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1 Introduction
The main purpose of this paper is to investigate some typical problems of wave motion in
unbounded region which are related to radiation or scattering phenomena. The Helmholtz
equation is one of the most important mathematical models which is used to describe the
time harmonic behavior of various vibration and wave propagation phenomena.

The motivation of research is to understand main characteristics of wave propagation
phenomena in obstacle scattering $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ wave radiation process through its numerical
computation based on its mathematical analysis.

The importance of the wave propagation resides in the fact that it transmits information
and transports energy. Some examples of research fields related to the wave propaga-
tion include acoustics, elasticity, electromagnetism with various applications such as sound
emission from a speaker, human speech production, sound production of musical instru-
ments, noise reduction, diagnostics or detection by ultrasonic wave, propagation of waves
in optical fiber of fiber scope, heating by wave for various kinds of materials and others.
Some of the characteristic quantities to be calculated in these problems include scattering
amplitudes, transmission and reflection coefficients, resonance frequencies.

To investigate numerically the wave propagation phenomena in unbounded region using
computers, we have to approximate the original problem which is formulated in some
infinite dimensional function space by the one in an appropriate finite dimensional linear
space. For this purpose, we first use the knowledge of the analytical properties of the
solution to the original problem such as the radiation condition at infinity $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ the
expression of the solution by a series of special functions or by an integral involving Green’s
function. We then reduce the problem into the boundary value problem in a bounded region
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with some truncation error for its solution and apply a finite element discretization method
to get the $\underline{1\mathrm{i}_{11}}\epsilon \mathrm{a}\mathrm{r}$ equation in a finite dimensional approximation space.

Especially, we will show the effectiveness of the radiation condition at infinity which
describes the asymptotic behavior of the solution and singles out the physical solution.
We then use the domain decomposition method which divides the original problem in an
unbounded region into the problem in a bounded region and the one in an outer region
with simple shape.

More specifically, we treat a two-dimensional wave-guide problem where we use the
exact boundary condition given by the Diriclet to Neumann map on the boundary between
a bounded region and an outer unbounded region which is cylindrical with a bounded
cross section. We also consider a one-dimensional problem related to this original two-
dimensional problem.

We will show some numerical examples, and discuss the relationship between $2\mathrm{D}$ and
1D cases and show some numerical examples which indicate the efficiency of the 1D model
as the good approximation of the $2\mathrm{D}$ problem in the sense that it gives similar frequency
response curves.

2 Mathematical Formulation
The main mathematical framework of the study consists of the scattering theory based
on the perturbation theory for linear operators and the finite element method for partial
differential. equations.

The first difficulty in studyi.ng the $\mathrm{r}\mathrm{a}.\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ or scattering problem comes from the un-
boundedness of the region where we consider the partial differential $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\grave{\mathrm{i}}_{\mathrm{o}\mathrm{n}}$ and we have
to choose an appropriate function space. The second problem we have to $\dot{\mathrm{t}}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}$ appropri-
ately is the indefiniteness of $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ bilinear form which appears in the weak formulation used
for the finite element method in the artificial bounded region and we hav.e to consider the
problem with non-real variables as well.

In this paper, we restrict our study to the two-dimensional case although the real physical
phenomena occur in three-dimensional space. However, at least the theoretical part of our
study can be extended to the three-dimensional case without any essential difficulty. The
main problem we may have to solve is the practical computational complexity due to the
large number of unknowns in $3\mathrm{D}$ case and the shortage of memory and speed of the present
computers together with the human resources in programming.

2.1 Two-dimensional Wave Propagation Problem
The wave propagation phenomena in two-dimensional space $R^{2}$ can be described by the
following mathematical model of the wave equation in $\Omega\subset R^{2}$ :

$( \frac{\partial^{2}}{\partial t^{2}}-\triangle)u(t, X, y)$ $=$ $f(t, x, y)$ in $(- \infty, \infty)\cross\Omega_{\text{ノ}}.\triangle=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, (1)
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$( \alpha\frac{\partial}{\partial n}+\beta)u(t,x, y)$ $=g(t,x,y)$ on $(-\infty, \infty)\mathrm{x}\partial\Omega$ , (2)

where $\frac{\partial}{\partial n}$ denotes the outward normal derivative on the boundary $\partial\Omega$ of $\Omega$ .
In the following, we consider a stationary time harmonic solution of the problem: ,$u(t,x,y)=$

