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Abstract
This paper proposed a delamination model permitting to recover the fracture

mechanics approach as well as the interface damage approach. The mathematical
properties of this model are studied. It is governed by a functional which is neither
smooth nor convex. Existence theorem is proved for a regularized interface model.
The convergence of the solutions of the regularized problem to a solution of the
nonsmooth initial problem is established. Numerical tests has been performed in
the case of a laminate composed as two plates.

1 Introduction
A great amount of structures are now made of laminated composites or of materials
bonded together by a thin layer of adhesive. Under some repeated loadings or accidental
chocks, some defects may occur in the adhesive layer on the interface. The growth in
size and in number of these defects on the interface is called the delamination process. It
can induce a loss of stiffness and strength of the composite and it can even lead to the
complete debonding of two parts of a structure.

Due to the growing use of composites laminated and of adhesive in the industry, it is
more and more important to understand this phenomenon and to have a relevant model
in order to predict the evolution of a composite structure under specific loadings.

This is confirmed by the considerable literature dealing with the delamination prob-
lem.

Two different approaches are used.

1) The study of the delamination of composites may be carried out by adopting a
fracture mechanics approach [1, 2, 3, 4]. In fact when there is separation of two
bonded parts of a structure, the growth of the debonded area is equivalent to the
propagation of a fracture in an a priori known direction.

2) But, when the progressive damage of the interface is taken into account, then the
study may be carried out by introducing appropriated interface constitutive laws [5]
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Formally, these two approaches are quite different. But, from a physical point of
view, it seems reasonable to think that they can be related.

This article has three main purposes :

1) to present a delamination model which allows to recover either the classical fracture
mechanics theory or, via regularization of the involved functionals, a wide variety
of interface constitutive models,

2) to give the corresponding existences theorems,

3) to propose some numerical procedure and to use it in some specifics cases.

A model of delamination is first presented. The functional involved in this model
is neither smooth nor convex. Nevertheless, it can be proved that this functional is
subdifferentiable. The main mathematical properties of this nonsmooth model are studied
and the link with fracture mechanics is shown.

Then a regularization of the non-differentiable functional is introduced,
To remove the difficulty due to the non-differentiability, a regularized problem is

introduced, which, in fact, corresponds to a relevant mechanical modelization of the de-
lamination and the corresponding constitutive law is described.

A theorem of existence for a solution of the regularized problem is established.
Then the convergence of solutions of the regularized problems to a solution of the

initial non smooth problem is proved.
Since the three dimensional analysis needs strong computational efforts, a plate model

is adopted to perform numerical tests. Finite element formulation and a numerical pro-
cedure based on a predictor-corrector scheme are developed. Finally, numerical results
relative to simple structural problems are treated.

2 The delamination model

The object of this paragraph is the presentation, in the framework of the small displace-
ments and deformations theory, of the delamination model proposed in [10] and based on
the Fr\’emond adhesive model [6, 7, 8, 9].

Delamination means the debonding of two parts of a composite laminate, hence in
order to describe the mechanical state of such a solid, a new variable is introduced on the
interface between the two parts. In Fr\’emond model, this variable, denoted $\beta$ represent
the adhesion of the two parts on the interface: $\beta$ is equal to 1 if the adhesion is complete
, $\beta$ is equal to $0$ if the debonding is complete, and eventually, $\beta$ can take values between $0$

and 1 and, in this case, it can be interpreted as the proportion of active adhesive link by
unit of area on this interface. But in articles on delamination, it is more usual to speak of
damage on the interface. In this case the variable is denoted by $d$ or here, by $\gamma$ . When
the two parts are completely bonded together, there is no damage and $\gamma=0$ and, on the
contrary, if there is no more link, there is total damage and $\gamma=1$ . So, in fact, $\gamma$ can be
considered as $\gamma=1-\beta$ .

The main difference between the two notions is that the damage can only increase in
time.
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To present this model, only one interface, denoted by $S$ , of a composite laminate, $V$

, is considered and, for sake of simplicity, this interface is assumed to be flat.
The Cartesian coordinate system $(x_{1}, x_{2}, x_{3})$ is introduced such that the plane spanned

by the axes $x_{1},$ $x_{2}$ contains the interface $S$ . The time is denoted by $t$ . The whole body
can be regarded as two superimposed connected plates $V_{1}$ and $V_{2}$ which can be separated.

The displacement vector $\mathrm{u}(x_{1}, x_{2}, x_{3}, t)$ is defined on $(V_{1}\cup V_{2})\cross \mathrm{R}^{+}$ , and its restriction
to $V_{i}$ is denoted by $\mathrm{u}^{(i)}$ with $i=1,2$ . The relative displacement vector of two points on
the surface $S$ , belonging to the plates $V_{1}$ and $V_{2}$ and characterized by the same in-plane
coordinates, is defined as

$\mathrm{s}(x_{1}, x_{2}, t)=\mathrm{u}^{(2)}(x_{1}, x_{2},0, t)-\mathrm{u}^{(1)}(x_{1}, x_{2},0, t)$ (1)

The relative displacement $\mathrm{s}$ can be decomposed in its normal $s_{n}$ and tangential $\mathrm{s}_{t}$ com-
ponents on the surface $S$ , according to the formula $\mathrm{s}=s_{n}\mathrm{n}+\mathrm{s}_{t}$ , where $s_{n}=\mathrm{s}.\mathrm{n}$ with $\mathrm{n}$

the unit vector oriented along the outward normal to $V_{1}$ on $S$ .
The variable $\gamma(x_{1}, x_{2}, t)$ represents the damage state on the set $S\cross \mathrm{R}^{+}$ . This variable

$\gamma$ can vary between $0$ and 1.
The relation between the damage variable and $\mathrm{s}=\mathrm{u}^{(2)}-\mathrm{u}^{(1)}$ which measures the gap

between the two parts of the composite laminate, must be now specified. The simplest
assumption is made. If, on a point of the interface $S$ , there is no more contact, $\mathrm{u}^{(2)}-\mathrm{u}^{(1)}\neq$

$0$ , then the damage is complete and $\gamma=1$ . If the damage is not complete , $0\leq\gamma<1$ ,
then there must be contact, $\mathrm{u}^{(2)}-\mathrm{u}^{(1)}=0$ on this point. Besides, the non interpenetration
of the two parts $V_{1}$ and $V_{2}$ imposes on $S$ that the normal relative displacement $s_{n}$ must
be positive. Hence, the proposed simple interface model satisfy the following conditions
on $S$ :

$(1-\gamma)\mathrm{s}=0$ $s_{n}\geq 0$ $0\leq\gamma\leq 1$ (2)

The first of the conditions (2) imposes that the relative displacement is zero until the
damage is total. The second relation of (2) represents the condition of unilateral contact
between the two plates constituting the laminate.

The problem is completed by a consistent evolution law for the damage parameter.
Herein, a very simple evolution law is considered, based on the physical evidence that
delamination cannot recede. As a consequence, it is assumed that the damage parameter
is an increasing function of time:

$\dot{\gamma}\geq 0$ (3)

It can be proved that this simple and intuitive evolution law satisfies the Clausius-Duhem
inequality on dissipation [10].

In the following it is supposed that the external forces do not dependent on the
evolution variable $t$ and inertial terms are neglected, hence a static problem is considered.
The sets $K$ and $A$ are introduced as:

$K=\{(\mathrm{s}, \gamma) : (1-\gamma)\mathrm{s}=0 s_{n}\geq 0\}$ $A=\{\gamma : \gamma_{i}\leq\gamma\leq 1\}$ (4)

where $\gamma_{i}$ represents the initial damage state and is assumed to verify $0\leq\gamma_{i}\leq 1$

Consequently $\gamma=\mathrm{o}\mathrm{n}$ the part $S_{d}$ which is initially delaminated, that is where $\gamma_{i}=1$ , the
damage must remain equal to 1.
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The admissible solutions must belong to the set $K$ and to the set $A$ in order to verify
the assumed constitutive law and to prevent the decrease of the damage variable.

The problem of the delamination of two plates connected by an interface material
modeled by equations (2) and (3), is formulated in variational form in the framework of
the small displacements and strains theory.

