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abstract

A parallel computation algorithm is studied for the Stokes problem subject to the slip
boundary conditions in a spherical shell. Considering the computational amount of 3D
problem, a P1/P1 finite element method with a GLS stabilizing technique is employed. A
parallel iterative solver is presented with domain decomposition technique by congruent
subdomains. This algorithm can drastically reduce required memory to store stiffness and
mass matrices. Parallel efficiency of the iterative solver is reported on a shared memory-
type parallel computer.

1 Introduction

We consider a parallel solver of a discretized Stokes problem by a finite element method,
subject to the slip boundary conditions in a spherical shell. This concerns with an unsteady
problem of Earth’s mantle convection, where the Stokes problem and the convection-diffusion
problem are solved repeatedly [4, 6]. Therefore a fast solver of the Stokes equations, which
is suitable for parallel computation, is required. Here we present a domain decomposition
algorithm by congruent subdomains. We also describe a method to treat the slip boundary
conditions by projection operations. We omit proofs of Theorems, which are presented in [5].

2 The Stokes equations in a spherical shell
Let Q be a spherical shell domain :

Q:={z eR®; R, < |z| < Ry},
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where |z| is the Euclidean norm of z, and 0 < R; < Ry. Our purpose is to solve the Stokes
equations : to find the velocity u = (u1,us, u3) and the pressure p satisfying in (2,

—-Au+Vp=f, (1a)
V-u=0, (1b)

subject to the boundary conditions on I'(:= 052),

u-n=0, (2a)
tH . Duyn=0 (k=1,2). (2b)

Here D is the strain rate tensor defined by D;;(u) := 3 (O;u; + Oju;) (1 < 4,5 < 3), n and
t®) (k = 1,2) are unit outer normal and tangent vectors to the boundary, and f = (fi, f2, fs)
is an external force. f is assumed to be orthogonal to rigid body rotations :

/f wPdr=0 (i=1,2,3), v (z):=e® xz (i=1,2,3), (3)
Q

where e is the unit vector to the z;-direction. For the unique solvability we impose con-
straints to the velocity function space to eliminate the freedoms of rigid body rotations[6)].

3 P1/P1 finite element approximation

Considering the cost of computation in 3D problem, we employ a cheap P1/P1 element,
that is, both velocity and pressure are approximated by the piecewise linear elements in
tetrahedra. The Galerkin least square (GLS) method [1, 2] is used for stabilizing the Stokes
equations. Let € be a polyhedral approximation to €2, I', be the boundary of Q, and 7, be
a partition of (), into tetrahedra, where h is the maximum diameter of tetrahedral elements.
Let Sp(%) C H(Q) N C°() be the P1 finite element space whose degrees of freedom are
on the vertices of tetrahedra. We introduce finite element spaces X, V4, Mp, and @,

Xh = Sh(Qh)s,
Vi = {on € X ; (vn-na)(P) =0 (VP), (vs, v)n=10(i=1,2,3)},
Mh = Sh(Qh),

Qr = {qn € My ; (gn, 1)n =0},

where P stands for nodal point on I',, and ng is the unit outer normal to I'. We use the same
notation (-, ) to represent the L%-inner products in X}, and M. We prepare the following
bilinear forms for u,v € X}, and p,q € My,

ap(u,v) =2 A D(u) : D(v) dz,

bh('U, Q) = —(V " v, Q)h )
dn(p,9) = X er Mk (VP, Va)k
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where (-, -)k is the L?-inner product on element K, and D(u) : D(v) := 3", ; 1«3 Dij(w) Di;(v).
A finite element approximation to the Stokes problem (1) and (2) by a stabilized technique
[1, 2] is to find (up,pr) € Vi x Qp satisfying

an(Un, Vn) + b (Vn, pn) = (f, Vn)n, (4a)
br(uh, gn) — 0dn(Ph, Gh) = —0 ke, Mk (fs Van)k (4b)

for any (vp,qn) € Vi, X Qr. Here a positive constant J is a stability parameter.

Theorem 1 [6] For every f € L*(Q2)3 there ezists a unique solution of (4).

4 Matrix formulation of the finite element scheme

Let nx and njs be dimensions of the spaces X3 and M}, respectively. We define index
sets, Ax :={1,2,... ,nx} and Ay :={1,2,... ,ny}. Let {patachy and {¢,} e, be finite
element bases of X} and M}, respectively,

Xh = Span[spl.a:' .- ’@nx] ’
My, = span[iy,... ,¢n,,].

