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1 Simple example of local temperature state
Aiming at a general formulation of non-equilibrium states in the framework
of QFT, we start from a simple model-example of local temperature state:
Let $\varphi(x)$ be a massless free scalar field (in four dimensions) characterized by

$\square \varphi$ $=$ $0$ , (1)

$[\varphi(x), \varphi(y)]$ $=iD(x-y)= \int\frac{d^{4}p}{(2\pi)^{3}}e^{-ip(x-y)}\epsilon(p_{0})\delta(p^{2})$ . (2)

Given a two-point function $\omega^{(2)}(\varphi(x)\varphi(y))$ , we can define a quasi-free state
$\omega$ of $\varphi$ through the Wick formula:

$\omega(\varphi(x_{1})\varphi(x_{2})\cdots\varphi(x_{r}))$

: $=\{$

$\sum_{pairings}\omega^{(2)}(\varphi(x_{i_{1}})\varphi(x_{i_{2}}))\cdots\omega^{(2)}(\varphi(x_{i_{f-1}})\varphi(x_{i_{\gamma}}))$
$(\mathrm{i}\mathrm{f} r:\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n})_{(3)}$,

$0$ (if $r$ : odd).

When a two-point function $\omega^{(2)}$ is chosen consistently with Eqs. $(1, 2)$ as

$\omega_{\beta}^{(2)}(\varphi(x)\varphi(y))=\int\frac{d^{4}p}{(2\pi)^{3}}e^{-ip(x-y)}\epsilon(p_{0})\delta(p^{2})\frac{1}{1-e^{-\beta p_{0}}}$ , (4)

the corresponding quasi-free state $\omega=\omega_{\beta}$ describes a global thermal equi-
librium satisfying the KMS condition for any pair of polynomial fields $A=$

$\varphi(x_{1})\cdots\varphi(x_{r})$ and $B=\varphi(y_{1})\cdots\varphi(y_{s})$ ,

$\omega_{\beta}(A\alpha_{(i\beta,\mathrm{O})}(B))=\omega_{\beta}(BA)$ , (5)
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where $\alpha_{(i\beta,\mathrm{O})}(B):=\varphi(y_{1}+(i\beta, 0))\cdots\varphi(y_{s}+(i\beta, 0))$ (symbolically). In place
of $\omega_{\beta}^{(2)}$ , such a choice of two-point function as

$\omega^{(2)}(\varphi(x)\varphi(y))=\int\frac{d^{4}p}{(2\pi)^{3}}e^{-ip(x-y)}\epsilon(p_{0})\delta(p^{2})\frac{1}{1-e^{-\beta^{\mu}(\frac{x+y}{2})p_{\mu}}})$ (6)

is also allowed consistently with Eqs. $(1, 2)$ if a spacetime-dependent inverse-
temperature four-vector is given by $\beta^{\mu}(x)=\beta^{\mu}+\gamma_{\nu}^{\mu}x^{\nu 1}$ . In this case we can
verify

$\omega^{(2)}(\varphi(x)\varphi(y+i\beta(\frac{x+y}{2}))=\omega^{(2)}(\varphi(y)\varphi(x)),$ $(7)$

which can be interpreted as a localized version of KMS condition. Contrary to
the case of the global equilibrium $\omega_{\beta}$ , however, it is not possible to generalize
this relation to $n$-point functions with $n\geq 3$ in the similar form to $\mathrm{E}\mathrm{q}.(5)$ :
e.g.,

$\omega(\varphi(x_{1})\varphi(x_{2})\cdots\varphi(x_{r})\varphi(y_{1}+i\beta(\frac{x_{1}+y_{1}}{2}))\varphi(y_{2}+i\beta(\frac{x_{2}+y_{2}}{2}))\cdots$

. . . $\varphi(y_{r}+i\beta(\frac{x_{r}+y_{r}}{2})))$

$\neq\omega(\varphi(y_{1})\varphi(y_{2})\cdots\varphi(y_{r})\varphi(x_{1})\varphi(x_{2})\cdots\varphi(x_{r}))$ , (8)

just because of the spacetime dependence of $\beta^{\mu}(x)$ . Namely, the similarity of
the state $\omega$ given by Eqs. $(6, 3)$ to a global thermal equilibrium $\omega_{\beta}$ holds only
up to two-point function $\omega^{(2)}$ . In this way, $\omega$ can be taken as a model example
of a local temperature state such that it is only locally in equilibrium in the
sense of $\mathrm{E}\mathrm{q}.(7)$ .
Remark: The breakdown of KMS condition for $n$-point functions with $n\geq$

$3$ is natural as a signal of non-equilibrium, in view of the zeroth law of
thermodynamics which claims the validity of transitive law in the thermal
equilibrium contact relations of two bodies: To inspect for the breakdown of
transitivity due to non-equilibrium, we need to examine the relation among
three bodies.
Generalized Stefan-Boltzmann law and “Local Thermometers”
Now, a remarkable property of this state $\omega$ is found in the following formula:

1Because of the positivity condition to be satisfied by $\omega^{(2)}$ , the region allowed for $x$

and $y$ may not cover all the spacetime $\mathbb{R}^{4}$ .
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$\lim_{\xiarrow 0}$
$\omega(\partial_{\mu_{1}}^{\xi}\partial_{\mu_{2}}^{\xi}\cdots\partial_{\mu,}^{\xi} : \varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}):)$

$=$ $\lim_{\xiarrow 0}[\omega(\partial_{\mu_{1}}^{\xi}\partial_{\mu_{2}}^{\xi}\cdots\partial_{\mu_{r}}^{\xi}\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))$

$- \omega_{\mathrm{v}\mathrm{a}\mathrm{c}}(\partial_{\mu_{1}}^{\xi}\partial_{\mu_{2}}^{\xi}\cdots\partial_{\mu_{\Gamma}}^{\xi}\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))]$

$=$ $T(X)^{r+2}C_{\mu_{1}\mu_{2}\cdots\mu,}$ , (9)

where $\omega_{\mathrm{v}\mathrm{a}\mathrm{c}}$ is a vacuum state corresponding to $\beta=\infty$ and $C_{\mu_{1}\mu_{2}\cdots\mu_{f}}$ is a
constant tensor vanishing for $r=\mathrm{o}\mathrm{d}\mathrm{d}$. $T(X)$ defined by

$T(X):=1/\sqrt\overline{\beta^{\mu}(X)\beta_{\mu}(X)}$ (10)

is a local temperature. In the case of $r=2$ the left-hand side of this for-
mula can easily be related to the energy density with a suitable tensorial
combination, in view of which it gives a generalization of the well-known
Stefan-Bolzmann law, $e=\sigma T^{4}$ , for the radiation energy $e$ . In the sense of
$\mathrm{E}\mathrm{q}.(9)$ , the operator $\partial_{\mu_{1}}^{\xi}\partial_{\mu_{2}}^{\xi}\cdots\partial_{\mu_{r}}^{\xi}$ : $\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2})$ : works as a “local
thermometer” to measure a local temperature $T(X)$ at the centre-of-mass
point $X= \frac{x+y}{2}$ of very close two points $x=X- \frac{\xi}{2}$ and $y=X+ \frac{\xi}{2}$ in the limit
$\xiarrow 0$ . Further the totality of operators of this sort are seen to give rise on
the right-hand side to all the even powers of local temperature $T(X)$ (times
some Lorentz tensors of even degree) which generate an algebra of functions
of non-negative temperatnres $T(X)\geq 0$ .

2 Definitions of generalized and local thermal
states

Motivated by this example, we explore the possible framework for accom-
modating some class of states describing local thermal situations: Basic idea
is to compare a given state in a small neighbourhood of a spacetime point
with all the KMS states at possible temperatures by means of certain set
of point-like local observables playing the role of “thermometers”. For this
purpose, we need the following definitions.

Definitions:

(i) Set of thermal states $K$ is defined by the closed convex hull of all the
KMS states, $K:=\overline{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}(\bigcup_{\beta\in \mathbb{R}_{+}}K_{\beta})}$ , where $K_{\beta}$ is the set of KMS states
at inverse temperature $\beta$ .
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$NB$ : The relativistic version can be obtained by replacing $\beta\in \mathbb{R}_{+}$ with
$\beta^{\mu}\in V_{+}:=$ forward lightcone, where $\beta=\sqrt{\beta^{\mu}\beta_{\mu}}$ . Depending on the
situations, we freely move from one version to another.

(ii) A set $\mathcal{T}=\{A_{n};n\in \mathrm{N}\}$ of (point-like) local observables $A_{n}$ is called a
thermometer set or a $d.$iscriminating set if $\omega(A_{n})=\omega’(A_{n})(\forall n\in \mathbb{N})$

for $\omega,\omega’\in K$ implies $\omega=\omega’$ . The linear hull of $\mathcal{T}$ is denoted by
$\mathcal{L}:\mathcal{L}:=\mathrm{L}\mathrm{i}\mathrm{n}\mathcal{T}$ . Although the identity operator 1 is irrelevant to the
purpose of discriminating different states, we understand by convention
that it belongs to $\mathcal{T}:1\in \mathcal{T}$ .

(iii) $K$-norm $||A||_{K}$ of a local observable $A$ is defined by $||A||_{K}:= \sup_{\omega\in K}|\omega(A)|$ .
For the sake of simplicity, we assume the absence of phase transition,
i.e., $K_{\beta}=\{\omega_{\beta}\}$ for $\forall\beta\in V_{+}$ , in which case $||A||_{K}= \sup_{\beta\in V_{+}}|\omega_{\beta}(A)|$ .

(iv) A local observable $A$ satisfying $\omega(A)\geq 0$ for $\forall\omega\in K$ is called a K-
$positi\mathrm{t}^{\Gamma}e$ element, the totality of which constitute a $K$-positi $\mathrm{r}^{\gamma}e$ cone de-
noted by $\prime P_{K}:=\{A;\omega(A)\geq 0\forall\omega\in K\}=\{A;\omega_{\beta}(A)\geq 0\forall\beta\in V_{+}\}$.
We also denote $Pc:=\prime P_{K}\cap \mathcal{L}$ , the set of $K$-positive thermometers.

