed formalism is in many points similar to the symplectic formalism of classical
Hamiltonian mechanics, with TPS and contact form playing in a sense the role analogous to
the mechanical phase space and symplectic form. An important example of this similarity
is the fact that to every function $f$ on TPS one can associate a contact tangent vector field
$x_{f}$ generating a 1-parameter group of continuous contact transformations. The analogy is,
however, not complete because under some conditions such transformations can be regarded
as thermodynamic processes while in other cases only as a 1-parameter deformations of some
submanifolds (the so-called Legendre submanifolds $S\subset M$ ) representing thermodynamic states.
In the latter case from a given thermodynamic system we may obtain a 1-parameter family of
thermodynamic systems with different constitutive relations.

Although both these geometrical structures (contact and metric) can be obtained on a purely
phenomenological as well as on a statistical way, in this article the metric structure will be
discussed only in the statistical framework.

2 Contact manifolds and thermodynamic phase space

In this section we present some basic facts about contact geometry [2-8] and about its applica-
tions to thermodynamics.

DEFINITION 2.1. A differentiable $(2n+1)$-dimensional manifold $M$ is said to be a contact
manifold if it caries a global differential 1-form $\theta$ such that

$\theta\wedge(d\theta)^{n}\neq 0$ , (2.1)

where $\wedge \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ exterior product and $(d\theta)^{n}=d\theta\wedge\cdots\wedge d\theta$ ( $n$ times). The above condition
means that $\theta$ is nondegenerate; it is called the contact form.

According to the Darboux theorem [2], there exist local canonical (contact) coordinates
$(x^{0}, x^{i},p_{i}),$ $i=1,$ $\ldots,$

$n$ , in which $\theta$ has the simplest canonical form

$\theta=dx^{0}+p_{i}dx^{i}$ , $i=1,$ $\ldots,$
$n$ . (2.2)

The summation convention, i.e. summation over repeated indices, has been assumed from now
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on. The nondegeneracy condition (2.1) can be geometrically interpreted in several ways. The
simplest one results from (2.2) from which we see that $\theta\wedge(d\theta)^{n}$ is the volume form on $M$ .

In thermodynamics $M$ is usually a subset of $\mathbb{R}^{2n+1}$ and in the energy representation [1] we
have the following correspondence

$(x^{0}; x^{1}, x^{2}, x^{3}, \ldots ; p_{1},p_{2},p_{3}, \ldots)\Leftrightarrow(U;S, V, N_{1}, \ldots ; -T, P, -\mu_{1}, \ldots)$ , (2.3)

and respectively,

$\theta^{U}=dU-TdS+PdV-\mu_{k}dN^{k}$ , $k=1,$ $\ldots,$ $n-2$ , (2.4)

or in the entropy representation

$(x^{0}; x^{1}, x^{2}, x^{3}, \ldots;p_{1},p_{2},p_{3}, \ldots)\Leftrightarrow(S;U, V, N_{1}, \ldots ; \frac{-1}{T}, \frac{-P}{T}, \frac{\mu_{1}}{T}, \ldots)$ (2.5)

$\theta^{S}=dS-\frac{1}{T}dU$ – $\frac{P}{T}dV+\frac{\mu_{k}}{T}dN^{k}$ , $k=1\ldots.,$ $n-2$ , (2.6)

where all the symbols have their standard thermodynamic meaning [1]. It is important that in

each case all these $2n+1$ variables are treated as independent on $M$ . Of course, we could have

worked in any other representation. Note that $\theta^{S}=-T^{-1}\theta^{U}$ .

The 1-form $\theta$ defines on $M$ a 2$n$-dimensional distribution, i.e. a field of tangent 2$n$-dimen-

sional hyperplanes which locally can be given (spanned) by $2n$ vector fields, e.g. by [8]

$P_{k}=\partial/\partial p_{k}$ , $\mathcal{X}_{k}=\partial/\partial x^{k}-p_{k}\partial/\partial x^{0}$ , $k=1,$ $\ldots,$
$n$ . (2.7)

The geometrical meaning of this distribution follows from the fact that $\theta(P_{k})=\theta(\mathcal{X}_{k})=0$ , i.e.
$\theta$ annihilates all the fields (2.7). This distribution is called a contact distribution or a contact
structure on $M[2]$ . Note that another 1-form $h\theta$ , where $h\neq 0$ is any function on $M$ , also

annihilates the fields (2.7). Therefore, the notion of contact structure is unique, whereas the

associated contact form is determined only up to a nonzero factor.

There exists also a dual $1$ -dinlensional characteristic distribution defined by a global char-

acteristic vector field $\xi$ such that

$i_{\xi}d\theta=0$ , $i_{\xi}\theta^{t}\equiv\theta(\xi)=1$ , (or $i_{\xi}(\theta\wedge(d\theta)^{n})=(d\theta)^{n}$ ), (2.8)

where $i_{\xi}$ denotes the interior product (contraction) of $\theta$ with $\xi$ . In contact coordinates

$\xi=\partial/\partial x^{0}$ . (2.9)

The fields $P_{k},$ $\mathcal{X}_{k}$ and $\xi$ satisfy the following commutation relations [8],