If $\epsilon$ represents the strain tensor in the body $V_{i}$ , it is defined in this framework as the
symmetric part of the gradient operator on $\mathrm{u}^{(i)}$ such that

$\epsilon(\mathrm{u}^{(i)})=\frac{1}{2}(grad(\mathrm{u}^{(i)})+grad(\mathrm{u}^{(i)})^{T})$ (5)

And if linear elasticity is assumed then $\sigma^{(i)}$ which represents the stress tensor in the
body $V_{i}$ , is defined by:

$\sigma^{(i)}(\mathrm{u})=\mathrm{A}^{(i)}(\epsilon(\mathrm{u}^{(i)}))$ (6)

with $\mathrm{A}^{(i)}$ the fourth order elasticity tensor of the plate $V_{i}$ . It is a linear symmetric operator
depending on the mechanical properties of the solid. The associated elastic energy is the
half of the quadratic form associated to the symmetric bilinear form $a^{(i)}$ , defined on $V_{i}$

by:

$a^{(i)}( \mathrm{u}^{(i)}, \mathrm{v}^{(i)})=\int_{V_{i}}\sigma^{(i)}(\mathrm{u}^{(i)})\epsilon(\mathrm{v}^{(i)})d_{\mathrm{X}}$ (7)

The potential energy of the two loaded plates constituting the laminate is defined as

$\Lambda(\mathrm{u})=\frac{1}{2}\sum_{i=1}^{2}\{a^{(i)}(\mathrm{u}^{(i)}, \mathrm{u}^{(i)})-f^{(i)}(\mathrm{u}^{(i)})\}$ (8)

where $f^{(i)}$ is a linear operator which characterizes the potential of the external forces.
These forces can be either surfacic forces on the external boundary of the complete struc-
ture $V$ or volumic forces in $V_{i}$ .

The total potential energy $\pi$ of the system is the sum of the potential energy of the
two loaded plates and of the potential energy of the interface:

$\pi(\mathrm{u}, \gamma)=\Lambda(\mathrm{u})+D(\mathrm{s}, \gamma)$ (9)

In order to obtain only admissible solutions, $I_{\mathrm{A}^{r}}$ and $I_{A}$ , the indicator functions of
the sets $K$ and $A$ , are introduced in the potential energy of the interface:

$D( \mathrm{s}, \gamma)=\int_{S}I_{F_{\mathrm{L}}’}(\mathrm{s}, \gamma)ds-\int_{S}(1-\gamma)\omega ds+\int_{S}I_{A}(\gamma)ds$ (10)

where $\omega$ is the Dupre’s energy of adhesion [12] ; this quantity is the energy which must
be furnish to debond a unit area of the interface $S$ .

Since the set $K$ is not convex, the functional $D(\mathrm{s}, \gamma)$ which contains the indicator
function is neither smooth nor convex. Nevertheless, this functional is subdifferentiable
as pointed out in [7].For sake of self-consistence, the definition of the local subdifferential
in $x$ of a functional $F$ defined on a reflexive Banach space $X$ is recalled here [13] [14] :
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$x^{*}\in\partial F(x)$ $i$ fandonlyi $f$ $\forall y\in V(x)\subset X$ $F(y)\geq\langle x^{*}, y-x\rangle+F(x)$

where $V(x)$ is a neighborhood of $x$ . If the set $\partial F(x)$ is empty the functional $F$ is not
subdifferentiable in $x$ .

It is clear that an indicator function of a set $K$ is subdifferentiable in any point of
$K$ : since it takes only two values : $0$ and $+\infty$ , the subdifferential in a point of $K$

contains at least $0$ . Even if the set $K$ is not a convex set., its indicator function $I_{\mathrm{A}’}$ is
subdifferentiable. Hence the functional $D(\mathrm{s}, \gamma)$ is subdifferentiable too.

Finally, the delamination problem consists in finding a stationary point for the po-
tential $\pi$ , hence the solution state $(\mathrm{u}^{o}, \gamma^{o})$ is obtained by solving the problem:

find$(\mathrm{u}^{O}, \gamma^{O})suchthat0\in\partial\pi(\mathrm{u}^{o}, \gamma^{o})$ (11)

where $\partial\pi$ represents the subdifferential of the non-convex functional $’\pi$ .
In order to have a well-posed problem, it is assumed that the displacement is equal

to zero on $\Gamma_{0i}(i=1,2)$ , which is a subset of strictly positive measure of the external
boundary of the open set $V_{i}$ . Let $\mathrm{H}_{0i}^{1}$ denote the functions of $(H^{1}(V_{i}))^{3}$ whose traces on
$\Gamma_{0i}$ are $0$ . The space $\mathrm{H}_{0}^{1}$ is defined as:

$\mathrm{H}_{0}^{1}=\{\mathrm{u}definedonV_{1}\cup V_{2}$ / $\mathrm{u}^{(i)}\in \mathrm{H}_{0i}^{1}\}$

In this framework the quantity $\mathrm{s}$ depends linearly on $\mathrm{u}$ $\mathrm{s}=T\mathrm{u},$ where Tu which
represents the difference of the traces of the variables $\mathrm{u}^{(i)}$

’

on the interface $S$ , is well
defined and belongs to $(H^{1/2}(S))^{3}$ .

The following hypotheses are made:

$a^{(i)}$ $isaboundedbilinearform,$ $coerciveon\mathrm{H}_{0i}^{1}$ $(H1)$

$f^{(i)}$ $isaboundedlinearfunctionalon\mathrm{H}_{0i}^{1}$ $(H2)$

$\omega$ isapositiveconstant $(H3)$

The problem (11) can be written in the following variational form:

find $(\mathrm{u}^{o}, \gamma^{o})$ in $\mathrm{H}_{0}^{1}\cross L^{2}(S)/$

$\forall\delta \mathrm{u}\in \mathrm{H}_{0}^{1}$ $\sum_{i=1}^{2}\{a^{(i)}(\mathrm{u}^{(\mathrm{i})\mathit{0}}, \delta \mathrm{u}^{(i)})-f^{(i)}(\delta \mathrm{u}^{(i)})\}+\int_{S}\mathrm{t}^{o}$ $\bullet$ $T\delta \mathrm{u}ds=0$

$\forall\delta\gamma\in L^{2}(S)$ $\int_{S}(\omega-Y^{O}+q^{o})\delta\gamma ds=0$
(12)

$q^{O}\in\partial I_{A}(\gamma^{O})$ $(\mathrm{t}^{o}, -Y^{o})\in\partial I_{I\backslash ^{r}}(\mathrm{s}^{o},\gamma^{o})$

The strong formulation of the problem can be written as :

$div(\sigma^{(i)}(\mathrm{u}^{(i)\circ}))+\mathrm{f}_{int}^{(i)}$ $=$ $0$ $inV_{i}$ (13)
$\mathrm{u}^{(i)\mathit{0}}$

$=$ $0$ $on\Gamma_{0i}$
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$\sigma^{(i)\mathit{0}}.\mathrm{n}$

$=$ $\mathrm{T}_{i}$ $on\partial V_{i}\backslash (S\cup\Gamma_{0i})$

$\sigma^{(1)\mathit{0}}.\mathrm{n}$

$=$ $-\mathrm{t}^{o}$ $on\partial V_{1}\cap S$

(14)
(15)

$\sigma^{(2)\mathit{0}}.\mathrm{n}$

$=$
$\mathrm{t}^{o}$ $on\partial V_{2}\cap S$ (16)

$\omega-Y^{O}+q^{O}$ $=$ $0$ on $S$ (17)
$q^{o}$ $\in$ $\partial I_{A}(\gamma^{O})$ and $(\mathrm{t}^{o}, -Y^{O})\in\partial I_{K}(\mathrm{s}^{o}, \gamma^{o})$ (18)

where $\mathrm{f}_{vol}^{(i)}$ is a volumic density of forces and $\mathrm{T}_{i}$ and $\mathrm{t}^{o}$ surfacic densities of forces. The

external forces applied on the system are $\mathrm{f}_{vol}^{(i)}$ and $\mathrm{T}_{i}$ . But $\mathrm{t}^{o}$ is an internal force of the
system. The $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}-Y^{o}$ is a dual variable of the damage, it will be shown that it is
the opposite of an energy per unit of area on $S$ .

3 Link with fracture mechanics

(19)

The careful examination of the precise properties of the subdifferentiable of $I_{K}$ and $I_{A}$
}

will now permit to establish a clear link with fracture mechanics.
The set $K$ is not convex but its particular structure as the union of two convex subsets,

allows to explicit its subdifferential as the Cartesian product of its subdifferentials with
respect to each variable $\mathrm{s}$ and $\gamma$ . In general, when variables are not independent, the

Cartesian product of the subdifferentials with respect to each variable does not furnish
the subdifferential. Nevertheless it is possible in some special case as specified in the

following Proposition.