(v) The set of thermal functions is defined by $\mathcal{F}_{0}:=\mathrm{L}\mathrm{i}\mathrm{n}\{f_{n}$; $f_{n}(\beta)$ $:=$

$\omega_{\beta}(A_{n}),$ $A_{n}\in \mathcal{T},$ $n\in \mathbb{N}\},$
$\mathcal{F}:=\overline{\tau_{0}}^{||\cdot||_{\infty}}$ with $||\cdot||_{\infty}$ being the supremum

norm.

Further, we impose the following two restrictions on the thermometer set
$\mathcal{T}$:
- $\{f_{n}\}$ is linearly independent,
- $F_{0}$ is dense in $C_{0}(V_{+})$ .
Rom these it immediately follows that
- $A_{n}\in \mathcal{T}$ implies $\alpha_{x}(A_{n})\not\in \mathcal{T}$ for any spacetime translations $\alpha_{x}$ because of
the relation $\omega_{\beta}\circ\alpha_{x}=\omega_{\beta}$ ,
$-\Phi$ : $A_{n}\in \mathcal{T}\mapsto f_{n}\in F_{0}$ defines an isometric 1-1 map of $\mathcal{L}$ onto $\mathcal{F}_{0}$ , where
$\mathcal{F}_{0}$ is equipped with the supremum norm, and $\mathcal{L}$ with the $K$-norm $||\cdot||_{K}.2$

Criteria for generalized thermal states:
A state $\omega$ is called a generalized thermal state w.r.t. a thermometer set $\mathcal{T}$

(“$\mathcal{T}$ -GTstate” or “GTstate”, in short) if it is $K$-bounded and K-positive
on $\mathcal{L}$ in the following sense:

$| \omega(\sum c_{n}A_{n})|\leq C||\sum c_{n}A_{n}||_{K}$ ; $\omega \mathrm{r}_{P_{\mathcal{L}}}\geq 0$ .

2Of course, the $K$-norm does not define a Hausdorff topology on $\mathcal{L}$ .
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The physical meaning of this criterion is seen in the following result:
Lemma: A generalized thermal state $\omega$ defines a positive linear functional
$\varphi_{\omega}\in \mathcal{F}^{*}$ by $\varphi_{\omega}:=\omega 0\Phi^{-1}$ on $\mathcal{F}_{0}$ , i.e., $\varphi_{\omega}(\sum c_{n}f_{n})=\omega(\sum c_{n}A_{n})$ , and exten-
sion by continuity. Therefore, $\varphi(v$ is represented by a probability measure $\mu_{\omega}$

on $\mathbb{R}_{+}$ in such a form as

$\omega(\sum c_{n}A_{n})=\varphi_{\omega}(\sum c_{n}f_{n})=\int d\mu_{\omega}(\beta)\sum c_{n}f_{n}(\beta)=\int d\mu_{\omega}(\beta)\omega_{\beta}(\sum c_{n}A_{n})$ ;

in short: $\omega \mathrm{r}_{c}=\int d\mu_{\omega}\omega_{\beta}\mathrm{r}_{c}$ .
Namely, a generalized thermal state is a state which can be approximated

around a spacetime point by a statistical average over thermal equilibrium
states. More strongly, a $\mathrm{c}^{r}\mathrm{r}$ state $\omega$ is called a local temperature state (or LT
state, in short) if $\mu_{\omega}$ is concentrated on a single point $\beta\in \mathbb{R}_{+}$ .
Remarks:

i) It is due to our convention of $1\in \mathcal{T}$ that the measure $\mu_{\omega}$ is normalized as
a probability measure: $1= \omega(1)=\int d\mu_{\omega}(\beta)\omega_{\beta}(1)=\int d\mu_{\omega}(\beta)$ .

ii) Any state $\omega\in K$ (given as convex combination of KMS states) is a
generalized thermal state w.r.t. any $\mathcal{T}$ , since $\omega(B)>0\forall B\in P_{K}$ .

$\supset$

$Pc$ . Therefore, the notion of GT states defined above actually give
a generalization of thermal equilibrium states in a three-fold way, in
their being i) relativistic, ii) mixtures of different temperatures, and
iii) localized in small neighbourhoods of spacetime points.

iii) “Point-like local observables” belonging to $\mathcal{T}$ can be formulated in the
context of local nets as the objects dual to state germs (in the sense of
[1] and [2] $)$ .

iii) When a $K$-bounded state $\omega$ is allowed to be non-K-positive, then $\varphi_{\omega}$

becomes a signed measure.

iv) $\omega^{(\mu)}:=\int d\mu\omega_{\beta}$ may be a $\mathcal{T}- \mathrm{G}\mathrm{T}$ state even if $\mu$ is not positive.