$e^{i\omega t}u(x, y)$ for inhomogeneous data: $f(t,x,y)=e^{i\omega l}f(x,y)$ and $g(t, x,y)=e^{i\omega t}g(x, y)$ from
which we can calculate almost every important quantity. Then $u$ satisfies the Helmholtz
equation:

$(-\Delta-\omega^{2})u(X,y)$ $=f(x,y)$ in $\Omega$ , (3)
$( \alpha\frac{\partial}{\partial n}+\beta)u(x,y)$ $=g(x,y)$ on $\partial\Omega$ (4)

with some radiation condition at infinity $(r=(x^{2}+y^{2})^{1/2}arrow+\infty)$ .
We assume that the boundary $\partial\Omega$ consists of two mutually distinct parts: $\partial\Omega=\Gamma_{H}\cup\Gamma s$

where $g=g_{S}$ on the source boundary $\Gamma_{S}$ and $g=0$ on the homogeneous boundary $\Gamma_{H}$ .
The existence and uniqueness of the solution to this radiation or scattering problem can be
proved by the limiting absorption principle which claims that the physical solution is the
limit of the solution for the problem with positive absorption when the absorption tends
to zero. In case that we know Green’s function of the corresponding free space problem
which satisfies the radiation condition at infinity, we can construct the solution solving the
integral equation on the boundary.

2.2 Reduction to a Problem in a Bounded Region
We introduce an artificial boundary in $\Omega$ which includes the source boundary $\Gamma_{S}$ and we
assume that the shape of the outside the boundary is simple. For example, it is the outside
of a disk or a cylindrical region. The, using the knowledge of the solution outside the
boundary we impose the boundary condition on the artificial boundary which may the
Diriclet to Neumann ($\mathrm{D}\mathrm{t}\mathrm{N}$ in short) map or its approximation. We sometimes call it a
radiation boundary condition (or artificial boundary condition).

In the $2\mathrm{D}$ wave-guide problem with a cylindrical unbounded semi-infinite channel, the
radiation condition in the cylindrical is written as:

$\frac{\partial p}{\partial n}(=\frac{\partial p}{\partial x})=\Lambda p$ on $\Gamma_{R}$ , (5)

where $\Gamma_{R}$ is an artificial boundary which is a cross section of the cylindrical region and A
is the Dirichlet to Neumann nap in the outer cylindrical region given as

$\Lambda p=\sum_{\overline{\sim}^{0}}^{\infty}\gamma nCn(p)\mathrm{c}n\mathrm{o}\mathrm{s}(\frac{n\pi}{L}y)$ (6)

with

$C_{n}(p\rangle=\{$

$\frac{1}{L}\int_{0}^{L}p(x,y)dy$ $(n=0)$

$\frac{2}{L}\int_{0}^{L}p(x_{7}y)\cos(\frac{n\pi}{L}y)dy$ $(n\geq 1)$ ,
(7)
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$\gamma_{n}=\{$

$i\zeta_{n}$ ,

$-\eta_{n}$ ,

$\zeta_{n}=\{\omega^{2}-(\frac{n\pi}{L})2\}^{1/}2$ , $0< \frac{n\pi}{L}<\omega$

$\eta_{n}=\{(\frac{n\pi}{L})2-\omega 2\}^{1}/2$ , $\omega\leq\frac{n\pi}{L}$ .
(8)

Then the Helmholtz equation in the inner domain $\Omega_{i}$ is given as:

$(-\omega^{2}-\Delta)p=0$ in $\Omega_{i}$ (9)

$\frac{\partial p}{\partial n}=0$ on $\Gamma_{H}$ , $\frac{\partial p}{\partial n}$

$=g_{S}$ on $\Gamma_{S}$ , $\frac{\partial p}{\partial n}=\Lambda p$ on $\Gamma_{R}$

Related to this $2\mathrm{D}$ wave-guide problem, we can consider the corresponding 1D Webster’s
horn equation given as:

$- \frac{\partial v}{\partial t}=\frac{A(x)}{\rho}\frac{\partial p}{\partial x’}$ $- \frac{\partial p}{\partial t}=\frac{\rho c^{2}}{A(x)}\frac{\partial v}{\partial x’}$ (10)

where $p$ is the pressure and $v$ is the velocity, and $A(x)$ denotes the area of the cross section.
Eliminating $v$ , we have the 1D approximation model called Webster’s horn equation:

$\frac{\partial^{2}p}{\partial t^{2}}-\frac{1}{A(x)}c^{2_{\frac{\partial}{\partial x}(()\frac{\partial p}{\partial x})0}}AX=$ , (11)

