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Abstract In this paper, we consider the complexity of recognizing ordered tree-shellable
Boolean functions when Boolean functions are given as OBDDs. An ordered tree-shellable
function is a positive Boolean function such that the number of prime implicants equals
the number of paths from the root node to a 1-node in its ordered binary decision tree

representation. We show that given an OBDD, it is possible to recognize in quadratic

time a function ordered tree-shellable with respect to the variable ordering of the OBDD.

1 lntroduction

A tree-shellable function is a positive Boolean function defined by the relation between
its prime implicants and binary decision tree (BDT) representation: the number of prime
implicants equals the number of paths from the root to a leaf labeled 1 in its binary

decision tree representation [6]. An ordered tree-shellable function is a special case of a

tree-shellable function and its prime implicants have the similar relation with an ordered
BDT. In this paper, we deal with the complexity of recognizing ordered tree-shellable
functions.

An ordered tree-shellable function has the following good properties. First, if a Boolean

function is shellable, one can easily solve the union of product problem [2], which is the

problem of computing the reliability of some kind of systems. Second, if a Boolean

function is tree-shellable, it is easy to compute its dual.
When a Boolean function is given as its DNF representation, it is $\mathrm{N}\mathrm{P}$ -complete to check

if the function is ordered tree-shellable [3]. If a variable ordering $\pi$ is given, it is possible
to check if the function is ordered tree-shellable with respect to $\pi$ within polynomial time.

In this paper, we consider the case when a Boolean function is given as its Ordered
Binary Decision Diagram (OBDD) representation. An OBDD $[1, 4]$ is a directed acyclic

graph that represents a Boolean function. As OBDDs are widely used in many appli-

cations due to their good properties, it is worth considering the case when an OBDD is

given as an input of recognition problems [5]. We show that it is possible to check if the
function is ordered tree-shellable with respect to the variable ordering of the given OBDD
in quadratic time.
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2 Basic Definitions

Let $B=\{0,1\},$ $n$ be a natural number, and $[n]=\{1,2, \ldots, n\}$ . Especially, $[0]=\emptyset$ . Let
$\pi$ be a permutation on $[n]$ . $\pi$ represents a total order of integers.

Let $f(x_{1}, \ldots, x_{n})$ be a Boolean function. We denote $f\geq g$ if $f(x)=1$ for any assignment
$x\in\{0,1\}^{n}$ which makes $g(x)=1$ . An implicant of $f$ is a product term

$i \in I\wedge x_{i}\bigwedge_{j\in J}\overline{xj}$
which

satisfy
$\bigwedge_{i\in I}x_{i}\bigwedge_{j\in J}\overline{x_{j}}\leq f$

, where $I,$ $J\subseteq[n]$ . An implicant which satisfies
$\bigwedge_{i\in I-\{s\}}x_{i}\wedge\overline{x}j\in Jj\not\leq f$

for any $s\in I$ and
$\bigwedge_{i\in I}x_{i}\wedge j\in J-\{t\}\overline{Xj}\not\leq f$

for any $t\in J$ is called a prime implicant of $f$ .

An expression of the form $f=k=1 \vee m(\bigwedge_{\in}X_{i}iI_{k}j\in\wedge\overline{xj})kJ$ is called a disjunctive normal form
Boolean formula (DNF), where $I_{k},$ $J_{k}\subseteq[n]$ and $I_{k}\cap J_{k}=\emptyset$ for $k=1,$ $\ldots,$

$m$ . A positive
DNF (PDNF) is a DNF such that $J_{k}=\emptyset$ for all $k$ . If $f$ can be represented as a PDNF,
it is called a positive Boolean function. A PDNF is called irredundant if $I_{k}\subseteq I_{l}$ is not

satisfied for any $k,$ $l(1\leq k, l\leq m, k\neq l)$ . For an irredundant PDNF, let $PI(f)$ be the set
of all $I_{k}$ . $PI(f)$ represents the prime implicants of $f$ . In the following of this paper, we
consider only positive functions and we assume that a function is given as an irredundant
$\mathrm{P}$ DNF $f=k=1i\in I_{k}\vee\wedge x_{i}m$ .

3 Graph Representations of Boolean Functions

3.1 Binary Decision Tree

A Binary Decision Tree (BDT) is a labeled tree that represents a Boolean function. A
leaf node of a BDT is labeled by $0$ or 1 and called a value node. Any other node is labeled
by a variable and called a variable node. Let label $(v)$ be the label of node $v$ . Each node
except leaf nodes has two outgoing edges, which are called a $\mathit{0}$-edge and a 1-edge. Let
$edge_{0}(v),$ $edge_{1}(v)$ denote the nodes pointed to by the $0$ -edge and the 1-edge of node $v$

respectively. The value of the function is given by traversing from the root node to a leaf
node.