Proposition 1: Let $Q_{1}$ and $Q_{2}$ be two convex sets of $\mathrm{R}^{n}$ and $\mathrm{R}^{m}$ , respectively. The set
$Q$ is the nonconvex set of $\mathrm{R}^{n+m}$ containing $(a, b)$ , with $a\in Q_{1}$ and $b\in Q_{2}$ , and $\mathrm{d}\mathrm{e}\mathrm{r}_{1}^{rightarrow}\mathrm{n}\mathrm{e}\mathrm{d}$

by:

$Q=\{(x, y)\in \mathrm{R}^{n}\cross \mathrm{R}^{m}/[_{(x,y)=(x,b)withx\in Q_{1}}^{(x,y)=(a,y)withy\in Q_{2}}or\}$

Then, the subdifferential of the function $I_{Q}$ exists in any point of $Q$ and

$\partial I_{Q}(x, y)=\partial_{x}I_{Q}(x, y)\cross\partial_{y}I_{Q}(x, y)$ (20)

The Proposition 1 can be successfully applied to the particular case of the indicator

function of the set $K$ . It allows to say that $\mathrm{t}^{o}\in\partial_{\mathrm{S}}I_{K}(\mathrm{s}^{o}, \gamma^{o})$ and $-Y^{o}\in\partial_{\gamma}I_{K}(\mathrm{s}^{O}, \gamma^{o})$ .

Furthermore, it is easy to describe in detail, for each possible value taken by $(\mathrm{s}^{o}, \gamma^{o})$ , the

structure of the subdifferential of $I_{K}$ .

Proposition 2: In each point of the surface $S$ the relationship $(\mathrm{t}, -Y)\in\partial I_{K}(\mathrm{s}, \gamma)$ leads

to:
$\gamma\neq 1$ $\mathrm{s}=0$ $\Rightarrow$ $t_{n}\in \mathrm{R}$

$\mathrm{t}_{t}\in \mathrm{R}^{2}$ $Y=0$

$\gamma=1$ $s_{n}>0$ $\Rightarrow$ $t_{n}=0$ $\mathrm{t}_{t}=0$ $Y\in \mathrm{R}$

(21)
$\gamma=1$ $s_{n}=0$ $\mathrm{s}_{t}\neq 0$ $\Rightarrow$ $t_{n}\in \mathrm{R}^{-}$ $\mathrm{t}_{t}=0$ $Y\in \mathrm{R}$

$\gamma=1$ $s_{n}=0$ $\mathrm{s}_{t}=0$ $\Rightarrow$ $t_{n}\in \mathrm{R}^{-}$ $\mathrm{t}_{t}=0$ $Y=0$
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where the vector $\mathrm{t}$ is decomposed in its normal $t_{n}$ and tangential $\mathrm{t}_{t}$ components on the
surface $S$ , such that $\mathrm{t}=t_{n}\mathrm{n}+\mathrm{t}_{t}$ .

From a mechanical point of view, $\mathrm{t}$ represents the density of force per unit of area
applied by the plate $V_{1}$ on $V_{2}$ . The three last relations of (21) imply that when the
delamination is complete, the stress on interface $S$ is only due to a frictionless unilateral
contact.

The following proposition is obtained by using the properties of $q^{o}\in\partial I_{A}(\gamma^{o})$ solution
of the problem (12) and the properties of $\partial I_{K}(\mathrm{s}^{O}, \gamma^{o})$ and $\partial I_{A}(\gamma^{o})$ .

Proposition 3: In each point of the surface $S$ only the following three cases are possible
for the solution of the problem (12):

$\gamma^{o}=\gamma_{i}$ $q^{O}=Y^{o}-\omega\leq 0$

$\gamma_{i}<\gamma^{o}<1$ $q^{o}=Y^{o}-\omega=0$ (22)
$\gamma^{O}=1$ $q^{o}=Y^{o}-\omega\geq 0$

The relations (22) are direct consequences of the second and the third equations of (12).

This proposition makes clear the relation of this model with Fracture Mechanics.
The Griffith criterion says that a fracture can increase only when the rate of variation
of the elastic energy of the solid with respect to the eventual variation of the surface
of the fracture is greater or equal to a limit value called the limit energy release rate.
Here Proposition 3 shows that there is no delamination when $Y^{o}-\omega<0$ and there is
complete delamination $(\gamma^{O}=1)$ when $Y^{o}-\omega>0$ . In fact, as it has been already shown
[10], $Y^{o}$ is the local value, in the point $(x_{1}, x_{2})$ of the surface $S$, of the energy release
rate. The delamination occurs only when $Y^{O}$ is greater than $\omega$ , which correspond to the
Griffith limit energy release rate. Hence, delamination depends essentially on the sign of
the quantity $Y^{o}-\omega$ .

Furthermore, the Propositions 2 and 3 can be used to put in evidence some special
features of the solution of equations (12).

Proposition 4: If $(\mathrm{u}^{o}, \gamma^{o})$ is a solution of problem (12) then either $\gamma^{o}=\gamma_{i}$ or $\gamma^{o}=1$ .

Furthermore, in a point of $S$ where $\gamma^{o}=1$ , the relative displacement $\mathrm{s}^{o}$ is not equal to
zero.
If $\gamma^{o}\neq 1$ , from the Proposition 2 it results $Y^{O}=0$ , and so the second equation of (12)
gives $q^{O}=Y^{o}-\omega\leq 0$ . Then the Proposition 3 implies $\gamma^{o}=\gamma_{i}$ . On the contrary, if $\gamma^{o}=1$

then $q^{o}=Y^{o}-\omega\geq 0$ and so $Y^{o}>0$ , hence the Proposition 2 ensures $\mathrm{s}^{o}\neq 0$ .
This shows that the solution of problem (12) has an on-off character similar to the

problem of Fracture Mechanics: in each point of $S$ , the two plates are either in complete
adhesion or completely delaminated. It must be emphasized that herein the energy release
rate $Y$ is not introduced a priori, as in the Fracture Mechanics Theory, $\mathrm{b}\mathrm{u}\mathrm{t}-Y$ is obtained
as an element of the subdifferential of the indicator function $I_{\mathrm{A}^{r}}$ with respect to the damage
variable $\gamma$ (the sign is chosen so that $-Y$ represents the density of energy per unit area
lost by the system when the delamination occurs).
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4 The regularized model
The nondifferentiability of the functional $\pi$ may represent a strong difficulty both from
a mathematical and computational point of view in the treatment of the delamination
problem. Hence, a regularization of the total potential energy appears suitable. The
regularization is obtained by replacing, into the original functional $\pi$ , the functions $I_{\mathrm{A}^{r}}$

and $I_{A}$ with new differentiable ones, which tend to the original irregular functions when
some regularization parameters approach to zero.

Let the scalars $\eta_{n}>0$ and $\eta_{t}>0$ be regularization parameters, the function $I_{I\iota^{r}}$ is
replaced with:

$I_{\mathrm{A}^{r}}^{r}( \mathrm{s}, \gamma)=\frac{1}{2\eta_{n}}[(1-\gamma)(s_{n}^{+})^{2}+(s_{n}^{-})^{2}]+\frac{1}{2\eta_{t}}(1-\gamma)||\mathrm{s}_{f}||^{2}$ (23)

where $(.)^{+}$ and $(.)^{-}$ indicate the positive and negative parts of $($ . $)$ , respectively, such that
$($ . $)=(.)^{+}-(.)^{-}$ , and $||||$ denotes the norm of a vector.

An internal regularization of the function $I_{A}$ is used. It is based on an homographic
regularization of its subdifferential $\partial I_{A}$ . Hence, the indicator function $I_{A}$ is replaced on
$S$ with:

$I_{A}^{r}( \gamma)=r\frac{1-\gamma_{i}}{2}\int_{0}^{\nu(\gamma)}f(y)dy$ (24)

where the scalar $r>0$ is a regularization parameter and

$f( \nu)=\frac{\nu}{1-|\nu|}$ (25)

with
$\nu(\gamma)=\frac{2}{1-\gamma_{i}}(\gamma-\frac{1+\gamma_{i}}{2})$ (26)

The derivative of the function $I_{A}^{r}$ is:

$\forall\gamma\in]\gamma_{i},$ $1$ [ $\frac{dI_{A}^{r}}{d\gamma}(\gamma)=rf(\iota/(\gamma))$ (27)

It is a simple matter to verify that the graph of $I_{A}^{r}$ tends to the graph of $I_{A}$ , and the
derivative of $I_{A}^{r}$ tends to an element of the subdifferential of $I_{A}$ for $rarrow 0$ .