3 Week Formulation and Discretization
In this paper, we use the finite element method to dicretize the problem in the artificially
truncated region with an artificial boundary condition. We start with a weak formulation
of the problem in an appropriate closed subspace $\mathcal{V}$ of the Sobolev space $H^{1}(\Omega_{i})$ defined
through the boundary condition and then restrict the problem into a finite dimensional
subspace of $\mathcal{V}$ which is a set of all piece-wise linear continuous functions in $\mathcal{V}$ with respect
to a regular triangulation of $\Omega_{i}$ . We note that we have to introduce an appropriate approx-
imation of the boundary integral which corresponds to the non-local boundary condition
such as the higher order radiation boundary condition or the Dirichlet to Neumann map.
In the following, we show the case of the $2\mathrm{D}$ wave-guide problem in some detail.

The weak formulation for the Helmholtz problem (3) and (4) with the artificial boundary
condition is given as:

Find $p\in \mathcal{V}\subset H^{1}(\Omega)$ :

$a(p, q)=(f, q)(=a0(g, q))$ $\forall q\in \mathcal{V}$

where, together with its approximation $a_{N}(\cdot, \cdot)$ ,

$a(p, q)$ $=$ $a_{0}(p, q)+b_{1}(p, q)+b_{2}(p, q)$ ,
$a^{N}(p, q)$ $=$ $a_{0}(p, q)+b_{1}(p, q)+b_{2}N(p, q)$
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with

$a_{0\backslash }p,$
$q’\backslash )$ $=$ $J_{\Omega}^{[_{\nabla_{\mathrm{v}}}}p\cdot\overline{\nabla q}|\perp p\overline{q}.d\tau_{U\prime}"\prime \mathrm{J}y$

$o(\iota_{1}p, q)$ $=$ $-/( \infty’+^{1}\perp)2\int_{\Omega}p\overline{q}dxdy$

$b_{2}(_{\sim^{\wedge}}p, q)$ $=$ $-(\Lambda p(_{X_{B}},$ $\cdot \mathrm{I},$ $q(xR, \cdot \mathrm{I})=b_{2}.;(p,$ $q\mathrm{I}+b_{\underline{?},r}\infty(p,$
$q\mathrm{I}$

$U_{2,i(P,q}l/\backslash J$ $=$ $-i \omega LC_{0}(p)C_{0}(q)-\prime i0<\frac{\sum_{n\pi}}{L}<\omega\zeta_{n}(\frac{L}{2}JCn(p\backslash /)c_{n}(q)$

$b_{2,r}^{\infty}(p, q)$ $= \sum_{\omega\leq\frac{n\pi}{L}}\eta_{n}(\frac{L}{2})c_{n}(\mathrm{P})c_{n}(q)$ ,

where $\zeta_{n}$ and $\eta_{n}$ are all nonnegative constants in (8), and

$b_{2}^{N}(_{\backslash }\mathrm{P}, q)$, $=$ $-(\Lambda^{N}p(_{\backslash }xR*\cdot 1.q(x_{P}\text{ノ}/J\backslash ’\cdot)),=b_{2},\dot{\tau}\vee(_{\backslash }p_{\mathit{1}}.\mathrm{x}_{/}1\mathit{0}+b^{N}2,\gamma(p,$$q,1$ ,

$b_{2,r}^{N\prime}(p, q \grave{)} = \frac{L}{}.\omega\leq n\leq Lr/n(^{\frac{L}{2}}rightarrow N/\grave{j}C_{n}(p)Cn(q)\backslash .$

Now the finite element method is formulated as:

Find $p_{h}\in \mathcal{V}_{h}\subset H^{1}(\Omega)$ :

$a(ph, qh)=(f, qh)(=a0(g, qh))$ $\forall q_{h}\in \mathcal{V}_{h}$ .

4 Error Analysis
We develop the error analysis for the finite element discretization for the Helmholtz equation
with the $\mathrm{D}\mathrm{t}\mathrm{N}$ boundary condition. We give rather abstract results which is essentially
known but in an operator theoretical formulation. In application to $2\mathrm{D}$ wave-guide problem,
we use the result of Mikhlin [2] and the results of compact perturbation theory as well as
the uniqueness of the analytic solution.

4.1 Abstract Error Analysis for Finite Element Method

We consider the following four problems:

1: $(\mathrm{E})_{\mathrm{w}}$ : Find $u\in \mathcal{V}$ such that

$a(u,$ $v\rangle$ $=(.f,$ $v1$. for all $v\in \mathcal{V}$ .