A path from the root node to a leaf node labeled 1 is called a 1-path. A path $P$ of a
BDT is represented as a sequence of literals. If the k-th edge on a 1-path $P$ is the l-edge
( $0$ -edge, resp.) from the node labeled by $x_{i}$ , positive literal $x_{i}$ (negative $\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}_{\overline{X_{i}}}$ , resp.)
is the k-th element of $P$ . For simplicity, we denote $\tilde{x}_{i}\in P$ when $\tilde{x}_{i}$ is included in the
sequence representing $P$ , where $\tilde{x}_{i}$ is either $x_{i}$ or $\overline{x_{i}}$ . Let $pos(Pk)$ ( $neg(P_{k})$ , resp.) be the
set of indices of variables whose positive (negative, resp.) literals are in $P_{k}$ .

When the $0$ -edge and the 1-edge of node $v$ point to the nodes representing the same
function, $v$ is called to be a redundant node. In the following of this paper, we assume
that a BDT has no redundant node.
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If there is a total order of variables which is consistent with the order that variables
appear on any path from the root to a leaf, it is called an ordered BDT (OBDT). The
total order of variables for an OBDT is called the variable ordering. If label $(v)$ is the k-th
element of the variable ordering, we say that $k$ is the level of $v$ and denote level$(v)=k$ .
Let the level of value node be $n+1$ .

3.2 Ordered Binary Decision Diagram

An Ordered Binary Decision Diagram (OBDD) $[1, 4]$ is a directed acyclic graph that
represents a Boolean function. Intuitively, an OBDD is obtained by combining the nodes
of an OBDT which represent the same function into a single node. The nodes of an
OBDD consist of variable nodes and two value nodes. Similarly to an OBDT. there is a
total ordering of variables for an OBDD, which is called a variable ordering.

When two nodes $i$ and ;/ have the same label and represent the same function, they are
called equivalent nodes. When $edge_{1}(i)=edge_{0}(i)$ , node $i$ is called a redundant node. An
OBDD which has no equivalent nodes and no redundant nodes is called a reduced OBDD.
It is known that a Boolean function is uniquely represented by a reduced OBDD, provided
that the variable ordering is fixed. In the following of this paper, we assume w.l.o.g. that
an OBDD means a reduced OBDD. The size of an OBDD is the total number of nodes.

4 Ordered $\mathrm{R}\mathrm{e}\mathrm{e}$-Shellable Boolean Function

Definition A positive Boolean function $f$ is tree-shellable when it can be represented by
a BDT with exactly $|PI(f)|$ l-paths.
Definition A positive Boolean function $f$ is ordered tree-shellable with respect to $\pi$ if
it can be represented by an OBDT with variable ordering $\pi$ which has exactly $|PI(f)|$

$1$ -paths. $f$ is ordered tree-shellable if there exists $\pi$ such that $f$ is ordered tree-shellable
with respect to $\pi$ . We call $\pi$ to be the shelling variable ordering of $f$ .

Proposition 1 If $f=k=1i\in I_{k}\vee\wedge Xmi$ is tree-shellable, there exists a BDT $T$ representing $f$

which satisfy the following conditions.
$\bullet$ $T$ has $m1$ -paths $P_{1},$

$\ldots,$
$P_{m}$ .

$\bullet$ Each $P_{k}$ corresponds to a term $I_{k}$ by the rule that $i\in I_{k}$ iff $x_{i}\in P_{k}$ .

As an ordered tree-shellable function is tree-shellable, Proposition 1 also holds for or-
dered tree-shellable functions.

The next corollary is clear from the proof of Theorem 4 of [6].

Corollary 2 Let $T$ be an OBDT with variable ordering $\pi$ that represents a Boolean
function $f$ . $f$ is ordered tree-shellable with respect to $\pi$ iff there exists $I_{t}$ which satisfy
$I_{t}\subset\wedge pos(P_{i})\cup\{l\}$ for any 1-path $P_{i}$ of $T$ and any $\overline{x_{l}}\in P_{i}$ ,
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5 Checking Ordered Tree-Shellability Based on OBDDs

Theorem 3 Given an OBDD with variable ordering $\pi$ , it is possible to check if the
Boolean function represented by the OBDD is ordered tree-shellable with respect to $\pi$ or

not within polynomial time.