Desired localization properties of $\mathcal{T}$: For any spacetime point $x$ , there
is a thermometer set $\mathcal{T}$ consisting of local observables belonging (more ap-
propriately, affiliated) to $A(\mathcal{O})$ where $\mathcal{O}$ is an arbitrary small neighbourhood
$\mathcal{O}$ of $x$ (“ $\mathcal{T}$ concentrated at $x$ ”).
Existence of local thermometer sets: Assume (i) weak additivity, (ii)
norm continuity of $\betarightarrow\omega_{\beta}\mathrm{r}_{A(O)}$ for boundedregions $\mathcal{O}$ , then there is a
thermometer set $\mathcal{T}\subset A(\mathcal{O}_{0})$ (or $\mathcal{T}\subset\{A;$ A $\eta A(\mathcal{O}_{0})\}$ ) for an arbitrary
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small $\mathcal{O}_{0}$ .

Lemma: Let $\mathcal{T}$ be concentrated at $0\in \mathbb{R}^{4}$ ; furthermore, let $\omega\circ\alpha_{-x}$ be a
T-GT state for $x$ in a neighbourhood $N$ of $0$ , i.e., $\omega$ is locally a generalized
thermal state at the point $x$ , defining a corresponding measure $\mu_{x}$ . Then $\mu_{x}$

is weakly continuous, i.e., $\int d\mu_{x}(\beta)F(\beta)$ depends continuously on $x\in N$ for
all $F\in C_{0}(\mathbb{R}_{+})$ .

Especially, if the mean temperat $\mathrm{u}re$ at $x$ is defined $\mathrm{b}\mathrm{y}\overline{T}(x):=\int d\mu_{x}(\beta)\beta^{-1}$ ,
then $xrightarrow\overline{T}(x)$ is continuous in $N$.

2.1 Choice of thermometers: Equivalence classes of
$A\in \mathcal{T}$

We define an equivalence relation $A\sim B$ between $A,$ $B\in \mathcal{T}$ by $\omega(A)=$

$\omega(B)$ for $\forall\omega\in K$ and denote the equivalence class of $A$ by $[A]$ . It is clear
that the $K$-norm and the $K$-positivity are independent of the choice of the
representatives in $[A_{n}],$ $n\in \mathrm{N}$ . However, the validity of the above criteria for
$\mathrm{G}\mathrm{T}$-states will in general depend on the choice of specific representatives from
$[A_{n}]$ . Although this point need be further elaborated, the best choice seems
to be given by considering “derivatives conserving the center of mass”: $\mathrm{e}.\mathrm{g}$.
$\partial_{\mu}^{\xi}(\Phi(\xi/2)\Phi(-\xi/2))\int_{\xi=0}$ . To justify it as a reasonable choice, we recall here
that the requirement of linear independence of $\mathcal{T}$ forbids the operation of
translations $\alpha_{x}$ on elements of $\mathcal{T}$ : i.e., $A_{n}\in \mathcal{T}$ implies $\alpha_{x}(A_{n})\not\in \mathcal{T}$, because
$\omega_{\beta^{\circ}}\alpha_{x}=\omega_{\beta}$ . In view of the relation for two-point product operators $\varphi(x)\varphi(y)$

$\frac{d}{dt}\alpha_{le_{\mu}}(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))|_{t=0}=\partial_{\mu}^{X}(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))$ ,

this amounts in its infinitesimal version to excluding derivatives $\partial_{\mu}^{X}$ w.r.t.
the centre-of-mass coordinates $X= \frac{x+y}{2}$ . In fact, the derivative $\partial_{\xi}$ w.r.t. the
relative coordinates $\xi=y-x$ is sufficient to generate the whole thermometer
set in our previous discussion of local temperature states in the massless free
scalar field. In general, we will be led to the choice of operators in such a
form as

$\partial_{\mu}^{\xi}(\Phi_{1}(X+\gamma_{1}\xi)\Phi_{2}(X+\gamma_{2}\xi)\ldots\Phi_{n}(X+\gamma_{n}\xi))\mathrm{r}_{\epsilon=0}$ with $\sum\gamma_{i}=0$ .

Concerning this choice we can see its deeper meanings in more general con-
texts such as the classificaCion of states from the viewpoint of singularity
and also as the extension of the locaUy thermal notions to curved spacetime
situations:
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i) The data for classifying different spieces of states, such as vacuum, tem-
perature states, and so on, can be provided by quantities defined on
the cotangent spaces of spacetime which are closely related with the
separation into centre-of-mass coordinates $X^{\mu}$ and relative ones $\xi^{\mu}$ in
the case of two-point functions. For instance, in the discussion of
massless free scalar field model of local temperature states, we have
seen that the “normal product” relative to a vacuum, $\rho(X, \xi)\equiv\omega$ (:
$\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}):)=\omega(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))-\omega_{\mathrm{v}\mathrm{a}\mathrm{c}}(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))$ ,
plays an important role. This takes care of the separation of the most
singular and less singular terms at $\xiarrow 0$ : Namely, rewriting $\mathrm{E}\mathrm{q}.(9)$ as

$\omega(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))=\omega_{\mathrm{v}\mathrm{a}\mathrm{c}}(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))+\rho(X, \xi)$ , (11)

we note that the vacuum term on the RHS gives the most singular
contribution in the limit $\xiarrow 0$ . In this sense, thermal aspects can be
taken as those concerning the next-to-leading contributions at a point
$X\mathrm{w}_{4}\mathrm{i}\mathrm{t}\mathrm{h}\xi\neq=0$ .

ii) This can be seen more clearly in the microlocal spectrum condition char-
acterizing the vacuum states in curved spacettime (see e.g., [3]). Here,
the condition for vacuum states is formulated in terms of wave front
set which specifies the locations of singularities of distibutions in the
cotangent bundle (more precisely, sphere bundle) of spacetime man-
ifold. While we do not need the details of the microlocal spectrum
condition here, its essence lies in the condition imposed upon the wave
front sets of $n$-point functions from the viewpoint of paraUel trans-
portability of momenta between vertices and it is interesting to note
that this condition gives a close relationship between the characteriza-
tion of states and the singularities of Wightman functions in cotangent
spaces.