Let ng be the number of vertices of tetrahedra in {25 We denote the vertices ( nodal points )
by P, j € Ag :={1,2,... ,ng}. Then, nx = 3ng and ny = ng. We associate a pair [5, 5]
of the nodal point number and the component number with index 8 € Ax and identify them, .

B=1[60,61] (Bo€Ag, Br€{1,2,3}).

The finite element bases satisfy

[0a(Pao)lg: = 0ap (o B = [Bo,B1] € Ax),
wN(PV) =514V (»u’v VGAM)’

where d, g is the Kronecker delta. We define stiffness matrices, mass matrices and right-hand
side vectors as follows,

[Alas = an(ps; ¥a) (o, B€ Ax),
[Blug = bu(s, ¥u) (b€ Aum, B € Ax),
[Dluv = dn(¥v, Yy) (1, v € Ay),
[Mxlap := (98, a)n (o, B € Ax),
[(Mu]pw = (v, ¢u) (v € Ap),
[f]a = (f Pa)n (a € Ax),

[01u = Yoker, M (f» Vu)K (u € Ay).
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Let Ar C Ag be an index set of every j such that nodal point P; is on I'y,. We define
vectors {ﬁ(j)}jeAP C R™* corresponding to the unit outer normals to the boundary, and
{#9)}1<j<3 C R™X corresponding to the rigid body rotations by

D]y = 0jagnaay (P;) (j € Ar, a = [ag,a1] € Ax),
[0 := v (Pao) (1<j<3,0=]ogai € Ax).
Then we have
ZaeAx [ﬁ(j)]asoa(Pk) = Jan(PJ) (.7 €Ar, k€ A(;),
Y aenxMapalz) = v9(2) (1<7<3, ze).

We denote by (-,-) the inner product in R™ for m = nx or m = ny,.
Remark 1 {fi®};ca, are orthonormal, (7®), 79) = &;; (i, j € Ar).
We introduce the following spaces,

nx

fl
=

geX; (7,79) =0 (ieAp), (Mx7, 79)=0(1<j<3)},
R™ |
ge M ; (Myg, 1) =0},

Il
—~

.

O <y X
W ]
’—A—\

where T = (1,1,...,1)T € R™™. We define the following orthogonal projections,
Py s XV, (Pyi, ) = (4, 7) (Vi eV),

<y
<y
<y
<i

€
S

=)
=y
&

The problem (4) is equivalent to the following: to find (%, p) € V x @ satisfying
(A@+B"5, 1) = (f, 9),
(B — 6Dp, q) = (=43, q),
for any (7, q) € V x §. The matrix formulation of (4) is to find % € V and 7 € @ satisfying
pa(Z) =P 1), 5)
p —0g

where P and A are (nx + ny) X (nx + nar) matrices defined by
Py, 0 A BT
P"(o P@>’ 'A_<B —5D>'

Remark 2 PA is an isomorphism on V x Q.

Theorem 1 implies
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We solve the equation (5) by Krylov subspace method in V x Q Krylov subspaces are
generated by multiplications of P.A. We use a preconditioned conjugate gradient method for
the solution of (5).

Remark 3 Let {t#}:<;<3 be an orthonormal set generated from {Mx7®};<;<3 such that
(7i®, ) = 0 for any i and j. Then, we have

Py = = Sien, (3, AOVAD = 5, (8, 990)30)

We note that the operations concerning to {fi(i)}iep 4 are local, which are suitable for parallel
computation.

5 Domain decomposition into congruent subdomains
We decompose the domain €, into a union of non-overlapping p subdomains,
On = Upcics Y, O NOP =0 (0<i<j<p).

The interface introduced by this decomposition is denoted by F := Ub<i<i <paﬂ§f) noad .
We call QELO) a reference subdomain. We assume that all subdomains are obtained from the

reference subdomain by transformations {R®},<;<, C R®*3, whose components consist of
—1,0, and 1,

QP = ROQ® (1<i<p).