Proof We first give the polynomial time algorithm to check ordered tree-shellability.
Let $lev(u, v)= \min\{level(u), level(v)\}$ . In this algorithm, $0$ represents the value node
labeled $0$ .
[Algorithm CheckOTS]

1. Check if the OBDD represents a positive function. If not, it is not ordered tree-

shellable.

2. For $i=1$ to $n$ , repeat (a) and (b).

(a) For any node $v$ in level $i$ do:
if edge0 $(v)\neq 0,$ $A_{l(}\mathrm{e}ved_{\mathit{9}}e0(v),edg\mathrm{e}1(v))=Alev(edg\mathrm{e}_{0}(v),ed_{\mathit{9}}e1(v))\cup$ { $(edge_{0}(v),$ edgel $(v))$ }.

(b) For any pair $(u, v)\in A_{i}$ do:
if level$(u)>i$

$A_{t\mathrm{e}v(u,e}dg\mathrm{e}\mathrm{o}(v))=Alev(u,edg\mathrm{e}_{0(}v))\cup\{(u, edge\mathrm{o}(v))\}$

else if level$(v)>i$

if $edge_{0}(u)\neq 0,$ $A_{lev(e(),v}\mathrm{e}d_{\mathit{9}}0u)=A_{l(ed0}\mathrm{e}vg\mathrm{e}(u),v)\cup\{(edge\mathrm{o}(u), v)\}$

else do:
$A_{i\mathrm{e}v(_{Gd}(}\mathit{9}^{e}1u),edg6_{1}(v)\rangle=A(\mathrm{e}d\mathit{9}\mathrm{e}1(u),ed_{\mathit{9}}\mathrm{e}1(v))\cup$ { $(edge1(u),$ edgel $(v))$ }
if $edge_{0}(u)\neq 0,$ $Al\mathrm{e}v(\mathrm{e}d_{\mathit{9}}e0(u),edg\mathrm{e}\mathrm{o}(v))=A_{(edge_{0}(),ed0}\cup\{u\mathit{9}e(v))(edge0(u), edge0(v))\}$

3. The given OBDD represents an ordered tree-shellable function iff no pair of the form
$(u, u)$ is generated in step 2.

In this algorithm., $A_{i}(2\leq i\leq n+1)$ is a set of pairs of nodes.
We consider the time complexity of the above algorithm. Let $m$ be the size of the given

OBDD. As shown in [5], stepl can be executed in $m^{2}$ time. In $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$, through $n$ iterations,

each variable node appears exactly once. Thus, it takes $O(m)$ time. In $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ , through
$n$ iterations, the same pair may be generated many times. However, as the number of

different generated pairs is less than $m^{2}$ , the total number of generated pairs is less than
$2m^{2}$ . Thus, Algorithm $\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{k}\mathrm{o}\mathrm{T}\mathrm{S}$ runs in $O(m^{2})$ time.

Now we should prove that Algorithm $\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{C}\mathrm{k}\mathrm{o}\mathrm{T}\mathrm{S}$ correctly checks the ordered tree-
shellability of the given Boolean function. This proof consists of two stages. We first
show in Lemma 5 that there exists a pair of 1-paths $P_{i},$ $P_{j}$ that satisfy some condition iff
the function is not ordered tree-shellable with respect to the variable ordering. Then we
show that the algorithm correctly detects such pair of l-paths.
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We call a 1-path $P_{\dot{J}}$ which satisfy $pos(P)\dot{J}=I_{i}$ the main path of $I_{i}$ . If $P$, is a main
path of some prime implicant, we call $P_{j}$ a main path. If an OBDT $T$ witnesses that $f$ is

ordered tree-shellable, any 1-path of $T$ is a main path. We call a 1-path $P_{j}$ which satisfy
$I_{i}\subseteq pos(P_{j})$ a corresponding path of $I_{i}$ .

Proposition 4 1. For any prime implicant $I_{i}$ , there exists a main path of $I_{i}$ .

2. Any path is a corresponding path of some prime implicant.

From Proposition 4 and the definition of ordered tree-shellable functions, we can see

that there exists a pair of 1-paths both of which are corresponding paths of the same
prime implicant iff $f$ is not ordered tree-shellable. The next lemma shows that we have

only to detect special ones among such pairs of l-paths.

Lemma 5 Let $T$ be an OBDD representing $f$ with variable ordering $\pi$ . $f$ is not ordered
tree-shellable with respect to $\pi$ iff there exists a pair of 1-paths $P_{i},$ $P_{j}$ in $T$ which satisfies
$pos(P_{i})\subseteq pos(P_{j})$ and $|pos(Pj)\backslash pos(P_{i})|=1$ .