Remark: The wave front set, $\mathrm{W}\mathrm{F}(\phi)$ , of a distribution $\phi\in D’(V)$

(V $\subseteq \mathbb{R}^{d}$) is defined in $V\cross(\mathbb{R}^{d}\backslash \{0\})$ as the complement of the set
of points $(\xi’,p’)$ satisfying the property that there exist some neigh-
bourhood $U$ of $\xi’$ and some conic neighbourhood $\Sigma$ of $p’$ such that, for
$\forall f\in C_{0}^{\infty}(U),\forall N\in \mathrm{N}\cup\{0\},\forall p\in \mathbb{R}^{d}\backslash \{0\}$

$p\in\Sigma\Rightarrow|<\phi,$ $e^{-i<\cdot,p>}f>|\leq C_{f,N}(1+|p|)^{-N}$

holds with some constant $C_{f,N}$ . Here, $\Sigma$ : conic, means that $p\in\Sigma$

implies $tp\in\Sigma$ for all $t>0$ . If $\phi$ does not contain any singularity,
the validity of the above inequality can easily be understood by the
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Paley-Wiener theorem. This growth condition in the limit of $parrow\infty$

in momentum space just corresponds in coordinate space to the limit
of $\xiarrow\xi’$ because of the arbitrariness of smooth functions $f\in C_{0}^{\infty}(U)$

in the neighbourhood of $\xi’$ .

iii) If we apply this notion to our distribution $\omega(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))$ with
$\xi$ as its argument, the most singular term at $\xiarrow 0$ corresponds to
the vacuum term $\omega_{\mathrm{v}\mathrm{a}\mathrm{c}}(\varphi(X-\frac{\xi}{2})\varphi(X+\frac{\xi}{2}))$ on RHS of Eq.(ll). Once
we remove it, $\rho(X, \xi)$ remaining as the less singular term is smooth
(or more suitably, analytic according to the result of [4]) in $\xi$ . In
the massless free scalar field model of local temperature states, we
have seen that the function $\xi\vdash+\rho(X, \xi)$ together with its $\xi$-derivatives
are sufficient for identifying a local temperature $T(X)$ . The Fourier
transform of this function, $p rightarrow\int d\xi e^{ip\xi}\rho(X,\xi)=\tilde{\rho}(X,p)$ , (in $parrow\infty$ )
can be viewed as a fun.ction defined on the

$\mathrm{c}$
otangent space at $\xi=0$ in

relative coordinates.

iv) Applying the derivative $\partial_{\mu}^{\xi}$ w.r.t. relative coordinates $\xi$ (acting in the
fiber-direction of the cotangent bundle) corresponds to multiplication
by $p_{\mu}$ in momentum space. If the relevant functions in the above iii)
are always ensured to be analytic, then (X, $p$) $-\rangle\tilde{\rho}(X,p)$ and its $\xi-$

derivatives will exhaust all the necessary information as (the expecta-
tion value of) the discriminating set $\mathcal{T}$ .

v) The above formulation based upon quantities in cotangent bundles can
become crucial in the attempt of extending basic ingredients in locally
thermal situations to curved spacetimes. While the reference system
$K$ of thermodynamic equilibria is treated in our formulation as global
KMS states, the roles of these equilibrium states lie in assigning a tem-
perature or temperature distribution to each spacetime point in refer-
ence to the thermometer set $\mathcal{T}$ prepared in its small neighbourhood.
Thus, with the aid of normal coordinates and the exponential map
(which maps flat tangent spaces onto curved spacetime), it should be
possible to reformulate $K$ as an object living in the tangent bundle of
spacetime, if we restrict our spacetime manifold to $\dot{\mathrm{t}}$ he one admitting
complexification (which is crucial for the formulation of KMS condi-
tion or its relativistic generalization due to [4] $)$ . In the context of this
generalization, the 4-vector nature of inverse temperature $\beta_{\mu}(X)$ will
be very interesting in relation with its role to specify the rest frame at
each spacetime point and also its close relationship with the 4-vector
nature of entropy density current $s_{\mu}(X)$ . Before discussing the ther-
modynamic behaviours of generalized thermal states in terms of these
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local densities, we need first to examine more closely the thermostatics
in the set $K$ of all the KMS states in order to extend the mutual rela-
tions of these thermal quantities from equilibrium regions to those of
our generalized thermal states.