We assume that nodal points in ng) are numbered by an index set A(C?) ={1,2,... ,ng)} C
Ag. Let A(é) C Ag (#Ag) = n(c?) ) be an index set corresponding to nodal points in ng) for
i=1,...,p—1 Let T,”) be a partition of (X, which produces the partition T of O by

TO ={K'eTh; K'=RYK, VK e T} (1<i<p).
We assume that the union of Y;z(i),
T, = U0§i<p7-;7,(i) )
is a partition of the whole domain Q.

Lemma 1 Avwailable subdomain numbers by transformations described above are
2,3,4,6,8,12, 16,24, and 48.

Figure 1 shows a domain decomposition when p = 24 and P1-mesh subdivision, where a 24th
part of the spherical shell domain is cut off and every subdomain is shifted slightly to show
the decomposition better.



216

5.1 Transformation of scalar valued FEM basis

We set A := A fori =0,...,p—1 and 2l :=ny, and define a bijection r from AS)
onto AY) by

ra(w) =v  (neAS, veA]),
where P, = R9P, fori=1,... ,p—1.

Lemma 2 We have 1,(z) = $,(RD™'z), where y = rgf)—l(y) forveAY, ze O and
i=1,...,p—1.

Let D® and MY be sub-stiffness and sub-mass matrices defined by

[D(i)]l“/ = ZKGT(")h%{(V% ,V%)K (:u” Ve AS\?’ 0<i< p) ’ (6)
M2, / by, Py d (mrveAd 0<i<p). (7)

Remark 4 We note that the sizes of D@ and M are ny x ny. Equations (6) and (7)
define only n! M X ngw) entries of these matrices. We may set all the other entries to be zero,
which have no contribution in the following. The effective sizes of the matrices are nS&) X ngg,)

In advance of the subsection 5.2 we give similar remarks for 59, A® B® and MY, whose

sizes are nx X 1, nx X nx, ny X nx, and nx X nx, respectively.

Theorem 2 It holds that, fori=1,... ,p—1,

D), = [DO),, (n,v € A),
[M(Z)]# ry = [MI(SI)]#V (u,v € Ag\(/)l)) )

where i =\ (p) and V' = rw).

5.2 Transformation of vector valued FEM basis
We assume that the association of [ap, 1] with o € Ax satisfies
ap = [(a—1)/3]+1, a; = ((@—1) mod 3)+1,
where [ -] denotes the greatest integer less than or equal to the argument. We define
Ag? ={a€lAx; a=[a, ], a € A(i)} (0<i<p).
We note that Ag?) ={1,2,.. (0)} We define a bijection ’I'X from A(O) onto A( ) by
f@=8  (a=looe] €AY, 5= 0] € AD),
where Gy = r%}(ao) and RY £0fori=1,...,p— 1. We define sign vectors {§};<;<, C

B a1 _
R™x corresponding to the transformations RO by

[g(i)]ﬂ = 215153}2([21 (B = [Bo, B1] € AS? , 1<i<p).
We note that [§@]s =1 or —1 for § € A.
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Lemma 3 We have pg(z) = [§9)3RO 0, (RD ™" 2), where o = (,6) for B € AY,
zeQ, andi=1,...,p—1.

Let A®, B® and M §? be sub-stiffness and sub-mass matrices defined by

A9, 5 2/ D(gs) : Dlpa) dz (0Ber?, 0<i<p), (8)

[BOLyg =~ | V- pside (veAl), BeAP, 0<i<p),  (9)
oy

[Mg)]aﬁ = /Qmsoﬂ"Padx (asIBGAg?a OSZ<P) (10)
h :

Theorem 3 It holds that, fori=1,... ,p—1,

(A9 g = [9er [4@)ap 5] (a, BeAD),
(B s = BLus [59s (he Ay, BeAD),
[M)(?]a'ﬁ’ = [M,‘? )]aﬁ (e, B € A@)\» »

(z)

where o =1P(a), 8 =rP(B), and y' = ri(

1.

Remark 5 By virtue of Theorems 2 and 3 we do not need to store the total stiffness and
mass matrices in the whole domain. It is sufficient to construct and store these matrices only
in the reference subdomain Qg)), which reduces required memory drastically.