$[\mathcal{X}_{i}, \mathcal{X}_{j}]=[P_{i}, P_{j}]=[\mathcal{X}_{i}, \xi]=[P_{i}, \xi]=0$ , $[\mathcal{X}_{i}, P_{j}]=\delta_{ij}\xi$ . (2.10)

The last $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{n}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$ shows that the contact distribution is not involutive. Geometrically it

means that the contact distribution is nonintegrable. In fact, due to (2.1) it is maximally

nonintegrable.
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3 Legendre submanifolds and the first law of thermodynamics

In thermodynamics the major role is played by the maximum dimensional integral subnuanifolds
of the contact distribution, by the so-called Legendre submanifolds denoted here by $S$ . The

name given to $S$ is justified by the fact that the well-known Legendre transformations preserve
$S$ , i.e. they map any Legendre submanifold onto itself. Because the contact distribution is

maximally nonintegrable, the dimension of any Legendre submanifold coincides with the number

of thermodynamic degrees of freedom $n$ .

THEOREM 3.1. Let $(M, \theta)$ be a $(2n+1)$ -dimensional contact manifold. The maximal dimen-

sion of integral submanifolds of the contact distribution (or, equivalently, of integral submanifolds
of the eq. $\theta=0$) $\iota s$ equal to $n$ .

Instead of a formal proof we only show that the existence of $n$-dimensional integral sub-

nlanifolds is guaranteed because they may be given for instance by $n+1$ equations $x^{l}=C^{l}$ ,
$l=0,1,$ $\ldots,$

$n$ , where $C^{l}$ are arbitrary constants, or by $n+1$ equations

$x^{0}=\phi(x^{1}, \ldots, x^{n})$ , $p_{i}=- \frac{\partial\phi(x^{1},\ldots,x^{n})}{\partial x^{i}}$ , $i=1,$ $\ldots,$
$n$ . (3.1)

A local description of Legendre submanifolds in terms of a generating function $\phi$ is given by

the following theorenl [2] which generalizes the fornmlae (3.1).

THEOREM 3.2. For any partition $I\cup J$ of the set of indices $\{1, \ldots, n\}$ into two disjoint
subsets I and $J$ , and for a function $\phi(p_{I}, x^{J})$ of $n$ variables $p_{i},$ $i\in I$ , and $x^{j},$ $j\in J$ , the $n+1$

equations
$x^{i}= \frac{\partial\phi}{\partial p_{i}}$ , $p_{j}=- \frac{\partial\phi}{\partial x^{j}}$ , $x^{0}=\phi-p_{i^{\frac{\partial\phi}{\partial p_{i}}}}$ (3.2)

define a Legendre submanifold $S$ of $M^{2n+1}.$ Conversely, every Legendre submanifold of $(M, \theta)$

in a neighbourhood of any point is defined by these equations for at least one of the $2^{n}$ possible

choices of the subset $I$ .

Let us stress that $\phi$ is a function of only $n$ variables and that these variables cannot belong
to the same pair of conjugate variables $(x^{i},p_{i})$ , conjugate in the sense as they appear in $\theta$ .

The first law of thermodynamics can be geometrically expressed in TPS in terms of Legendre
submanifolds according to the following postulate.

POSTULATE (ffist law of $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{n}$)$\mathrm{o}\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{s})$ . Any equilibrium thermodynamic system is
represented in an appropriate thermodynamic phase space $(M, \theta)$ by Legendre submanifolds of
the eq. $\theta=0$ .

We have used here plural because for any real thermodynamic system we need several Legen-
dre submanifolds to represent its states. Actually, each thermodynamic phase will be represented
by a $\mathrm{f}\mathrm{r}\mathrm{a}_{\mathrm{g}\supset}^{\sigma}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$ of a Legendre submanifold. Only ideal gas, for which no phase transitions occur,
will be represented by one smooth Legendre submanifold.
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The total number of Legendre submanifolds in $M$ is infinite. In fact, through every point

of $M$ one has an infinite number of them. However, only some of these submanifolds represent

states of real thermodynamic systems.

From Theorem 3.2 we see that in the contact coordinates (cf. (2.2)) any $S$ can be, in principle,

represented in equivalent ways by various functions $\phi$ of $n$ variables (one has $2^{n}$ choices of $n$

independent variables). These functions correspond to various thermodynamic potentials, e.g.

to energy, entropy, enthalpy, and so on. Therefore, for a given $\phi$ the set of equations (3.2) may

be interpreted as one fundamental relation and $n$ equations of state [1], cf. also (3.1).

4 Contact transformations and thermodynamic symmetries

We shall consider now a group of diffeomorphisms (symmetries) $\Lambda$ of $M$ which preserve its con-

tact structure. Usually in thermodynamics there are considered only discrete Legendre trans-

formations. On the contrary, we shall concentrate here on the continuous transformations and

on their generators, i.e. on contact vector fields.

DEFINITION 4.1. A diffeomorphism $\lambda$ : $Marrow M$ is said to be a contact diffeomorphism if

it preserves the contact distribution of $M$ , i.e. if $\lambda$ is such that

$\lambda^{*}\theta=\rho\theta$ , $\lambda\in\Lambda$ , (4.1)

where $\rho$ is a nowhere vanishing function on $M$ and $\lambda^{*}$ is the pull-back map induced by C.