3 Thermostatics in $\mathrm{K}$

3.1 Definition of local rest frame and equivalence prin-
ciple

$\mathrm{I}*\mathrm{o}\mathrm{m}$ the relativistic viewpoint, inverse temperature $\beta$ and entropy density $s$

need be understood as Lorentz four-vectors, $\beta^{\mu}$ and $s^{\mu}$ , respectively: In a ref-
erence frame $S$ , let $\vec{v}$ denote the relative velocity of rest frame of our thermal

$4- \mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}\mathrm{b}\mathrm{y}u^{\mu}=(\frac{\mathrm{m}_{1}(\mathrm{a}\mathrm{t}}{\sqrt{1-|^{arrow}v|^{2}}},\frac{\mathrm{m}\mathrm{p}\mathrm{e}\vec{v}}{\sqrt{1-|\vec{v}|^{2}}}),u^{\mu}u_{\mu}=1).\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{m}- \mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{a}1\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}T),\mathrm{a}\mathrm{n}\mathrm{d}u^{\mu}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}$

perature has to be treated as a four-vector $\beta^{\mu}=\tau^{-1}u^{\mu}[5]$ with $\tau:=k_{B}T$

(formally this is understood as the generalization of the Boltzmann factor
$\exp(-\beta E)$ to the invariant expression $\exp(-\beta^{\mu}p_{\mu}))$ . The same holds true
of the entropy density: it is to be considered as the four-vector $s^{\mu}=s_{\mathrm{e}\mathrm{q}}u^{\mu}$

where $s_{\mathrm{e}\mathrm{q}}$ is the density of equilibrium entropy. (This allows to generalize
the expression $\tau^{-1}s_{\mathrm{e}\mathrm{q}}$ to $\beta^{\mu}s_{\mu}.$ )

If one can find the local rest frame of the system at each $\mathrm{s}\dot{\mathrm{p}}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}$ point in
the present context of generalized thermal states, the essence of equilibrium
thermodynamics should be reproduced there locally and the descriptions in
general frames can be derived kinematically through the Lorentz transfor-
mations parametrized by the relative velocity $u^{\mu}$ which relate the former to
the latter. This is just Einstein’s equivalence principle applied to thermody-
namics.

3.2 Thermodynamic relations in equilibrium

To develop machinery for analyzing the general thermal states, we aim here at
extracting the useful essence from thermodynamic relations valid for equilib-
rium states in the rest frame in order to extend it to their arbitrary mixtures
(belonging to the set $K$) and to arbitrary Lorentz frames.

In general Lorentz frame, an equilibrium state $\omega_{\beta}$ is characterized by
the relativistic KMS condition w.r.t. a fixed $\beta\in V_{+}[4]$ , and hence, our
set $K$ of all the KMS states viewd from such a frame can be expressed by
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$K:=\overline{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\omega_{\beta}\cdot,\beta\in V_{+}\}}$. We try to extend the notions of entropy density,
energy density, free energy density, and possibly temperature to all states
belonging to $K$ starting from a rest frame characterized by the relations
$u^{\mu}=(1,0),$ $\beta^{\mu}=\beta u^{\mu}=(\beta, 0),$ $s^{\mu}=su^{\mu}=(s, 0)$ .

For a system in equilibrium in the rest frame, let $s(\omega_{\beta})\equiv s_{\mathrm{e}\mathrm{q}}(e, \cdots)$

be the equilibrium entropy density; it is a concave function of the energy
density $e$ and of other conserved quantities, indicated by the dots, such as
baryon number density $n_{B}$ , lepton number density $n_{L}$ , electric charge density
$q$ , etc. In the sequel, we shall mostly disregard all other variables than $e$ ; our
considerations can easily be extendend to the general case. The quantities
$s_{\alpha_{1}}$ and $e$ refer to the rest frame of the system under consideration. The
corresponding temperature $\tau(:=k_{B}T)$ is given as usual by $\tau^{-1}=\partial s_{\infty_{1}}/\partial e$ .

For an equilibrium state $\omega_{\beta}$ we have

$u_{\mathrm{t}\mathrm{h}}^{\mu}(\beta)s_{\mu}(\omega_{\beta})=s_{\mathrm{e}\mathrm{q}}(e_{\beta})$ , $\sqrt{\beta^{2}}=\tau^{-1}=\frac{\partial s_{\alpha_{1}}}{\partial u}(e_{\beta})$ , (12)

with

$e_{\beta}=u_{\mathrm{t}\mathrm{h}}^{\mu}(\beta)u_{\mathrm{t}\mathrm{h}}^{\nu}(\beta)T_{\mu\nu}(\omega_{\beta})$ , (13)

where $T_{\mu\nu}(\omega_{\beta}):=\omega_{\beta}(T_{\mu\nu})$ is the energy momentum tensor evaluated in the
equilibrium state $\omega_{\beta}$ . (Contrary to some treatments of relativistic thermo-
dynamics, the rest mass is included in the $(” \mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}" )$ energy density defined
above). Relations (12) and (13) follow from the invariance of the expressions
by evaluation in the rest system $(u_{\mathrm{t}\mathrm{h}}=(1,0,0,0))$ .