Finally, the new regularized total potential energy $\pi^{r}$ is defined as:

$\pi^{r}(\mathrm{u}, \gamma)=\Lambda(\mathrm{u})+D^{r}$(Tu, $\gamma$ ) (28)

where the regularized adhesion energy $D^{r}$ can be written as:

$D^{r}$ (Tu, $\gamma$ ) $=D^{r}(\mathrm{s}, \gamma)$ $=$ $\int_{S}\{\frac{1}{2\eta_{n}}[(1-\gamma)(s_{n}^{+})^{2}+(s_{n}^{-})^{2}]+\frac{1}{2\eta_{t}}(1-\gamma)||\mathrm{s}_{t}||^{2}\}ds$

(29)

$+$ $\int_{S}I_{A}^{r}(\gamma)ds-\int_{S}(1-\gamma)\omega ds$

The partial derivatives of $I_{K}^{r}(\mathrm{s}, \gamma)$ with respect to $\mathrm{s}$ and to $\gamma$ , are:

$\frac{\partial I_{K}^{r}}{\partial \mathrm{s}}(\mathrm{s}, \gamma)=\frac{1}{\eta_{n}}[(1-\gamma)s_{n}^{+}+s_{n}^{-}]\mathrm{n}+\frac{1}{\eta_{t}}(1-\gamma)\mathrm{s}_{t}$ (30)
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$\frac{\partial I_{I\mathrm{t}’}^{r}}{\partial\gamma}(\mathrm{s})=-\frac{1}{2\eta_{n}}(s_{r\iota}^{+})^{2}-\frac{1}{2\eta_{t}}||\mathrm{s}_{t}||^{2}$ (31)

The corresponding regularized problem consists to
find $(\mathrm{u}^{r}, \gamma^{r})$ in $\mathrm{H}_{0}^{1}\cross L^{2}(S)$ with $\gamma^{r}=1$ on $S_{d}$ such that :

$\forall \mathrm{v}\in \mathrm{H}_{0}^{1}$ $\sum_{i=1}^{2}\{a^{(i)}(\mathrm{u}^{(i)r}, \mathrm{v}^{(i)})-f^{(i)}(\mathrm{v}^{(i)})\}+\int_{S}\mathrm{t}^{r}$ $\bullet$ $T\mathrm{v}ds=0$

$\forall\delta\gamma\in L^{2}(S_{a})$ $\int_{S}(\omega-Y^{r}+q^{r})\delta\gamma ds=0$ (32)

$q^{r}= \frac{dI_{A}^{r}}{d\gamma}(\gamma^{r})$
$\mathrm{t}^{r}=\neq_{\mathrm{S}}^{\partial I^{r}}(\mathrm{s}^{r}, \gamma^{r})$ $-Y^{r}=\underline{\partial}_{T}I\partial\gamma x^{r}(\mathrm{s}^{r})$

It can be noted that equations (32) are similar to equations (12) with $q^{o},$ $\mathrm{t}^{o}$ and $Y^{O}$

replaced by $q^{r},$ $\mathrm{t}^{r}$ and $Y^{r}$ , respectively.
The local form of the second equation of (32), the continuity and the strict mono-

tonicity of the composed function $f\mathrm{o}\nu \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}$ ] $\gamma_{i},$
$1$ [ to $\mathrm{R}$ , allow to write on the part $S_{a}$ of

$S$ where $\gamma_{i}\neq 1$ :
$\gamma^{r}=\nu^{-1}\mathrm{o}f^{-1}(\frac{Y^{r}-\omega}{r})$ (33)

The damage parameter is an explicit function of the energy release rate $Y^{r}$ and hence,
using equation (31) and the last one of (32), $\gamma^{r}$ can be written as function of the relative
displacement $\mathrm{s}^{r}$ :

$\gamma^{r}=\hat{\gamma}(\mathrm{s}^{r})=\nu^{-1}\mathrm{o}f^{-1}[\frac{1}{r}(\frac{1}{2\eta_{n}}(s_{n}^{r+})^{2}+\frac{1}{2\eta_{t}}||\mathrm{s}_{t}^{r}||^{2}-\omega)]$ (34)

5 Mechanical meaning of the regularized model
According to equation (30) and the last of (32) the interface is modelled by an distribution
of nonlinear springs oriented in the normal and tangential directions to the surface $S$ .
The stiffness of the springs depends on the damage of the interface and of the direction. It
must be equal to zero if the delamination is complete except in compression in the normal
direction since, in this case, the corresponding term is only due to the penalization of the
unilateral contact condition, namely $s_{n}^{-}=0$ . In the tangential direction, the stiffness of
the springs is $\frac{1}{\eta_{t}}(1-\gamma)$ . In traction in the normal direction, the stiffness is $\frac{1}{\eta_{n}}(1-\gamma)$ . If
$(1-\gamma)$ represent the density of unbroken links between the two part of $V$, it means that
the stiffness is proportional to this quantity which seems quite reasonable.

The equation (31) shows that the quantity $Y^{r}$ is a positive quantity, it represents in
fact the density of the adhesion energy on the interface $S$ .

The equation (34) gives the explicit relationship between the displacement on $S$ and
the damage. In many articles dealing with delamination and using a special constitutive
law on the interface, the relation is rather stated between the damage and the stress on
the interface, but of course the stress depends on the displacement so the two points of
view are related.

Of course other regularizations may be proposed and they will leads to different
interface constitutive laws
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6Existence of solution of the regularized problem

A constructive method is used to prove the existence of the solution of the regularized
problem. The proof is carried out in two steps. Initially, the existence of the solution for
the elastostatic problem corresponding to a fixed value of the damage function is given
and the boundness of this solution is proved. Then an iterative procedure is introduced
and the convergence of a subsequence to a solution of the regularized problem is proved.

Proposition 5: For any $\gamma$ such that $0\leq\gamma\leq 1$ almost everywhere on $S$ , there exists a
unique $\mathrm{u}^{\gamma}$ solution of the following variational problem:

find $\mathrm{u}^{\gamma}\in \mathrm{H}_{0}^{1}f$

$\forall \mathrm{v}\in \mathrm{H}_{0}^{1}$ $0$ $=$ $\sum_{i=1}^{2}\{a^{(\mathrm{i})}(\mathrm{u}^{(i)\gamma}, \mathrm{v}^{(i)})-f^{(i)}(\mathrm{v}^{(\mathrm{i})})\}$

$+$ $\int_{S}\frac{1}{\eta_{n}}[(1-\gamma)s_{n}^{\gamma+}+s_{n}^{\gamma-}]\mathrm{n}\bullet T\mathrm{v}ds$
(35)

$+$ $\int_{S}\frac{1}{\eta_{t}}(1-\gamma)\mathrm{s}_{t}^{\gamma}\bullet T\mathrm{v}ds$

where $\mathrm{s}^{\gamma}=T\mathrm{u}^{\gamma}$ . Moreover this solution verifies the following estimates:

$||\mathrm{u}^{(i)\gamma}||_{(H^{1}(V_{i}))^{3}}\leq C$ $(i=1,2)$ (36)

$\int_{S}\{\frac{1}{\eta_{n}}[(1-\gamma)(s_{n}^{\gamma+})^{2}+(s_{n}^{\gamma-})^{2}]+\frac{1}{\eta_{t}}(1-\gamma)||\mathrm{s}_{t}^{\gamma}||^{2}\}ds\leq C$ (37)

where the constant $C$ is independent of the parameters $\eta_{n},$ $\eta_{t}$ and of the function $\gamma$ .
The resolution of the equation (35) is equivalent to the research of the stationary points
for the functional $J^{\gamma}(\mathrm{u})=\pi^{r}(\mathrm{u}, \gamma)=\Lambda(\mathrm{u})+D^{r}$ (Tu, $\gamma$ ). It can be emphasized that $\Lambda(\mathrm{u})$

is a continuous strictly convex functional on $\mathrm{H}_{0}^{1}$ and $D^{r}$ (Tu, $\gamma$ ) is a convex functional of
$\mathrm{s}=T\mathrm{u}$ for fixed $\gamma$ with $0\leq\gamma\leq 1$ ; since $\mathrm{s}$ depends linearly on $\mathrm{u}$ , then $D^{r}$ (Tu, $\gamma$ ) is also
convex with respect to $\mathrm{u}$ . Hence, $J^{\gamma}(\mathrm{u})$ is strictly convex on $\mathrm{H}_{0}^{1}$ and then it has a unique
stationary point which is the minimum on $\mathrm{H}_{0}^{1}$ .
Setting $\mathrm{v}^{(i)}=\mathrm{u}^{(i)\gamma}(i=1,2)$ the equation (35) leads to:

$\sum_{i=1}^{2}\{a^{(i)}(\mathrm{u}^{(i)\gamma}, \mathrm{u}^{(i)\gamma})-f^{(i)}(\mathrm{u}^{(i)\gamma})\}+$

(38)

$I_{S} \{\frac{1}{\eta_{n}}[(1-\gamma)(s_{n}^{\gamma+})^{2}+(s_{n}^{\gamma-})^{2}]+\frac{1}{\eta_{t}}(1-\gamma)||\mathrm{s}_{t}^{\gamma}||^{2}\}ds=0$

Since the integral on $S$ in the left hand side of equation (38) is always nonnegative for
$0\leq\gamma\leq 1$ , the estimates (36) and (37) can be deduced from the coercivity of $a^{(i)}$ on $\mathrm{H}_{0i}^{1}$

and from the linearity of $f^{(i)}$ .

A sequence $\{(\mathrm{u}^{[n]}, \gamma^{[n]})\}$ is defined in the following way:
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1. let $\gamma^{[0]}=\gamma_{i}$ ;

2. for a given $\gamma=\gamma^{[n-1]}$ , let $\mathrm{u}^{[n]}$ be the unique solution of equation (35)
$)$

.

3. let $\gamma^{[n]}=1$ on $S_{d}$ and $\gamma^{[n]}=\hat{\gamma}(\mathrm{s}^{[n]})$ on $S_{a}$ with $\hat{\gamma}$ given by equation (34);

4. with the new value $\gamma=\gamma^{[n]}$ go back to step 2.

The sequence $\{(\mathrm{u}^{[n]}, \gamma^{[n]})\}$ , obtained using the described procedure, verifies the fol-
lowing theorem:

Theorem 6: There exists a subsequence of $\{(\mathrm{u}^{[n]}, \gamma^{[n]})\}$ still denoted by $\{(\mathrm{u}^{[n]}, \gamma^{[n]})\}$

such that
$\bullet$ $\{\mathrm{u}^{[n]}\}$ converges weakly to $\mathrm{u}^{\infty}$ in $\mathrm{H}_{0}^{1}$

$\bullet$ $\{\mathrm{s}^{[n]}\}$ converges to $\mathrm{s}^{\infty}=T\mathrm{u}^{\infty}$ strongly in $(L^{2}(S))^{3}$ and almost everywhere on $S$

$\bullet$ $\{\gamma^{[n]}\}$ converges almost everywhere to $\gamma^{\infty}$ with $\gamma_{i}\leq\gamma^{\infty}\leq 1$ and $\gamma^{\infty}$ is such that
$\gamma^{\infty}=1$ on $S_{d}$ and $\gamma^{\infty}=\hat{\gamma}(\mathrm{s}^{\infty})$ on $S_{a}$ .
The limit $(\mathrm{u}^{\infty}, \gamma^{\infty})$ is solution of the regularized problem (32), hence $\gamma^{\infty}=\gamma^{r}$ and
$\mathrm{u}^{\infty}=\mathrm{u}^{r}$ . Furthermore, $(\mathrm{u}^{r}, \gamma^{r})$ verifies the estimates (36) and (37) for $\gamma=\gamma^{r}$ and
$\mathrm{u}^{\gamma}=\mathrm{u}^{r}$ .
The Proposition 5 implies that the sequences $\{\mathrm{u}^{[n](i)}\}$ are bounded in $(H^{1}(V_{i}))^{3}$ . Since
bounded sequences in Hilbert spaces are weakly sequentially compact, there exists a subse-
quence $\{\mathrm{u}^{[n](i)}\}$ that converges to $\mathrm{u}^{\infty(i)}$ weakly in $(H^{1}(V_{i}))^{3}$ and the corresponding traces
on $S$ are bounded in $(H^{1/2}(S))^{3}$ . The classical Rellich-Kondrachov theorem [15] is used
to obtain the strong convergence of $\{\mathrm{s}^{[n]}\}$ . Since the dimension of $S$ is 2, the injection
of the space $(H^{1/2}(S))^{3}$ is continuous in any $(L^{p}(S))^{3}$ for $p\leq 4$ , and compact for $p<4$ .
Thus, there exists a subsequence of $\{\mathrm{s}^{[n]}\}$ that converges strongly in $(L^{2}(S))^{3}$ and even a
subsubsequence, still denoted $\{\mathrm{s}^{[n]}\}$ which converges almost everywhere on $S$ to a limit
$\mathrm{s}^{\infty}$ .
On the other hand, the continuity of $\hat{\gamma}$ implies that $\{\gamma^{[n]}\}$ converges almost everywhere
to $\gamma^{\infty}=\hat{\gamma}(\mathrm{s}^{\infty})$ on $S_{a}$ .
In order to prove that $(\mathrm{u}^{\infty}, \gamma^{\infty})$ is solution of the regularized problem (32), and hence
$\gamma^{\infty}=\gamma^{r}$ and $\mathrm{u}^{\infty}=\mathrm{u}^{r}$ , it must be verified that $\mathrm{u}^{\infty}$ is the solution of equation (35)
with $\gamma=\gamma^{\infty}$ . By construction $\mathrm{u}^{[n]}$ is the solution of equation (35) with $\gamma=\gamma^{[n-1]}$ , and
$\mathrm{s}^{[n]}=T\mathrm{u}^{[n]}$ . Since $\hat{\gamma}$ is an application on ] $\gamma_{i},$

$1$ [, the sequence $\{\gamma^{[n]}\}$ remains bounded
and converges to $\gamma^{\infty}$ in $L^{\infty}(S)$ . Finally, the weak convergence of $\{\mathrm{u}^{[n]}\}$ to $\mathrm{u}^{\infty}$ in $\mathrm{H}_{0}^{1}$ , the
strong convergence of the sequence $\{\mathrm{s}^{[n]}\}$ to $\mathrm{s}^{\infty}$ in $(L^{2}(S))^{3}$ and the convergence of $\{\gamma^{[n]}\}$

in $L^{\infty}(S)$ weak* allow to pass to the limit in the equation (35). Hence $(\mathrm{u}^{\infty}, \gamma^{\infty})$ verifies
(35) and the estimates (36) and (37).

7 Convergence of the regularized solution
It is expected that when the regularization parameters $r,$ $\eta_{n}$ and $\eta_{t}$ tend to $0$ , the sequence
of solutions $\{(\mathrm{u}^{r}, \gamma^{r})\}$ of the regularized problems (32) tends to a solution $(\mathrm{u}^{o}, \gamma^{o})$ of the
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initial nonsmooth problem (12). In order to prove this convergence the weak compactness
of bounded sequences in Hilbert spaces is used again.

Theorem 7: Let $(\mathrm{u}^{r}, \gamma^{r})$ be a solution of problem (32). Under the hypotheses $(H1)-$
$(H3)$ , assuming that $\eta_{n}>0$ and $\eta_{t}>0$ tend to $0$ for $r$ tending to $0$ , there exists a
subsequence of $\{(\mathrm{u}^{r}, \gamma^{r})\}$ still denoted by $\{(\mathrm{u}^{r}, \gamma^{r})\}$ such that
$\bullet$ $\{\mathrm{u}^{r}\}$ converges weakly to $\mathrm{u}^{o}$ in $\mathrm{H}_{0}^{1}$

$\bullet$ $\{\mathrm{s}^{r}\}$ converges to $\mathrm{s}^{o}=T\mathrm{u}^{o}$ strongly in $(L^{2}(S))^{3}$ and almost everywhere on $S$

$\bullet$ $\{\gamma^{r}\}$ converges to $\gamma^{o}$ in $L^{\infty}(S)$ weak* with $\gamma_{i}\leq\gamma^{o}\leq 1$ and $\gamma^{O}=1$ on $S_{d}$

$\bullet$ $\{\mathrm{t}^{r}\}$ converges to $\mathrm{t}^{o}$ weakly in the dual space of $(H^{1/2}(S))^{3}$ .
These limits verify:

$\forall \mathrm{v}\in \mathrm{H}_{0}^{1}$ $\sum_{i=1}^{2}\{a^{(i)}(\mathrm{u}^{(i)\circ}, \mathrm{v}^{(i)})-f^{(i)}(\mathrm{v}^{(i)})\}+\int_{S}\mathrm{t}^{o}\bullet T\mathrm{v}ds=0$ (39)

$(1-\gamma^{o})\mathrm{s}^{o}=0\gamma_{i}\leq\gamma^{O}\leq 1$ $s_{n}^{o}\geq 0$ (40)

Using the estimate (36), and following the same method as in Theorem 6 it can be proved
that there exists a subsequence of $\{(\mathrm{u}^{r}, \wedge,\mathit{1}^{\Gamma})\}$ such that $\{\mathrm{u}^{r}\}$ converges weakly to $\mathrm{u}^{o}$ in $\mathrm{H}_{0}^{1}$

and $\{\mathrm{s}^{r}\}$ converges to $\mathrm{s}^{o}=T\mathrm{u}^{o}$ strongly in $(L^{2}(S))^{3}$ and almost everywhere on $S$ . The
condition $\gamma_{i}\leq\gamma^{r}\leq 1$ ensures that the sequence $\{\gamma^{r}\}$ converges in $L^{\infty}(S)$ weak*. Thus,
when the regularization parameters tend to $0$ , the estimate (37) leads to the relations
(40). As a consequence, $(\mathrm{u}^{O}, \gamma^{o})$ is an admissible solution, i.e. it satisfies the relations (2).
Next, the convergence of the sequence $\{\mathrm{t}^{r}\}$ is investigated. Because of the first equation
of the (32) the sequence $\{\mathrm{t}^{r}\}$ is bounded in the dual space of $(H^{1/2}(S))^{3}$ . Hence there
exists a subsequence which converges weakly to a limit denoted $\mathrm{t}^{O}$ . Thus, when $r$ tends
to $0$ , the equation (32) leads to the first of the relations (12).

In order to complete the proof of the convergence of the sequence $\{(\mathrm{u}^{r}, \gamma^{r})\}$ to a
solution of equations (12), it remains to prove the last relations of (12), or equivalently
that the properties described in the Propositions 2-4 are verified.

$\mathrm{T}\mathrm{f}3\mathrm{e}$ Proposition 4 shows that the damage parameter in the initial nonsmooth problem
(12) has an on-off character. In fact, on $S_{a}$ , the initially adherent area of $S,$ $\gamma$ can only
take two values: $\gamma_{i}$ (where no damage occurs) and 1 (where complete delamination occurs,
and in this case the relative displacement must be different from $0$ ). It is expected that
the limit of the sequence $\{\gamma^{r}\}$ exhibits the same feature. Recalling the equation (33),
the function $\nu^{-1}\mathrm{o}f^{-1}(y/r)$ defining the damage state on $S_{\alpha}$ , when $rarrow \mathrm{O}$ , tends to $\gamma_{i}$

for $y<0$ , to 1 for $y>0$ , and its limit has a discontinuity in $y=0$ . In the following
proposition a partial result concerning the case when the limit $\mathrm{s}^{o}$ of $\{\mathrm{s}^{r}\}$ is different from
zero, is obtained.

Proposition 8: On the subset $S^{o}=\{(x_{1}, x_{2})\in S_{a}/\mathrm{s}^{o}(x_{1}, x_{2})\neq 0\}$ the sequence $\{Y^{r}\}$

tends almost everywhere $\mathrm{t}\mathrm{o}+\infty$ and the sequence $\{\gamma^{r}\}$ tends almost everywhere to 1.
The convergence of $\{Y^{r}\}\mathrm{t}\mathrm{o}+\infty$ is a direct consequence of the definition (31) and of the
last relation in (32). Further, the equation (33) implies the convergence of $\{\gamma^{r}\}$ to 1.

More generally, it is necessary to define the delaminated zone to known where the
sequence $\{\gamma^{r}\}$ converges to 1 or to $\gamma_{i}$ . As pointed out in Proposition 3, the sign of $Y^{o}-\omega$ ,
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limit of the sequence $\{Y^{r}-\omega\}$ , defines the zone where delamination occurs. The next
proposition shows in which sense this limit exists.

Proposition 9: The sequence $\{(1-\gamma^{r})Y^{r}\}$ is a bounded sequence of positive functions
in $L^{1}(S)$ hence it converges to a positive measure on $S$ . On any subset of $S$ where $(1-\gamma^{r})$

is bounded from below., the sequence $\{Y^{r}\}$ tends to a bounded positive measure.
These are direct consequence of the estimate (37).

Now, the rate of convergence of $\gamma^{r}$ to $\gamma_{i}$ or to 1 is studied. To this end, some
subdomains of $S_{a}$ are initially defined as follows. For any fixed positive real numbers $\rho$

and $r$ let $S_{a\rho}^{r}\subset S_{\alpha}$ and $S_{d\rho}^{r}\subset S_{a}$ be:

$S_{a\rho}^{r}=\{(x_{1}, x_{2})\in S_{a}/Y^{r}(x_{1}, x_{2})-\omega\leq-\rho\}$ (41)

$S_{d\rho}^{r}=\{(x_{1}, x_{2})\in S_{a}fY^{r}(x_{1}, x_{2})-\omega\geq\rho\}$ (42)

It is a simple matter to verify that the sets introduced satisfy the properties:

$\bullet$ for $rarrow \mathrm{O}$ the sequence of sets $\{\bigcap_{r\leq r^{\circ}}S_{a\rho}^{r}\}$ , with $r^{o}>0$ , is increasing and converges
to a set denoted $S_{a\rho}$ included in the adherent part of $S_{a}$ for the solution $(\mathrm{u}^{O}, \gamma^{o})$ ;

$\bullet$ for $rarrow \mathrm{O}$ the sequence of sets $\{\bigcap_{r\leq r^{\circ}}S_{d\rho}^{r}\}$ , with $r^{O}>0$ , is increasing and converges
to a set denoted $S_{d\rho}$ included in the delaminated part of $S_{a}$ for the solution $(\mathrm{u}^{o}, \gamma^{o})$ .

Proposition 10: On $S_{a\rho}^{r}$ and on $S_{d\rho}^{r}$ , the following estimates hold:

$0<1-\gamma^{r}<T\rho r$ $onS_{a\rho}^{r}$

(43)
$0<\gamma^{r}-\gamma_{i}<\tau-\rho r$ $onS_{d\rho}^{r}$

Using relations (25), (26), (27) and (33), the following relation between the regularized
parameter and the quantity $(Y^{r}-\omega)$ is established:

$0<1-\gamma^{r}$ $=$ $\frac{1-\gamma_{i}}{2}\frac{r}{r+|Y^{r}-\omega|}$

$<$ $21 \frac{r}{r+|Y^{r}-\omega|}$ (44)

$<$ $\frac{r}{2\rho}$
$onS_{a\rho}^{r}$

Analogously, it can be obtained:

$0<\gamma^{r}-\gamma_{i}$ $=$ $\frac{1-\gamma_{i}}{2}\frac{r}{r+(Y^{r}-\omega)}$ $onS_{d\rho}^{r}$ (45)

and hence the relations (43) are proved.

The Proposition 7 implies the uniform convergence of $\{\gamma^{r}\}$ to 1 on any closed subset
strictly included in $S_{d\rho}$ , and to $\gamma_{i}$ on any closed subset strictly included in $S_{a\rho}$ .
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8 Convergences of $\mathrm{t}^{r}$ and $Y^{r}$

The convergence of the gradient of a regularized functional to an element of the subdif-
ferential of the initial nonsmooth one is a well-known result of convex analysis $[16, 17]$ .
The functional governing the delamination problem is not convex, and so this classical
result does not apply. To overcome this difficulty, it is possible to prove that, at least
locally, the relations $\mathrm{t}^{o}\in\partial_{\mathrm{s}}I_{K}(\mathrm{s}^{O}, \gamma^{o})$ and $-Y^{o}\in\partial_{\gamma}I_{K}(\mathrm{s}^{O}, \gamma^{o})$ are verified. To this end,
it is necessary to give a local meaning to $\mathrm{t}^{o}$ , regarded as the limit of $\mathrm{t}^{r}$ .