6 Numerical result

We employ a preconditioned conjugate gradient (CG) method with projections. The pre-
conditioner is a combination of an incomplete Cholesky decomposition of the discretized
Stokes matrix corresponding to the nodes in Q) \ F, and a diagonal scaling of the matrix
corresponding to the nodes on the interface F. The preconditioning operation of the former
can be performed in parallel completely by p processors (cf. Remark 5), and that of the latter
can be also done by a suitable decomposition of the nodes on the interface F.

We observe the efficiency of memory reduction and parallel computation by the decompo-
sition into congruent subdomains. In a test problem, the solution is given by

Uy = Sinx; — Ty COS Zo,
U = 2(sinxzy — 9 cOS 3),
ug = 2sinxs — x3(cos a2 + cos z7),

p =sinz; +sinzy + sinzs .

We impose inhomogeneous boundary conditions instead of (2), and seek the velocity in an
affine space of V, subject to the inhomogeneous normal component. The radii of the spherical
shell are set to be Ry = 0.5 and Ry = 1.0. Discretization parameters are listed in Table 1.
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The stability parameter d is set to be 0.1. The convergence criterion of the CG solver is set
to be 1076 in the relative residual. When the subdomain number p = 24, 373 iterations were
done to get a solution, whose relative errors were ||u — || g1(a,)3/|[ul |z (an): = 2.826 x 1072
and ||p — pa||z2@n)/ 1Pl 2(0n) = 1.933 x 1073, Table 2 shows total required memory storage
of a program code. Although some arrays to store data of nodal points and some work
vectors for the CG solver are invariant, this result shows the algorithm can reduce memory
drastically using many subdomains. Table 3 shows the elapsed time of CG iterations, which
does not include the time to construct the preconditioner, and the parallel efficiency when
the subdomain number p = 24. We used Fujitsu GP7000F, parallel computer of shared
memory type at the Computer Center of Kyushu University, and a thread library developed
by RWCP OpenMP compiler project[3].

7 Conclusion

A technique of domain decomposition into a union of congruent subdomains can drastically
reduce required memory to store stiffness and mass matrices. In combination with projection
operations to treat the slip boundary conditions, a preconditioned conjugate gradient solver
is easily implemented using the domain decomposition. It has high parallel efficiency on a
shared memory-type parallel computer.

Acknowledgments
This study was supported by the Ministry of Education, Science, Sports and Culture of Japan under
Grant-in-Aid for Scientific Research (B), No. 11554003.

References

[1] L. P. Franca, S. L. Frey, and T. J. R. Hughes. Stabilized finite element methods: I. Application
to the advective-diffusive model. Comp. Meth. Appl. Mech. Engrg., 95 (1992), 253-276.

[2] T. J. R. Hughes and L. P. Franca. A new finite element formulation for computational fluid
dynamics : VII. The Stokes problem with various well-posed boundary conditions : Symmetric
formulations that converge for all velocity/pressure spaces. Comp. Meth. Appl. Mech. Engrg.,
65 (1987), 85-96.

[3] RWCP. Omni: RWCP OpenMP compiler project. http://pdplab.trc.rwcp.or. jp/0mni.

[4] A. Suzuki, M. Tabata, and S. Honda. Numerical solution of an unsteady Earth’s mantle con-
vection by a finite element method. Theoretical and Applied Mechanics, 48 (1999), 371-378.

[5] A. Suzuki and M. Tabata. A domain decomposition method by congruent subdomains for a
Stokes problem in a spherical shell, in preparation.

[6] M. Tabata and A. Suzuki. A stabilized finite element method for the Rayleigh-Bénard equations
with infinite Prandtl number in a spherical shell, to appear in Comp. Meth. Appl. Mech. Engrg.



219

Table 1: Discretization parameters (ng and ng : numbers of vertices and elements, h : max-

imum element diameter, ny and nj, : degree of freedoms of velocity and pressure).

ng ng h nx nyM
324,532 1,868,544 5.558 x 1072 973,596 324,532

Table 2: Required memory (p : number of subdomains).

p M bytes
1 1,773.8
8 513.5
24 456.7

Table 3: Elapsed time and parallel efficiency when p = 24 (n : number of CPUs, r : speed-up

ratio, e : parallel efficiency).

seconds T e
5,961.89  1.00 —
3,096.23 1.93 96.28
1,561.35 3.82 95.46
789.76  7.55 94.36
24 35222 16.93 70.53

o x N =3

Figure 1: Domain decomposition of a spherical shell into 24 subdomains.