A general state $\omega\in K$ is of the form $\omega=\int_{V}+d\rho(\beta)\omega_{\beta}$ with a probability
measure $\rho$ on $V_{+}$ . Denoting the average of a function $g(\beta)$ on $K$ w.r.t. this
probability measure $\rho$ by $\langle g\rangle_{\omega}:=\int d\rho(\beta)g(\beta)$ , we see that the energy density
in $\omega\in K$ is given by

$e(\omega)=\langle e_{\beta}\rangle_{\omega}\equiv\langle e(\omega_{\beta})\rangle_{\omega}$ .

We define the entropy of $\omega$ by

$s^{\mu}( \omega)=\int_{V^{+}}d\rho(\beta)s^{\mu}(\beta)$ . (14)

This is a natural definition in view of the fact that two KMS states $\omega_{\beta}$ and
$\omega_{\beta’}$ in infinite systems are disjoint for $\beta\neq\beta’$ [Bratteli-Robinson II], which
implies that the entropy is additive: $s(\lambda_{1}\omega_{\beta}+\lambda_{2}\omega_{\beta’})=\lambda_{1}s(\omega_{\beta})+\lambda_{2}s(\omega_{\beta’})$.
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Concerning the question as to how the mean temperature of the state
$\omega=\int_{V^{+}}d\rho(\beta)\omega_{\beta}$ should be defined, there are a few possibilities such as

$\beta(\omega):=\langle\beta\rangle_{\omega}$ , or $\beta(\omega)^{-1}=T(\omega):=\langle\beta^{-1}\rangle_{\omega}$ .

A better, and more natural definition is given by

$\beta(\omega):=\frac{\partial s}{\partial e}(e(\omega), \ldots)$ . (15)

Rom covariance consideration we can determine the form of $T^{\mu\nu}(\omega_{\beta})$ :
The equilibrium state $\omega_{\beta}$ may depend on other conserved quantities as well,
but we assume that they are only scalar ones, such that $\beta$ resp. $u_{\mathrm{t}\mathrm{h}}$ are the
only four-vectors available.
Hence $T^{\mu\nu}$ is of the form

$T^{\mu\nu}(\omega_{\beta})=A(\beta^{2}, \ldots)g^{\mu\nu}+B(\beta^{2}, \ldots)u_{\mathrm{t}\mathrm{h}}^{\mu}u_{\mathrm{t}\mathrm{h})}^{\nu}$ (16)

$A$ and $B$ are scalar functions which depend on the system under considera-
tion.

Combination of equations (13) and (16) yields

$e_{\beta}=A(\beta^{2})+B(\beta^{2})$ , (17)

$\mathrm{i}.\mathrm{e}$ . $e_{\beta}$ is a function of $\beta^{2}$ only. The same holds true of $s_{\infty_{1}}(e_{\beta})$ , we can write

$s^{\mu}(\omega_{\beta})=\sigma v_{\mathrm{t}\mathrm{h}}^{\mu};\sigma=s_{\mathrm{e}\mathrm{q}}(e_{\beta})$ . (18)

As a consequence of equation (17) we can express $\sigma(\beta^{2})$ in terms of $A$ and
$B$ :

$\sqrt{\beta^{2}}=\frac{\partial s_{\eta}}{\partial u}(e_{\beta})=\frac{\partial\sigma}{\partial\beta^{2}}(\frac{\partial u_{\beta}}{\partial\beta^{2}})^{-1}=\frac{\sigma’}{A’+B’}$ ; (19)

$\sigma=\int^{\beta^{2}}dx\sqrt{x}(A’(x)+B’(x))=-\int_{\beta^{2}}^{\infty}dx\sqrt{x}(A’(x)+B’(x))$ . (20)

(The prime denotes the derivative w.r.t. $x\equiv\beta^{2}$ ; the integration constant is
chosen so that the entropy vanishes for $\tau=0.$ )

$s_{\eta}$ is a concave function, and, as a consequence we note that

$A’+B’<0$ . (21)
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With the help of (19) the proof is easy (differentiability assumed, again we
put $x=\beta^{2}$ and make use of (17) $)$ :

$0> \frac{\partial^{2}s_{\mathrm{e}\mathrm{q}}}{\partial u^{2}}$

$=$ $\frac{\partial}{\partial u}\frac{\partial s_{\mathrm{e}\mathrm{q}}}{\partial u}(e_{\beta})=\frac{\partial}{\partial x}(\frac{\partial s_{\alpha_{1}}}{\partial u}(e_{\beta}))(\frac{\partial(e_{\beta})}{\partial x})^{-1}$

$=$ $( \frac{\sigma’’}{e_{\beta}’}-\frac{\sigma’}{e_{\beta}^{;2}}e_{\beta}’’)(e_{\beta}’)^{-1}=\frac{1}{e_{\beta}^{\prime 2}}(\sigma’’-\sigma’\frac{e_{\beta}’’}{e_{\beta}},$ $)$

Since $\sigma’=\sqrt{x}e_{\beta}’$ , the expression in brackets, which has to be negative, equals
$\sigma’’-\sqrt{x}e_{\beta}’’<0$ ; differentiating $\sigma’$ once more, we get $\sigma^{n}=\frac{1}{2\sqrt{x}}e_{\beta}’+\sqrt{x}e_{\beta}’’$ and
thus

$0> \sigma’’-\sqrt{x}e_{\beta}’’=\frac{1}{2x}\sigma’=A’+B’$ .