The new transformed form $\lambda^{*}\theta$ is again a contact form because it is also nondegenerate,

$\rho\theta$ A $(d(\rho\theta))^{n}=\rho^{n+1}\theta$ A $(d\theta)^{n}\neq 0$ . Thus $\lambda$ preserves the contact structure but not the contact

fornl. Diffeomorphisms with $\rho=1$ preserve also the contact form and are called strict contact

transformations.
Consequently, by a 1-parameter group of continuous contact $transfo7mations$ we mean a

subgroup of mappings $\lambda_{t}$ : $Marrow M$ of $\Lambda$ which preserve the contact distribution, i.e. $\lambda_{t}$ are

such that
$\lambda_{t}^{*}\theta=\rho_{t}\theta$ , $\lambda_{t}\in\Lambda$ , $\rho_{t}\neq 0$ . (4.2)

Let $X$ be a generator of this 1-parameter subgroup of $\Lambda$ , that is $X$ satisfies the formula

$(Xh)(m)= \frac{d}{dt}|_{t=0}\lambda_{t}^{*}h(m)\equiv\frac{d}{dt}|_{t=0}h(\lambda_{t}(m))$ , $\forall m\in M$, (4.3)

for any smooth function $h$ on S. Hence $X$ is a vector field associated to $\lambda_{t}$ .
The definition (4.2) of $\lambda_{t}$ is equivalent to

$\mathcal{L}_{X}\theta\equiv\frac{d}{dt}|_{t=0}\lambda_{t}^{*}\theta=\tau_{t}\theta$ , (4.4)

where $\tau_{t}=d\rho_{t}/dt$ and $\mathcal{L}x$ denotes Lie derivative $[9,10]$ . Thus we see that $\mathcal{L}_{X}\theta$ is a product of
$\theta$ and a function $\tau_{t}$ on $M$ . If $\tau_{t}=0$ , we say that $\theta$ is invariant of $\lambda_{t}$ . This justifies the following

more general definition.
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DEFINITION 4.2. A vector field $X$ on $M$ is said to be a contact vector field if it preserves
the contact structure of $M$ or, equivalently, if

$\mathcal{L}_{X}\theta=\tau\theta$ , i.e. $\mathcal{L}_{X}\theta \mathrm{A}\theta=0$ . (4.5)

Contact vector fields do not belong to the contact distribution but they do form a Lie algebra

(see below the properties of $X_{f}$ ).

The contact distribution, spanned by $P_{k}$ and $\mathcal{X}_{k}$ , and the characteristic distribution spanned

by $\xi$ can be called the horizontal and vertical distributions, respectively. This is justified by the

fact that actually $\theta$ is a connection form [9-11] on $M$ . Thus, taking these $2n+1$ vector fields as

a basis, any vector field $X$ on $M$ may be then decomposed into the horizontal $hX$ and vertical
$vX$ components,

$X=vX+hX$ , where $vX:=\theta(X)\xi$ , $hX:=X-vX$ . (4.6)

This decomposition allows one to introduce the notion of covariant differentiation on $M$ . For a
real-valued function $f$ on $M$ its covariant differential $Df$ is defined by

$Df(X)=df(hX)$ , i.e. $Df=df-(\xi f)\theta$ , (4.7)

for any vector field $X$ on $M$ .

DEFINITION 4.3. By a contact vector field associated to a function $f$ on $M$ we mean a
vector field $x_{f}$ defined by

$i_{X_{f}}\theta\equiv\theta(X_{f})=f$ , $i_{X_{f}}d\theta=-Df$ . (4.8)

The two above equations define the vertical and horizontal components of $x_{f}$ , respectively. To

sum up, the construction of $x_{f}$ requires the three steps: $farrow dfarrow Df=df-(\xi f)\thetaarrow x_{f}$ .

In contact coordinates $x_{f}$ is given by [11-13]:

$X_{f}= \frac{\partial f}{\partial p_{i}}\frac{\partial}{\partial x^{i}}+(p_{i}\frac{\partial f}{\partial x^{0}}-\frac{\partial f}{\partial x^{i}})\frac{\partial}{\partial p_{i}}+(f-p_{i}\frac{\partial f}{\partial p_{i}})\frac{\partial}{\partial x^{0}}$. (4.9)

Note that $x_{f}$ is a linear combination of the vector fields $\mathcal{X}_{k},$ $P_{k}$ and $\xi$ , namely $x_{f}=$

$(P_{i}f)\mathcal{X}_{i}-(\mathcal{X}_{i}f)P_{i}+f\xi$, and hence we see that $x_{f}$ does not belong to the contact distribution

because of the last term $f\xi$ .
From the definition of $x_{f}$ and the property of Lie derivative, $\mathcal{L}_{X}=i_{X}d+di_{X}[9,10]$ , it is

easy to see that $x_{f}$ is a contact vector field because

$\mathcal{L}_{X_{f}}\theta=di_{X_{f}}\theta+i_{X_{f}}d\theta=$ df–Df $=(\xi f)\theta\sim\tau\theta$ . (4.10)

This also shows that $x_{f}$ is a generator of a continuous contact transformation on $M$ with $\tau=\xi f$ .