2: $(\mathrm{E}_{\mathrm{h}})_{\mathrm{w}}$ : Find $u_{h}\in \mathcal{V}_{h}$ such that

$a(.u_{h}, v_{h_{-}})=(.f,$ $v_{h}1$
, for all $v_{h_{-}}\in \mathcal{V}_{h}.\cdot$
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3: $(\mathrm{E}^{\mathrm{N}})_{\mathrm{W}}\vee$ : Find $u^{N}\in \mathcal{V}$ such that

$a^{N}(u^{N}, v)=(f, v,)$ for all $v\in \mathcal{V}$ .

4: $(\mathrm{E}_{\mathrm{h}}^{\mathrm{N}})_{\mathrm{W}}$: Find $u_{h}^{N}\in \mathcal{V}_{h}$ such that

$a^{N}(u_{h}^{N}, v_{h})=(f, v_{h})$ for all $v_{h}\in \mathcal{V}_{h}$ .

By Riesz’s representation theorem, two operators $A$ and $A_{N}$ are defined as:

$a(u, v)=(Au, v)$ and $a^{N}(u, v)=(A^{N}u, v)$ for all $v\in \mathcal{V}$ .

Then, we have the above four equations are equivalent to the following operator equations
respectively:

1. $(\mathrm{E})_{\mathrm{o}\mathrm{p}}$ : $Au=f$

2. $(\mathrm{E}_{\mathrm{h}})_{\mathrm{o}\mathrm{p}}$ : $A_{h}u_{h}=f_{h}$ with $A_{h}=P_{h}A$ , $f_{h}=P_{h}f$

3. $(\mathrm{E}^{\mathrm{N}})_{0}\mathrm{P}$ : $A^{N}u^{N}=f$

4. $(\mathrm{E}_{\mathrm{h}}^{\mathrm{N}})_{\mathrm{o}\mathrm{p}}$ : $A_{h}^{N}u_{h}^{N}=f_{h}$ with $A_{h}^{N}=P_{h}A^{N}$ , $f_{h}=P_{h}f$

Using the relations $Au=A^{N}u^{N}=f$ and

$P_{h}Au_{h}=A_{h}u_{h}=f_{h}=A_{h}^{N}u_{h}^{N}=P_{h}f=P_{h}Au=P_{h}A^{N}u^{N}$ ,

we can transform the expression of the error $u-u_{h}^{N}$ as follows:

$u-u_{h}^{N}$ $=u-v_{h}+v_{h}-u_{h}^{N}$

$=u-v_{h}+(A_{h}^{N})^{-}1ANvh-hNu_{h}$

$=u-v_{h}+(A_{h}^{N})^{-1}A_{hh^{-}}^{N}v(A_{h}^{N})^{-1}fh$

$=$ $u-v_{h}+(A_{h}^{N})^{-1}A^{N}hv_{h}-(A_{h}^{N})^{-1}P_{h}f$

$=u-v_{h}+(A_{h}^{N})^{-1}A^{N}v_{h}-h(A_{h}^{N})^{-1}P_{h}Au$

$=u-v_{h}+(A_{h}^{N})^{-1}\{A_{h}^{N}v_{h}-P_{h}Au\}$

$=$ $u-v_{h}+(A_{h}^{N})^{-1}\{P_{h}A^{N}v_{h}-P_{h}Au\}$

$=u-v_{h}+(A_{h}^{N})^{-1}\{PhAN(v_{h}-u)+P_{h}A^{N}u-P_{h}Au\}$

$=$ $\{I-(A_{h/}^{N}\backslash -1P_{h}AN)\}(u-v_{h})+(A_{h}^{N})^{-1}P_{h}(AN-A)u$ .

Hence we can estimate the above difference as:

$||u-u_{h}^{N}|| \leq(I+||(A_{h}^{N})^{-1}||||A^{N}||)\inf_{\in v_{h}h}||u-v_{h}||+||(A_{h}^{N})^{-1}||||(A^{N}-A)u||$

Therefore, our next task is to prove the followings:
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1.
$\mathrm{T}\mathrm{h}\mathrm{e}\mathit{1}^{\mathrm{h}}\mathrm{v}^{r}.\cdot$

uniform $\mathrm{b}_{0}\mathrm{u}\mathrm{n}.\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}$ of $||(A_{h}^{N})-1||:||(A_{h}^{N})^{-1}||\leq M<+\infty$ with respect to $h$ and

2. The truncation error estimate: $||(A^{N}-A)u|| \leq\frac{c}{N^{\alpha}}||u||_{w}$ under the regularity condi-
tion for $u:u\in \mathcal{W}\subset \mathcal{V}$ .