3.3 Second Law of Thermodynamics

The next task is to give a generalized formulation of the second law of ther-
modynamics. For systems at rest w.r.t. the given frame of reference, for
which the energy density is fixed, $e(\omega)=e_{0}$ , the entropy density is maximal
for $\omega_{\beta}$ with $\sqrt{\beta^{2}}=\frac{\partial s_{\mathrm{e}\mathrm{q}}}{\partial u}(e_{0})$ . Now consider an arbitrary frame of reference,
characterized by a four-velocity vector $u^{\mu},$ $u\cdot u=1$ , defining the time axis of
the ffame. For the sake of brevity we shall denote it by “the frame $u$”. Let
$\omega=\int_{V^{+}}d\rho(\beta)\omega_{\beta}$ be an arbitrary state in $K$ . Clearly, the energy density of
$\omega$ in the frame $u$ is given by

$e( \omega;u)=u^{\mu}u^{\nu}\omega(T_{\mu\nu})=u^{\mu}u^{\nu}\int_{V^{+}}d\rho(\beta)T_{\mu\nu}(\omega_{\beta})$ . (22)

Let us keep this quantity fixed, $e(\omega;u)=e_{0}$ , and ask for the state in $K$ which
maximizes the entropy density. The best guess seems to be the following:
Generalized Second Law: The supremum

$\sup\{u^{\mu}s_{\mu}(\omega);\omega\in K, e(\omega;u)=e_{0}\}$

is attained for the $KMS$ state $\omega_{\beta}$ with

$\beta^{\mu}=\tau^{-1}u^{\mu},$ $\tau^{-1}=\frac{\partial s_{\mathrm{e}\mathrm{q}}}{\partial u}(e_{0})$ . (23)

Due to equations (12) and (18), the supremum is given by

$u^{\mu}s_{\mu}(\omega_{\beta})=s_{\mathrm{e}\mathrm{q}}(e_{0})=\sigma(\beta^{2})$ . (24)
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Although this cannot be directly verified, it can be shown under the
assumption that the following holds:
Restricted Second Law: Given $e_{0}$ , then $u^{\mu}s_{\mu}(\omega_{\beta})$ is maximal if $\beta^{\mu}=$

$\sqrt{\beta^{2}}u^{\mu}$ .
Together with the Second Law in the rest system, this then implies the

full Generalized Second Law:
Lemma: Since $s_{\mathrm{e}\mathrm{q}}(e)$ is a concave function, and $s_{\alpha_{1}}(e)=\sigma(\beta^{2})$ with
$\sqrt{\beta^{2}}=\partial_{e}s_{\mathrm{e}\mathrm{q}}(e)$ , the Restricted Second Law implies the Generalized Second
Law.

In the model of a massless free field, the validity of the Restricted Second
Law can be checked: The energy momentum tensor is is given by

$T_{\mu\nu}=:\partial_{\mu}\Phi\partial_{\nu}\Phi$ $:- \frac{1}{2}g_{\mu\nu}$ : $\partial_{\rho}\Phi\partial^{\rho}\Phi:$ ,

its expectation value in the equilibrium state $\omega_{\beta}$ being

$\omega_{\beta}(T_{\mu\nu})=T_{\mu\nu}(\omega_{\beta})=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\int\frac{d^{3}p}{2|p]}\frac{e^{-\beta\overline{p}}}{1-e^{-\beta\overline{p}}}\overline{p}_{\mu}\overline{p}_{\nu}$ ,

where $\overline{p}=(|p],\vec{p})$ is the four-momentum on the mass shell $m=0$. Calculation
of $u_{\mathrm{t}\mathrm{h}}^{\mu}(\beta)u_{\mathrm{t}\mathrm{h}}^{\nu}(\beta)T_{\mu\nu}(\omega_{\beta})=A(\beta^{2})+B(\beta^{2})$ , see equations (13) and (17), with
the help of the above integral, and insertion into (16) yields

$T_{\mu\nu}(\omega_{\beta})=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}(\beta^{2})^{-1}(-g_{\mu\nu}+4v_{\mu}^{\mathrm{t}\mathrm{h}}(\beta)u_{\nu}^{\mathrm{t}\mathrm{h}}(\beta))$ (25)

Let us denote the constant by $c$ , which is positive. Evidently, we have

$A(x)=-cx^{-2}$ , $B(x)=4cx^{-2}$

(The relation $B(x)=-4A(x)$ holds due to (16) whenever $T_{\mu}^{\mu}=0.$ ) Rom
(20) it then follows that

$\sigma(x)=\int_{x}^{\infty}y^{1/2}6cx^{-3}dy=4cx^{-3/2}$ ,

$\Sigma’(x)=-cx^{-5/2}(\frac{e_{0}}{c}x^{2}+1)^{-1/2}(\frac{e_{0}}{c}x^{2}+3)$ .
Since $\Sigma’<0$ , the maximum is reached at the upper limit of the range of $x$ ,
$\mathrm{i}.\mathrm{e}$ . at $\xi=1$ , as assumed above.
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