The local regularity of $\mathrm{t}^{r}$ , depends on the regularity of the displacement field $\mathrm{u}^{r}$ .
In fact, $\mathrm{t}^{r}$ is the tension at the interface $S$ , which is related to the stress tensor by the
relation $\mathrm{t}^{r}=\sigma^{(1)}\mathrm{n}=-\sigma^{(2)}\mathrm{n}$ on $S$ . Then, because of relation (6), $\mathrm{t}^{r}$ is a linear function
of the symmetric part of the gradient of $\mathrm{u}^{r}$ . The $L^{2}$ regularity of $\mathrm{t}^{r}$ is ensured when
$\mathrm{u}^{r(i)}\in(H^{1+1/2})^{3}$ , at least near the interface $S$ . In fact, no global regularity results better
than $(H^{1}(V_{i}))^{3}$ can be expected for $\mathrm{u}^{r(i)}$ . The lack of regularity results is due to two
reasons:

$\bullet$ equations (32) define an elliptic nonlinear problem,

$\bullet$ the boundary conditions are of mixed type.

It is well known that even when very smooth data for the problem are considered,
the solution can be very irregular in the neighborhood of the points where the boundary
conditions change from the Dirichlet type to the Neumann type $[18, 19]$ .

Nevertheless, it is possible to establish a local regularity result for $\mathrm{u}^{r(i)}$ in any open set
of $V_{i}$ containing a part of $S$ and away from all points presenting some difficulty (corners,
change in the type of the boundary condition and on the delamination front defined for
the initial nonsmooth problem).

Theorem 11: Let $0$ be an open set included in $V$ and containing the closure of the open
set $\theta$ . Let $\theta$ be such that the subset $\theta\cap S$ is not empty and contained in the interior of
$S$ and either in $S_{a\rho}^{r}$ or in $S_{d\rho}^{r}$ for some fixed positive constant $\rho$ . Under the hypotheses

$\bullet(H1)-(H3)$
and assuming that:

the external forces are applied only on the boundary $\partial V\backslash \Gamma_{0}$ ,
$\bullet$ the elasticity coefficients $E_{ijhk}\in C^{0,1}(\overline{V}_{i})$ with $i=1,2$ ,
$\bullet$ $\gamma^{i}\in C^{0,1}(\overline{V}_{i})$ with $i=1,2$ ,
the solution $\mathrm{u}^{r}$ of the regularized problem (32) verifies the following inequality:

$||\mathrm{u}^{r(i)}||_{(H^{2}(\theta\cap V_{i}))^{3}}\leq C||\mathrm{u}^{r(i)}||_{(H^{1}(\ominus\cap V_{i}))^{3}}$ withi $=1,2$ (46)

for $r$ small enough, e.g. $r<2 \alpha\rho\min(\eta_{n}, \eta_{t})$ where $\alpha$ is the coercivity constant of the
elasticity operator and $C$ is a constant independent of the regularization parameters.
(Sketch): The fully developed proof of this regularity result, omitted herein, is long and
fairly technical. However, the main steps of the proof are presented.
The nonlinearity of the problem is handled using the convexity properties of problem (35)
and the uniform convergence of the sequence $\{\gamma^{r}\}$ to 1 in $S_{d\rho}^{r}\cap S$ or to $\gamma_{i}$ in $S_{a\rho}^{r}\cap S$ ,

given in Proposition 10. The proof is divided into three steps. The first step consists in
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assuming that $\gamma$ is a constant function with $0\leq\gamma\leq 1$ . Under these hypotheses, the local
regularity result searched can be proved using the translation method proposed in [20].
Unfortunately, the damage parameter $\gamma$ could not be constant on $S$ . So, in the second
step, the same regularity result is obtained assuming enough regularity on the function
$\gamma$ , e.g. $\gamma\in C^{0,1}(\Theta\cap V_{i})$ . Actually, the damage parameter involved in the solution $(\mathrm{u}^{r}, \gamma^{r})$

of the regularized delamination problem (32) can be expressed, by means of relation (34),
as a continuously derivable function of $\mathrm{s}^{r}=T\mathrm{u}^{r}$ . Since $\mathrm{s}^{r}\in(H^{1/2}(S))^{3}$ the function $\gamma^{r}$

cannot be regular enough to apply the result obtained in the second step for problem
(35). On the other hand, by substituting the equation (34) into (30), and recalling the
last of equations (32), it results that the tension at the interface $\mathrm{t}^{r}$ is not a monotone
function of the relative displacement $\mathrm{s}^{r}$ . Consequently, it is cannot be the derivative of a
convex functional of $\mathrm{s}^{r}$ and then any convexity property cannot be applied. Nevertheless,
the uniform convergence of the sequence $\{\gamma^{r}\}$ to 1 on $S_{d\rho}^{r}\cap S$ or to $\gamma_{i}$ on $S_{a\rho}^{r}\cap S$ has been
proved in Proposition 10. Hence, the third step is devoted to the derivation of the local
regularity result for $\mathrm{u}^{r}$ under the assumptions that the data $\gamma_{i}$ is regular enough, e.g.
$\gamma_{i}\in C^{0,1}(\Theta\cap V_{i})$ , and that $|\gamma^{r}-1|\leq\alpha$ on $S_{d\rho}^{r}\cap S$ and $|\gamma_{i}-\gamma^{r}|\leq\alpha$ on $S_{a\rho}^{r}\cap S$ , where
$\alpha$ is the coercivity constant. In order to satisfy these last two conditions it is sufficient to
choose $r$ such that $r<2 \alpha\rho\min(\eta_{n}, \eta_{t})$ , i.e. $r$ must be small enough with respect to the
coercivity constant $\alpha$ and to the regularization parameters $\eta_{n}$ and $\eta_{t}$ .

It is important to note that for a problem with fixed values for $\eta_{n}$ and $\eta_{t}$ all the
regularity results obtained hold for any $r$ small enough, even $rarrow \mathrm{O}$ . The case with $\eta_{n}$

and $\eta_{t}$ fixed has a clear mechanical meaning. In fact, the quantities $1/\eta_{n}$ and $1/\eta_{t}$ may
represent the stiffness of the interface material.

Corollary 12: Under the assumptions given in Theorem 7, it results that the relative
displacement $\mathrm{s}^{r}$ is bounded in $(C^{0,1/2}(\theta\cap S))^{3}$ and the interface stress $\mathrm{t}^{r}$ is bounded in
$(H^{1/2}(\theta\cap S))^{3}$ by constants independent from the regularization parameters.

Under more regular assumptions on the elasticity coefficients $E_{ijhk}$ and on the initial
damage function $\gamma_{i}$ , better regularity results can be obtained.

Corollary 13: Under the hypotheses of Theorem 7, and assuming $E_{ijhk}\in C^{1,1}(\overline{V}_{i})$ and
$\gamma_{i}\in C^{1,1}(\overline{V}_{i})$ it results that $\mathrm{s}^{r}$ is bounded in $(C^{1,1/2}(\theta\cap S))^{3}$ and the tension $\mathrm{t}^{r}$ is bounded
in $(C^{0,1/2}(\theta\cap S))^{3}$ by constants independent of the regularization parameters.

Now, it is possible to prove that the limit of the sequence $\{(\mathrm{t}^{r}, -Y^{r})\}$ evaluated at
any point $(x_{1}, x_{2})\in S_{a\rho}$ or $(x_{1}, x_{2})\in S_{d\rho}$ , for some strictly positive real number $\rho$ , belongs
to the subdifferential of $I_{K}(\mathrm{s}^{o}(x_{1}, x_{2}),$ $\gamma^{o}(x_{1}, x_{2}))$ . In other words, the limit of $\{(\mathrm{t}^{r}, -Y^{r})\}$

belongs to the subdifferential of $I_{K}(\mathrm{s}^{O}, \gamma^{o})$ at least away from the delamination front.
According to the Proposition 4 and Proposition 2 , the damage variable can assume only
the values $0$ or $\gamma_{i}$ , and the limit of the sequence $\{(\mathrm{t}^{r}, -Y^{r})\}$ must verify one of the first
three relations given in (21).