In the next section, we apply the results to the wave-guide problem.

4.2 Application to Wave-Guide Problem
We can apply the abstract error estimation based on the following observations:

1. The sesquilinear form $b_{2,r}^{\infty}(p, q)$ is bounded and nonnegative in $\mathcal{V}$ . Hence $a_{0,DN}(p, q)\equiv$

$a_{0’}(p, q)+b_{2,r}^{\infty}(p, q)$ is an inner product in $\mathcal{V}$

2. The form $b_{1}(p, q)+b_{2_{\tau}i}(p, q)$ is compact with respect to $a_{0,DN}(p, q)$ in $\mathcal{V}$ .

3. We can then apply the results by Mikhlin [2] (see also Kako [1]) and we can prove
the convergence of the finite element method under some additional condition on the
$\mathrm{n}\mathrm{o}\mathrm{n}arrow \mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of a positive eigenvalue $\mathrm{f}\mathrm{o}\mathrm{r}-\triangle$ in $\Omega$ .

4. The difference between $a(p, q)$ and $a^{N}(p, q)$ is written as:

$a(p, q)-a(Np, q)= \sum_{N<n}\eta n(\frac{L}{2})c_{n}(p)Cn(q)=(\{\Lambda-\Lambda N\}p, q)$ ,

and $||\{\Lambda-\Lambda^{N}\}p||_{L^{2}(L)}0$, tends to zero exponentially with respect to $N$ or is estimated
$\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}\mathcal{W}$

.
above by $\frac{c}{N^{\alpha}}||u||_{\mathcal{W}}$ with any $\alpha$ and a corresponding higher order Sobolev space

5 Some Numerical Examples
In this section, we show some numerical examples calculated by using the methods intro-
duced in the previous sections.

We show a numerical example of $2\mathrm{D}$ wave propagation in the vocal tract open to an
infinite cylinder. The Fig.1 shows a wave profile with $\cdot$ a time frequency 7.5 $\mathrm{k}\mathrm{H}\mathrm{z}$ for the
shapes of vowels ”

$\mathrm{a}$

” (left) and ”e”(right). The source is placed on the left edge and the
right side is a radiation boundary. The next Fig. 2 shows a frequency response curve for
$,,\mathrm{a}$”measured at the mid point on the radiation boundary. We can see that, as the shape
of the vocal tract becomes flatter, the response curve approaches nearer to the one of 1D
model.
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$|\mathrm{p}(\mathrm{X}\mathrm{s}\mathrm{m}.\mathrm{a}9^{)}\mathrm{I}\llcorner_{\circ \mathrm{W}}:.\cdot\cdot.\cdot.\cdot\cdot.\cdot\cdot.\cdot\cdot.\cdot\cdot.\cdot\cdot-\mathrm{H}\mathrm{l}\mathrm{s}h1\mathrm{z}:1\mathrm{R}\mathrm{f}r\epsilon \mathrm{q}-75\mathrm{r}M3$

$\mathrm{s}-\cdot \mathrm{e}$

I $\mathrm{p}\mathrm{t}\mathrm{x}$ . $Q’|\mathrm{L}\mathrm{m}..\cdot.\cdot.\cdot\cdot..\cdot.\cdot\cdot..\cdot...\backslash \backslash \backslash \infty \mathrm{H}_{1}\mathrm{g}\mathrm{h}$ $1\mathrm{z}:\iota[\epsilon-1$ $F$requency 7 5 $[\mathrm{k}\mathrm{H}_{\mathrm{Z}}]$

Figure 1: Wave profiles for vowels ”
$\mathrm{a}$

” and ”
$\mathrm{e}$

” in 7. $5\mathrm{K}\mathrm{H}\mathrm{z}$

Figure 2: Comparison between 1D and $2\mathrm{D}$ frequency response curves for ”
$\mathrm{a}$

”

6 Concluding Remarks
We have developed a methodology to calculate problems in unbounded regions by use of
the $\mathrm{D}\mathrm{t}\mathrm{N}$ mapping or its approximations. Error analysis is given as an extension of the
standard method. Application to a problem having resonance phenomena is presented and
some typical phenomena have been captured in these numerical experiments. Applications
to more realistic problems are future subject of study.
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