Moreover, the fields $x_{f}$ form a Lie algebra because

$\mathcal{L}_{[X_{f},X_{\mathit{9}}]}\theta=[\mathcal{L}_{X_{f}}, \mathcal{L}_{X_{g}}]\theta$ (4.11)

$=\mathcal{L}_{X_{f}}((\xi g)\theta)-\mathcal{L}_{X_{g}}((\xi f)\theta)=(\mathcal{L}_{X_{f}}(\xi g)-\mathcal{L}_{X_{g}}(\xi f))\theta\sim\tau\theta$ .
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Taking now into account the general form of vector fields $X$ on $M$ (cf. (4.3) written in

coordinates),
$X= \dot{x}^{i}\frac{\partial}{\partial x^{i}}+\dot{p}_{i^{\frac{\partial}{\partial p_{i}}}}+\dot{x}^{0_{\frac{\partial}{\partial x^{0}}}}$, (4.12)

we see that the components of $x_{f}$ define a flow on $M$

$\dot{x}^{i}$

$=$ $\frac{\partial f}{\partial p_{i}}$ ,

$\dot{p}_{i}$ $=$ $p_{i} \frac{\partial f}{\partial x^{0}}-\frac{\partial f}{\partial x^{i}}$ , (4.13)

$\dot{x}^{0}$

$=$ $f-p_{i} \frac{\partial f}{\partial p_{i}}$ .

For a given $f$ we can view (4.13) as a system of $2n+1$ ordinary differential equations for the

integral curves of this flow.

The situation is similar but more general than in Hamiltonian conservative mechanics in

which one has a 2$n$-dimensional phase space (usually a cotangent bundle) endowed with a

symplectic 2-form $\omega(\omega=dp_{i}\Lambda dq^{i}, \omega^{n}\neq 0, d\omega=0)$ . The dynamics of a system with a

Hamilton function $H(p, q)$ is governed by a Hamiltonian vector field $X_{H}$ defined by $H$ and $\omega$

according to the formula $ix_{H}\omega=-dH$ . $X_{H}$ is given by

$X_{H}= \frac{\partial H}{\partial p_{i}}\frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{i}}\frac{\partial}{\partial p_{i}}$ $( \equiv\dot{q}^{i}\frac{\partial}{\partial q^{i}}-\dot{p}_{i}\frac{\partial}{\partial p_{i}})$ , (4.14)

which means that the Hamiltonian flow is given by $2n$ Hamilton equations

$\dot{q}^{i}=\frac{\partial H}{\partial p_{i}}$ , $\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}$ . (4.15)

By analogy, the flow induced by $x_{f}$ represents a sort of contact Hamilton equations with a

contact Hamiltonian $f(x^{0}, x^{i},p_{i})$ . Unfortunately, the form of $x_{f}$ is far more complicated than

the form of $X_{H}$ in the symplectic case. The components of the contact Hamiltonian flow $x_{f}$

depend not only on the derivatives of $f$ but also on $f$ itself. Therefore $x_{f}\neq 0$ even for $f=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ .
Moreover, $X_{H}$ is tangent to every level surface $H=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ because $X_{H}H\equiv dH(X_{H})=0$ . This

is not the case with $x_{f}$ because $X_{f}f\equiv df(X_{f})=f(\xi f)$ , and hence $x_{f}$ in the general case is

tangent only to one level surface for which $f=0$ . This property of $x_{f}$ opens new possibilities

for the thermodynamic formalism.

In particular, if it happens that a Legendre manifold $S$ is contained in the zero level surface

of $f$ , i.e. $S\subset f^{-1}(0)$ , then $x_{f}$ is tangent to $S[11]$ . In such a case the contact Hamilton

equations (4.13) can be interpreted as a thermodynamic process (next section).

5 Examples of $x_{f}$ and their associated contact flows

As mentioned previously, in thermodynamics $M$ is usually a subset of $\mathbb{R}^{2n+1}$ . In this section we

shall work in the energy representation [1] in which (cf. (2.3))

( $x^{0}$ ; $x^{1},$ $x^{2},$ $x^{3},$
$\ldots$ ; $p_{1},p_{2},$ ps, $\ldots$ ) $\Leftrightarrow(U;S, V, N_{1\cdot\cdot;},.-T, P, -\mu_{1}, \ldots)$ , (5.1)
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and respectively,

$\theta=dU-TdS+PdV-\mu_{k}dN^{k}$ , $k=1,$ $\ldots,$ $n-2$ . (5.2)

It is important that, unless restricted to a Legendre submanifold, all these $2n+1$ variables are
treated as independent.

Now we shall present some examples of $x_{f}$ , their associated contact Hamilton equations and
integral curves. Some of them describe thermodynamic processes while the other Inap Legendre
submanifolds representing one kind of systems onto submanifolds representing another kind of
systems.

EXAMPLE 5.1. For $f=U-TS+RNT-\mu N$ , according to (4.9), (5.1) and (5.2) we have

$x_{f}=(S-RN) \frac{\partial}{\partial S}+N\frac{\partial}{\partial N}+P\frac{\partial}{\partial P}+RT\frac{\partial}{\partial\mu}+U\frac{\partial}{\partial U}$ , (5.3)

and hence the contact Hamilton equations (4.13) (defined by components of $X_{f}$ ) have the form

$\dot{T}=\dot{V}=0$ , $\dot{P}=P$ , $\dot{\mu}=RT$ , $\dot{S}=S-RN$ , $\dot{N}=N$ , $\dot{U}=U$ . (5.4)

Their integral curves are given by

$T=T_{0}$ , $P=P_{0}e^{t}$ , $\mu=RT_{0}t+\mu_{0}$ ,
(5.5)

$S=(S_{0}-RN_{0}t)e^{t}$ , $V=V_{0}$ , $N=N_{0}e^{t}$ , $U=U_{0}e^{t}$ .