The delaminated case is considered first and the density of force $\mathrm{t}^{o}$ , is proved to be
due to unilateral contact.
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Proposition 14: Let $(\mathrm{u}^{r},\gamma^{r})$ be the solution of problem (32) under the hypotheses of
Theorem 7.1. In any closed subset strictly included in $S_{a\rho}\subset S_{a}$ , for some strictly positive
real number $\rho$ , the sequence $\{\mathrm{t}^{r}\}$ converges to $\mathrm{t}^{o}$ . When the regularization parameter $r$

tends to $0$ more rapidly than $\eta_{n}$ and $\eta_{t}$ , then the limit $\mathrm{t}^{o}$ verifies:

$\mathrm{t}_{n}^{o}\leq 0$ $\mathrm{t}_{t}^{o}=(0,0)$ (47)

$\mathrm{t}_{n}^{o}=0$

$s_{n}^{o}\leq 0$ $\Rightarrow$ (48)
$\mathrm{t}_{t}^{o}=(0,0)$

The tangential component of $\mathrm{t}^{r}$ , can be written using the relation (30) as:

$\mathrm{t}_{t}^{r}=(1-\gamma^{r})\frac{1}{\eta_{t}}\mathrm{s}_{t}^{r}$ (49)

It can be noted that on the delaminated part $S_{d\rho}$ , the relative displacement $\mathrm{s}^{O}$ , regarded as
the limit of $\mathrm{s}^{r}$ , is bounded, as emphasized in the Corollary 12, and may be different from
$0$ . Hence in order to prove the relation (47), it is necessary to prove that the quantities
$(1-\gamma^{r})/\eta_{t}$ and $(1-\gamma^{r})/\eta_{n}$ go to zero. To this end, the estimate (43) leads to:

$\frac{1-\gamma^{r}}{\eta_{t}}\leq\frac{r}{2\rho\eta_{t}}$ (50)

If $r$ is assumed to tend to $0$ more rapidly than $\eta_{t}$ , the right side of equation (50) tends
to $0$ . Consequently, $\mathrm{t}_{t}^{r}$ goes to $(0,0)$ . In the same way it can be proved that the quantity
$(1-\gamma^{r})/\eta_{n}$ tends to $0$ . Hence the relation (47) is proved.
Furthermore, if $s_{n}^{o}>0$ on a close subset of $S_{d\rho}$ then, for any $r$ small enough, $s_{n}^{r}\geq 0$ , i.e.
$(s_{n}^{r})^{-}=0$ , and thus $(t_{n}^{r})^{-}=0$ . Consequently, $(t_{n}^{O})^{-}=0$ , which ends the proof.

Now it remains to verify that on the adherent zone the energy release rate is zero,
as obtained in the first of relations (21). This results will be established under stronger
local regularity hypotheses.

Proposition 15: Under the hypotheses of Corollary 13 and on any closed subset $\cup--\subset$

$S_{a\rho}\subseteq S_{a}$ for some strictly positive real number $\rho$ , the sequence $\{Y^{r}\}$ converges uniformly
to $0$ .
The Corollary 13 ensures that $\mathrm{t}^{r}$ is uniformly bounded in $(C^{0,1/2}(\Xi))^{3}$ . In particular, the
relation (30) implies

$| \frac{1}{\eta_{n}}(1-\gamma^{r})(s_{n}^{r})^{+}|\leq C$ $|| \frac{1}{\eta_{t}}(1-\gamma^{r})\mathrm{s}_{t}^{r}||\leq C$ (51)

Since $1-\gamma_{i}>0$ on $S_{a}$ , the assumed regularity on $\gamma_{i}$ ensures the existence of a strictly
positive lower bound $m_{i}$ for the function $1-\gamma_{i}$ on the closed $\mathrm{s}\mathrm{e}\mathrm{t}---$ . On the other hand,
on $S_{\alpha\rho}$ the sequence $\{\gamma^{r}\}$ tends uniformly to $\gamma^{o}=\gamma_{i}$ and on $S_{a\rho}$ the estimate (43) holds
true. For $r$ small enough the following inequality is then verified:

$1- \gamma^{r}\geq|1-\gamma_{i}|-\frac{r}{2\rho}\geq\frac{1}{2}m_{i}>0$ (52)
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By taking into account the inequality (51) this yields:

$|(s_{n}^{r})^{+}| \leq\frac{2\eta_{n}}{m_{\mathrm{i}}}C$ $|| \mathrm{s}_{t}^{r}||\leq\frac{2\eta_{t}}{m_{i}}C$ (53)

From the relation (31) the following inequality can be derived:

$0 \leq Y^{r}=\frac{1}{2\eta_{n}}[(s_{n}^{r})^{+}]^{2}+\frac{1}{2\eta_{t}}||\mathrm{s}_{t}^{r}||^{2}\leq\frac{4C^{2}}{m_{i}^{2}}\max(\eta_{n}, \eta_{t})$ (54)

Finally, when the regularization parameters tend to $0$ , the sequence $\{Y^{r}\}$ tends to $Y^{o}=0$

$\mathrm{o}\mathrm{n}---$ .

9 The numerical procedure and the plate model
The numerical integration algorithm adopted is a predictor-corrector scheme based on the
constructive method used for the proof of existence of a solution.

The problem of two beams in adhesion has been used as a test. The numerical results
has been compared to the analytic solution obtained using the regularization of $\partial I_{I\mathrm{i}’}$ only
$([?])$ . The results obtained using the finite element method show a very good agreement
with the analytical solution even when a rare mesh is adopted.

Then the problem of the delamination of composite larninates during a drilling process
is investigated.

If the solid $V$ is assumed to be composed of two plates $V_{1}$ and $V_{2}$ bonded together
along the surface $S$ , then it is more convenient from a numerical point of view to use
plate theory in order to work with finite elements in two dimensions rather than in three
dimensions.

The first order shear deformation plate theory. that is the Mindlin-Reissner plate
theory, is considered to model the behavior of each plate. The displacement vector for
each plate is represented in the following manner:

$\mathrm{u}^{(i)}(x_{1}, x_{2}, x_{3})=\mathrm{v}^{(i)}(x_{1}, x_{2})+(x_{3}-d^{(i)})\varphi^{(i)}(x_{1}, x_{2})$ (55)

where $d^{(i)}$ is the coordinate along the $x_{3}$ -axis of the mid-plane of the plate $V_{i}$ at rest,
the vector $\mathrm{v}^{(i)}$ is the displacement of the mid-plane and $\varphi^{(i)}$ represents the rotation of the
normal to the mid- plane.

This Mindlin-Reissner plate model is used to treat the problem of a composite lam-
inate made of three orthotropic laminae. In the center of the cross-ply $(90^{0}/0^{\mathrm{o}}/90^{0})$

laminate a circular hole is present only in the two upper laminae of the plate. The cen-
tral point of the third lamina is subject to a transversal imposed displacement $\delta$ oriented
downwards. The delamination is supposed to appear between the second and the third
lamina. Because of the double symmetry the structure only a quarter of the laminate
is considered as shown in figure 1. Computations are developed for several values of the
imposed displacement $\delta$ . The figure 2 shows the delaminated zone for different values
of $\delta$ . It can be noted that the delamination has not a circular shape, the delamination
is more important in the direction of the major stiffness of the third layer. The precise
values of each parameters can be found in ([10]).
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$\mathrm{x}_{-}.$,

Figure 1 . A $\mathrm{q}\mathrm{u}\mathrm{a}\iota \mathrm{t}\mathrm{e}\mathrm{r}$ of a cross-ply laminate with a hole in the first two laminae

$\mathrm{x}_{\mathrm{g}}$

Figure 2. Zones in adhesion and delaminated for $\delta=\mathit{0}.\mathit{0}\mathit{8},$ $\mathrm{O}.\mathit{1}\mathit{0}and\mathit{0}.\mathit{1}\mathit{3}cm$
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10 Conclusions
A delamination model has been carried out starting from a very simple assumption con-
cerning the behavior of the interface : two point of the interface are in adhesion only if
their relative displacement is zero. The corresponding model is governed by a nonsmooth
functional involving two variables: the relative displacement of the joined parts and the
damage parameter which is equal to 1 when there is no more adhesion. A regularized
model has been given which corresponds to a relevant mechanical mode. But in fact, the
initial non-smooth model may generate a lot of various regularized models with different
mechanical meaning. Some fundamental mathematical properties of the initial nonsmooth
and the regularized delamination problems have been obtained. In particular, a construc-
tive proof of the existence of a solution for the regularized problem has been given. The
convergence of the regularized solution to a solution of the initial nonsmooth problem has
been proved. A numerical procedure has been used for beam and plate problems. The
delaminated area round a hole during a drilling process has been calculated.

Finally, the present approach is quite general, it permit to recover naturally the
fracture mechanics approach and it suggests that the others approaches, based on special
constitutive laws involving the notion of the damage of the interface, are in some sense
regularization of the proposed non-smooth model.

More precise evolution law concerning the damage variable can be choosen [9]. It is
worth noting that this model
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