Proof [if] If there exists a pair of 1-paths $P_{i},$ $P_{j}$ satisfying $pos(Pi)\subseteq pos(Pj),$ $P_{\dot{l}}$ and
$P_{j}$ are corresponding paths of the same prime implicant. That is, at least one of them is

not a main path.
[only if] Assume $f$ is not ordered tree-shellable. Then from Corollary 2, for some path $P_{i}$

and $\overline{x_{l}}\in P_{i}$ , there does not exist $I_{t}(t\neq i)$ that satisfy $I_{t}\subseteq pos(Pi)\cup\{l\}$ and $I_{t}\not\subset pos(P_{i})$ .

For such $P_{i}$ and $x_{l}$ , let $P_{j}$ be the path traversed by the assignment such that $x_{k}=1$ iff
$k=l$ or $x_{k}\in P_{i}$ . If $P_{i}$ is a corresponding path of $I_{i’},$ $P_{j}$ is also a corresponding path
of $I_{i’}$ because it cannot be a corresponding path of any other prime implicant. Thus, $P_{j}$

satisfies $pos(P_{j})=pos(Pi)\cup\{l\}$ . Thus $pos(Pi)\subseteq pos(Pj)$ and $|pos(Pj)\backslash pos(P_{i})|=1$ are

satisfied. $\square$

In the second step, we have to show that Algorithm CheckOTS correctly detects such

pair of paths. In other words, we have to prove the following lemma.

Lemma 6 Algorithm CheckOTS finds a pair of nodes $(u, u)$ iff there exists a pair of

1-paths $P_{i},$ $P_{j}$ as described in Lemma 5.

Proof [only if] We prove that for any pair $(v, w)$ generated in the algorithm

$(*)$ there exist paths $P_{v},$ $P_{w}$ such that $P_{v}$ is a path from the source to $v,$ $P_{w}$ is a path
from the source to $w,$ $pos(P)v\underline{\subset}pos(P_{w})$ and $|pos(P)w\backslash po\mathit{8}(P_{v})|=1$ .

If it holds, when there exist a pair $(u, u),$ $P_{i}$ and $P_{j}$ of Lemma 5 are obtained by appending
a path from $u$ to the value node labeled 1 to $P_{v}$ and $P_{w}$ .

We prove it by induction on the number of iterations in step2. In the first iteration,

one pair is generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$ and the pair satisfies $(*)$ . We assume that all the pairs

generated in the i-th iteration $(i<s)$ of step2 satisfy condition $(*)$ . In the s-th iteration,
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a) any pair generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{a}$ clearly satisfies $(*)$ , and
b) a pair generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ from a pair $(u’, v)/$ satisfies $(*)$ by appending literals cor-
responding to the edges used in the algorithm to $P_{u’}$ and $P_{v’}$ because $(u’, v)’$ satisfies
$(*)$ .
[if] Let $e_{i}^{s},$ $e_{j}^{S}$ be the endpoints of the subpaths of $P_{i},$ $P_{j}$ that consist of the literals of
$x_{1},$

$\ldots,$
$x_{S}$ . We prove that for any $s$ , the pair $(e_{i}^{s}, e_{j}^{s})$ is generated in the algorithm.

When $P_{i}$ and $P_{j}$ diverge at some node (labeled $x_{t}$ ), only $P_{j}$ have the positive literal $x_{t}$ .
Thus, for $x_{k}(k>t)$ , either i) both $P_{i}$ and $P_{j}$ has the same literal, ii) either of them has

$\overline{x_{k}}$ or iii) neither of them has a literal of $x_{k}$ . Thus, we can see that pairs of nodes are
generated in $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}2\mathrm{b}$ for all the above possible cases. Therefore, if $P_{i}$ and $P_{j}$ join at node
$u,$ $(u, u)$ never fails to be generated. $\square$

ロ

6 Conclusion

In this paper, we have considered the complexity of checking ordered tree-shellability
of a Boolean function given as an OBDD. We have shown that given an OBDD, it is
possible to recognize in quadratic time a Boolean function that is ordered tree-shellable
with respect to the variable ordering of the OBDD. However, it seems difficult to check if
the given function is ordered tree-shellable with respect to the other variable orderings.
To make use of the merits of ordered tree-shellable functions, it is important to find classes
of Boolean functions for which this problem has small complexity.
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