Because for ideal gas $f=0,$ $x_{f}$ is tangent to the Legendre submanifold $S$ representing this
gas and describes a ‘thermodynamic process’ with constant volume $V_{0}$ and temperature $T_{0}$ . It
is easy to check that during this ‘process’ all relations between thermodynamic parameters for
ideal gas are preserved, for instance

$PV=NRT$ , $U= \frac{3}{2}NRT$ , or $U=TS-PV+\mu N$ . (5.6)

EXAMPLE 5.2. For $f=NRT- \frac{2}{5}TS-\frac{2}{5}\mu N$ one obtains

$X_{f}=( \frac{2}{5}S-RN)\frac{\partial}{\partial S}+\frac{2}{5}N\frac{\partial}{\partial N}-\frac{2}{5}T\frac{\partial}{\partial T}+(RT-\frac{2}{5}\mu)\frac{\partial}{\partial\mu}$ , (5.7)

and thus the integral curves of $x_{f}$ take the form

$S=(S_{0}-RN_{o}t)e^{2t/5}$ , $V=V_{0}$ , $N=N_{0}e^{2t/5}$ ,
(5.8)

$T=T_{0}e^{-2t/5})$ $P=P_{0}$ , $\mu=(\mu_{0}+RT_{0}t)e^{-2t/5}$ , $U=U_{0}$ .

They describe an isobaric, isochoric and isoenergetic ‘process’. Again it is easy to prove that
the relations (5.6) are preserved.

In the two examples above the functions $f$ have been chosen in such a way that the Legendre
submanifold $S$ of the ideal gas was placed on the level hypersurfaces $f^{-1}(0)$ . Therefore, $x_{f}$ was
tangent to $S$ and could be treated as a ‘thermodynamic process’. The situation is quite different
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if $S$ is not placed on $f^{-1}(0)$ . In the following examples $x_{f}$ is not tangent to $S$ and cannot be

treated as a generator of a thermodynamic process; but rather as a generator of a l-parameter

family of thermodynamic systems.

EXAMPLE 5.3. Let $f$ be an affine function of the intensive parameters only, $f=a+b^{i}p_{i}$ .

Then the components of $x_{f}$ have the form

$\dot{x}^{i}=b^{i}$ , $\dot{p}_{i}=0$ , $\dot{x}^{0}=a$ , (5.9)

and subsequently
$x^{i}=x_{0}^{i}+b^{i}t$ , $p_{i}=p_{i0}$ , $x^{0}=x_{0}^{0}+at$ . (5.10)

Thus the intensive parameters are kept constant, whereas the extensive ones are linear functions

of $t$ . None of Eqs. (5.6) is preserved in this case. Instead, $x_{f}$ produces a continuous 1-

parameter family of thermodynamic systems (1-parameter family of Legendre submanifolds $S_{t}$ ).

An interesting situation occurs for $f$ reduced to $f=bP[11]$ . Then $V=V_{0}+bT$ while all the

other parameters are fixed. For a fixed $b,$ $S_{t}$ represents a 1-parameter family of gases of hard

spheres (cf. also Example 5.6.).

EXAMPLE 5.4. If $f=a+b_{i^{X^{i}}}$ is an affine function of the extensive parameters, then $x_{f}$

belongs also to the new class of contact vector fields. The integral curves of $x_{f}$ assume now the

form
$\dot{x}^{i}=x_{0}^{i}$ , $\dot{p}_{i}=p_{i0}-b_{i}t$ , $\dot{x}^{0}=x_{0}^{0}+(a+b_{i^{X_{0}^{i}}})t$ , (5.11)

and they do not represent a thermodynamic process. The meaning of $x_{f}$ in this case is not

clear.

EXAMPLE 5.5. Let us take now $f=x^{0}-\phi(x^{1}, \ldots, x^{n})$ . Then

$\dot{x}^{i}=0$ , $\dot{p}_{i}=p_{i}+\frac{\partial\phi}{\partial x^{i}}$ , $\dot{x}^{0}$

.

$=x^{0}-\emptyset$ . (5.12)

Again $x_{f}$ produces a 1-parameter family of Legendre submanifolds $S_{t}$ from a given $S$ . However,

if it happens that $\phi(x^{1}, \ldots, x^{n})$ is such that $x^{0}--\phi(x^{1}, \ldots, x^{n})$ represents the fundamental

relation [1] for the system (cf. (2.5)), then $X_{f}|_{S}=0$ and $S$ is obviously preserved.

EXAMPLE 5.6. If we take $f_{1}=bP$ , where $b$ is a nonnegative constant, the integral curves

of $x_{f1}=b\partial/\partial V$ are such that all parameters are preserved but the volume $V$ changes according

to $V=V_{0}+bt$ . Therefore, $x_{f1}$ maps ideal gas into a gas of noninteracting hard spheres.

On the other hand, for $f_{2}=-aV^{-1},$ $a>0,$ $x_{f2}=(-a/V)\partial/\partial U-(a/V^{2})\partial/\partial P$ is such that

(notice a new parameter $\tau$ )

$U=U_{0}- \frac{a}{V_{0}}\tau$ , $P=P_{0}- \frac{a}{V_{0}^{2}}\tau$ , (5.13)

while all the other parameters are preserved. This time one can say that $x_{f2}$ maps ideal gas

into a gas of interacting point like particles.
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Now let us take $f=f_{1}+f_{2}=bP-aV^{-1}$ . The integral curves of $x_{f}$ are such that $T_{i}S,$ $N$

and $\mu$ do not change, whereas

$V=V_{0}+bt$ , $U=U_{0}- \frac{a}{b}\ln\frac{V_{0}+bt}{V_{0}}$ , $P=P_{0}- \frac{at}{V_{0}(V_{0}+bt)}$ . (5.14)

The equation of state for the ideal gas, $P_{0}V_{0}=N_{0}RT_{0}$ , is no more preserved and it goes over
into an equation of state

$(P+ \frac{at}{V(V-bt)})$ (V–bt) $=NRT$ , (5.15)

which for $t=1$ resembles the well-known van der Waals equation of state. In fact, for a fixed $a$

and a fixed $b$ we have obtained a 1-parameter family of van der Waals gases.

EXAMPLE 5.7. Two other modifications of the van der Waals gas can be obtained if, instead
of one transformation induced by $x_{f+f}12$ ’ we consider two consecutive transformations [15]: the
one associated to $x_{f1}$ followed by $x_{f2}$ and vice versa. We receive two different 2-parameter
transformations since the transformations induced by $f_{1}$ and $f_{2}$ do not commute. This can be
seen from the Lie bracket,

$[X_{f1}, X_{f2}]=[b \frac{\partial}{\partial V},$ $- \frac{a}{V}\frac{\partial}{\partial U}-\frac{a}{V^{2}}\frac{\partial}{\partial P}]=\frac{ab}{V^{2}}\frac{\partial}{\partial U}+\frac{2ab}{V^{3}}\frac{\partial}{\partial P}\neq 0$ . (5.16)

In the case when $x_{f1}$ is followed by $x_{f2}$ , instead of (5.15) we receive a 2-parameter family of
equations of state

$(P+ \frac{a}{V^{2}}\tau)$ (V–bt) $=NRT$ . (5.17)

The result is different if $x_{f2}$ is followed by $x_{f_{1}}$ , where

$(P+ \frac{a}{(V-bt)^{2}}\tau)$ (V–bt) $=NRT$ . (5.18)

As a matter of fact, Eq. (5.17) exactly reproduces the standard van der Waals equation.
The presented method allows us to obtain new equations of state and new fundamental

relations from the known ones. Because of that it has very practical meaning in thermodynamics.
Recently, this formalism was thoroughly studied in [16].

6 Statistical derivation of the contact and metric structures on
$M$

In this section we show that using a generalized Gibbs (generalized canonical) probability dis-
tribution function $\rho[17]$ , and relaxing some standard conditions imposed on $\rho$ , we can introduce
a contact and a metric structure on the space of thermodynamic parameters $M$ .

Statistical physics tries to explaining thermal properties of macroscopic bodies by taking
into account their microscopic structure. However, it does not investigate detailed states of
all individual microobjects in the system but tries to describe only their collective statistical
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behaviour. This collective behaviour is characterized by a function (or operator in the quantum

case) defining a probability density over the space of all plausible microstates of the system.

Having such a probability density it is possible to calculate mean values of physical quantities

as well as their fluctuations around these mean values.

Let us consider a physical system with $\Gamma$ as the space of its all microscopical states. These

states will be labeled by $y=(y^{1}, \ldots, y^{l})$ , where $l/2$ denotes the number of all microscopic degrees

of freedom. Let $\rho$ : $\Gammaarrow \mathbb{R}_{+}$ be a normalized or nonnormalized probability distribution on $\Gamma$ and

let $F^{i}$ : $\Gammaarrow \mathbb{R},$ $i=1,$ $\ldots,$
$n$ , be a set of linearly independent stochastic variables on $\Gamma$ . Following

the Jaynes maximum entropy (information) principle [18] we take $\rho$ in the form

$\rho(y;w,p_{1}, \ldots,p_{n})=\exp[-w+p_{i}F^{i}(y)]$ , $y\in\Gamma$ , (6.1)

where $p=(p_{1}, \ldots,p_{n})$ are some macroscopic (nonstochastic) parameters called statistical (or

generalized) temperatures; they characterize the state of environment [19]. For a nonnormal-

ized probability distribution, $w$ is a free parameter, while for $\rho$ normalized, $w$ is a function of

$p_{1},$ $\ldots,p_{n}$ , namely .

$Z(p) \equiv e^{w}=\int\exp[p_{i}F^{i}(y)]d\Gamma$ . (6.2)

The mean values $x^{i}$ of $F^{i}(y)$ (denoted usually by $\langle F^{i}\rangle$ or $E[F^{i}]$ ) are given by means of $\rho$ by

$x^{i}= \langle F^{i}\rangle:=\int pF^{i}(y)d\Gamma=\frac{\partial\ln Z}{\partial p_{i}}=\frac{\partial w}{\partial p_{i}}$ . (6.3)

The two most useful examples for our purposes are the grand canonical distribution

$\rho(y;w,p_{1},p_{2})--Z^{-1}(T, \mu)\exp[\frac{-H_{N}(y)+\mu N}{kT}]$ , $p_{1}=- \frac{1}{kT}$ , $p_{2}= \frac{\mu}{kT}$ , (6.4)

with

$Z(T, \mu)=\sum_{N=0}^{\infty}\int_{\Gamma_{N}}\exp[\frac{-H_{N}(y)+\mu N}{kT}]d\Gamma_{N}$ , $U=kT^{2} \frac{\partial\ln Z}{\partial T}$ , $\langle N\rangle=\frac{\partial\ln Z}{\partial(\mu/kT)}$ , (6.5)

( $U$ denotes the mean value of $H_{N}(y),$ $N$ is the number of particles) and the Boguslavski (or

isobaric-isothermal) distribution

$\rho(y;w,p_{1},p_{2})=Z^{-1}(T, P)\exp[\frac{-H(y)-PV}{kT}]$ , $p_{1}=- \frac{1}{kT}$ , $p_{2}=- \frac{P}{kT}$ , (6.6)

with

$Z(T, P)= \int_{0}^{\infty}dV\int_{\Gamma}\exp[\frac{-H(y)-PV}{kT}]d\Gamma$ , $U=kT^{2} \frac{\partial\ln Z}{\partial T}$ , $\langle V\rangle=\frac{\partial\ln Z}{\partial(-P/kT)}$ , (6.7)

The standard Gibbs (canonical) distribution $\rho(y;w,p)=Z^{-1}(T)\exp[-H(y)/kT]$ is not good

for our purposes because the dimension with $n=1$ is too low from geometrical reasons.
To introduce a metric we will also need the variances of stochastic variables which are equal

to
$\langle(F^{i}-x^{i})(F^{j}-x^{j})\rangle=\frac{\partial^{2}\ln Z}{\partial p_{i}\partial p_{j}}=\frac{\partial^{2}w}{\partial p_{i}\partial p_{j}}=\frac{\partial x^{i}}{\partial p_{j}}=\frac{\partial x^{j}}{\partial p_{i}}$ . (6.8)
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From the last equation we infer that

$dx^{i}=\langle(F^{i}-x^{i})(F^{j}-x^{j})\rangle dp_{j}$ , (6.9)

which also holds for nonnormalized $\rho$ .
Now let us define the microscopic entropy

$s:=-\ln\rho=w-p_{i}F^{i}$ , (6.10)

and its differential
$ds=dw-F^{i}dp_{i}$ , (6.11)

where differentiation was done only with respect to the macroscopic parameters $u$) and $p_{i}$ . The
mean value of $ds$ ,

$\theta=\langle d.\mathrm{s}\rangle=dw-x^{i}dp_{i}$ , (6.12)

leads to a contact form on the space of parameters $w,p_{1},$ $\ldots,p_{n},$ $x^{1},$
$\ldots,$

$x^{n}$ . To this end one
has to assume that $\rho$ is (temporarily) nonnormalized, i.e. $w$ is a free paramcter. and nloreover

that $x^{i}$ are independent parameters as well. Then $\theta$ becomes a contact form because under

such assumptions one has $\theta\wedge(d\theta)^{n}\neq 0$ . For $\rho$ normalized, $\theta$ becomes zero and subsequently
$w$ and $x^{i}$ become functions of $p_{i}$ . These functions define a Legendre submanifold of $\theta$ . The full
Legendre transformation transforms $\theta$ into another contact fornl $\theta^{S}$ equal to

$\theta^{S}=dx^{0}+p_{i}dx^{i}$ , (6.13)

where $x^{0}=w-p_{i}x^{i}$ and $(x^{0},p_{i}, x^{i})$ correspond to the parameters in the entropy representation,

cf. (2.5) and (2.6). In the energy representation the contact form is given by

$\theta\equiv\theta^{U}=-T\theta^{S}=dx^{0}+p_{i}dx^{i}$ , (6.14)

where now $(x^{0},p_{i}, x^{i})$ correspond to the parameters in the energy representation, cf. (2.3) and
(2.4). Thus we see that the contact structure is based on the mean value (or the first moment)

of ds.

The metric form is based on the variance (or the second moment) of $ds$ which, due to (6.1),

(6.3) and (6.11), is equal to

$\langle(ds-\langle ds\rangle)^{2}\rangle=\langle(F^{i}-x^{i})(F^{j}-x^{j})\rangle dp_{i}dp_{j}=dp_{i}dx^{j}$ . (6.15)

Thus we see that this quantity is related to fluctuations of the stochastic variables $F^{i}$ . To derive

from $\langle(ds-\langle ds\rangle)^{2}\rangle$ a metric form on $M^{2n+1}$ we have to make two additional assumptions. First,

we assume again that $p_{i}$ and $x^{i}$ are independent. Then $\langle(ds-\langle ds\rangle)^{2}\rangle=dp_{i}dx^{i}$ becomes a bilinear,
positive definite and symmetric form on the $(2n+1)$-dimensional space $\lambda f^{2n+1}$ of parameters

$w,$ $p_{i}$ and $x^{i}$ . However, the form $dp_{i}dx^{i}$ is degenerate on $M^{2n+1}$ . To remove this degeneracy
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we make another assumption that the sought for metric form $G$ on $M$ is the sum of $dp_{i}dx^{i}$ and
$\theta\otimes\theta$ , i.e.

$G:=dp_{i}dx^{i}+\theta\otimes\theta$ . (6.16)

The degeneracy of $dp_{i}dx^{i}$ could have been removed in any other way, for instance by adding
$dwdw$ or $dx^{0}dx^{0}$ . However, our choice has the advantage that $G$ reduced to any Legendre

submanifold $S$ of $\theta$ ,
$g=G|s=\langle(ds-\langle ds\rangle)^{2}\rangle|s=dp_{i}dx^{i}|s$ , (6.17)

has a very simple form not depending on the way the degeneracy has been removed. Its statistical
and physical interpretation can be deduced from (6.15).

Instead, an equivalent (up to a Legendre transformation) metric $\mathcal{H}$ on $M$ could be defined
as

$\mathcal{H}:=\langle(ds)^{2}\rangle=dwdw-2x^{i}dwdp_{i}+x^{i}x^{j}dp_{i}dp_{j}+dx^{i}dp_{i}$ , (6.18)

for nonnormalized $\rho$ . The metric $\mathcal{H}$ is nondegenerate if we assume that $p_{i}’ \mathrm{s}$ and $x^{i}’ \mathrm{s}$ are inde-

pendent.

7 Generalizations and remarks

Riemannian metrioe can be defined at once on Legendre submanifolds in quite a different way
if we use the notion of relative information (or relative entropy). This notion –also called
Kullback information or information gain –for the two probability distributions $\rho(y;p)$ and
$\sigma(y;p)$ is defined by

$I( \rho|\sigma)=\int_{\Gamma}\rho(\ln p-\ln\sigma)d\Gamma$ , (7.1)

if $\rho$ is absolutely continuous with respect $\mathrm{t}\mathrm{O}\sigma$ .
For two close states $p=\rho(y;p)$ and $\sigma=\rho(y;p+dp)$ , we have

$I( \rho|\sigma)\approx\frac{1}{2}\frac{\partial^{2}I}{\partial p_{i}\partial p_{j}}dp_{i}dp_{j}$ , (7.2)

because $I(p(p)|\rho(p))=0$ and $\partial I/\partial p_{i}=0$ . Then the square infinitesimal distance $dl^{2}$ in the
space of $p=(p_{1}, \ldots,p_{r})$ we can define as

$dl^{2}=2I(\rho(p)|\rho(p+dp)=g_{ij}(p)dp_{i}dp_{j}$ , (7.3)

where

$g_{ij}(p)= \frac{\partial^{2}I}{\partial p_{i}\partial p_{j}}=E[\frac{\partial\ln\rho}{\partial p_{i}}\frac{\partial\ln\rho}{\partial p_{j}}]=-E[\frac{\partial^{2}\ln\rho}{\partial p_{i}\partial p_{j}}]=\frac{\partial^{2}\ln Z(p)}{\partial p_{i}\partial p_{j}}=E[(F_{i}-\langle F_{i}\rangle)(F_{j}-\langle F_{j}\rangle)]$,

(7.4)

where $E$ denotes the mean (average) value. The metric tensor $g_{ij}(p)$ is equivalent to Fisher’s

information $matr[] x$ (covariance or correlation $matr[] x$ ) well known from statistics. It is also

equivalent to the metric introduced in Section 6.
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This metric could be used to study irreversible phenomena such as relaxation, diffusion,

transport processes, and dissipation. For instance, for a relaxation process $\rho(t)arrow\sigma,$ $I(\rho|\sigma)$

means entropy production and $g_{ij}$ might be used to study the characteristic features of this

process.
This metric will certainly find applications to communication theory, pattern recognition,

biology, ecology, theoretical linguistics, and so on.

As a last remark let us stress that introducing the contact and metric structures we have

used (generalized) Gibbs distributions with many stochastic variables $F^{i}(y)$ . From the point

of view of the maximum entropy principle [18] it means that to find $\rho$ we have to know (e.g.

from experiment) the mean values (first moments) of $F^{i}$ . We could go further and include into

the set of $F^{i}’ \mathrm{s}$ also some stochastic variables corresponding to higher-order moments. Then the

conjugate parameters $p_{i}$ (higher-order temperatures) would not have so simple thermodynamic

meaning as for the $\dot{\mathrm{g}}$rand canonical or the Boguslavski distribution. However, the probability

distribution would be more concentrated (sharper) in this case.
With some necessary modifications the whole procedure could be repeated for quantum

systems.

8 Perspectives

The described geometrical setting for thermodynamics opens new perspectives because it offers

new mathematical tools previously not used, or used only rarely, in thermodynamics. To these

tools belong:

$\bullet$ tensor calculus,

$\bullet$ group theory, and in particular Lie groups,

$\bullet$ Lie algebras,

.
$\bullet$ Lie derivative $\mathcal{L}_{X}$ , to study invariants,

$\bullet$ the Poisson, Jacobi, Cartan, and Lagrange brackets [13],

$\bullet$ catastrophe theory, to study phase transitions.

We hope that this geometrical setting opens new possibilities to analyse cyclic processes and

their invariants.

The metric structure can be used to study convexity and stability, and hence to study

fluctuations, phase transitions and critical points.
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