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Abstract
Applications of Gr\"obner bases to some computationally hard problems in combinatorics using the
discreteness of toric ideals have been studied in recent years. On the other hand, the properties
of graphs may give insight into Gr\"obner bases. In this paper, we analyze toric ideals of acyclic
tournament graphs, which are the most fundamental directed graphs. We focus especially on
the number of elements of its reduced Gr\"obner bases. We show that there exist term orders for
which reduced Gr\"obner bases remain in polynomial order by characterizing the bases in terms
of circuits. We next analyze the number of elements of reduced Gr\"obner bases with respect to
various term orders. We finally discuss applications to the minimum cost flow problem.

1 Introduction rected bipartite graphs can be regarded as the

Recently, some algebraic approaches to many com- subgraphs of acyclic tournament graphs by direct-

putationally hard problems in combinatorics have ing each edge from one set of vertices in bipar-

been studied. The main tool is the $G_{\Gamma\ddot{O}}bner$ ba- tite graphs to the other. By the elimination the-

sis, which is an important tool in computational orem $(\mathrm{S}\mathrm{e}\mathrm{e}[3])$ , reduced Gr\"obner bases of any sub-

algebra and algebraic geometry. Gr\"obner bases graphs of acyclic tournament graphs can be ob-

have provided new insight into some combinatorial tained automatically if that of acyclic tournament

problems such as integer programming [2, 5, 6, 12] graphs can be calculated. Thus the number of ele-

and computational statistics [6]. ments in reduced Gr\"obner bases of any subgraphs
are less than those of acyclic tournament graphs.Related to some combinatorial problems in
On the other hand, the number of elements in re-graph theory, toric ideals of graphs have been stud-

ied. De Loera, Sturmfels and Thomas [5] studied duced Gr\"obner bases of graphs are related to the

the toric ideals of undirected complete graphs, and complexity of integer programming problem aris-

applied them to the triangulation of second hyper- ing from the graphs.

simplex and perfect $f$-matching problem. Diaco- In this paper, we show that the number of ele-
nis and Sturmfels [6] studied the toric ideals of ments in reduced Gr\"obner bases remain in polyno-

bipartite graphs, and applied them for sampling mial order by characterizing the bases in terms of
from conditional distributions and transportation circuits. We next analyze the number of elements

problem. From the viewpoint of in commutative of reduced Gr\"obner bases with respect to various

algebra, Ohsugi and Hibi [10] studied the toric ide- term orders using $\mathrm{T}\mathrm{i}\mathrm{G}\mathrm{E}\mathrm{R}\mathrm{S}[8]$ . We finally discuss

als of general undirected graphs, and showed the applications to the minimum cost flow problem on
conditions when the toric ideals are generated by acyclic tournament graphs.

quadratic binomials. Conversely, the properties of
graphs may give insight into Gr\"obner bases. 2 Preliminaries

Gr\"obner bases of directed graphs are not well
In this section, we give basic definitions of Gr\"obner

understood. In this paper, we study the toric
bases and toric ideals. We refer to $[3, 4]$ for theideals of acyclic tournament graphs, which are
introductions of Gr\"obner bases, and [11] for thethe most fundamental directed graphs. Any ele-
introductions of toric ideals and their applications.ments in the reduced $\mathrm{G}\mathrm{r}\ddot{\mathrm{o}}\mathrm{b}\mathrm{n}\mathrm{e}\Gamma$ bases for toric ide-

als of these graphs correspond to the circuits in
the graphs. So we can characterize the reduced 2.1 Gr\"obner Bases
Gr\"obner bases of toric ideals in terms of circuits.

We focus especially on the number of elements in Let $k$ be a field and $k[x_{1}, \ldots, x_{n}]$ be the ring of
reduced Gr\"obner bases. Analysis of the Gr\"obner polynomials in $n$ variables. For a non-negative
bases of acyclic tournament graphs are very im- integer vector $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{N}^{n}$ , we write
portant. Acyclic tournament graphs contains any $x^{\alpha}:=x_{1}^{\alpha_{1}\alpha\ldots\alpha}x_{2}2x_{n}n$ . We call $\alpha$ the exponent vec-
acyclic directed graphs as subgraphs, and undi- $tor$ of monomial $x^{\alpha}$ .
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Definition 2.1 $Let\succ be$ a total order on $\mathbb{N}^{n}$ . We
$call\succ a$ term order on $\mathbb{N}^{n}$ if it satisfies the follow-
ing:

1. $\forall_{\alpha,\beta,\gamma\in}\mathbb{N}^{n},$ $\alpha\succ\beta\Rightarrow\alpha+\gamma\succ\beta+\gamma$ .

Although there are infinite term orders, a uni-
versal Gr\"obner basis is finite.

Proposition 2.10 Every ideal $I\subset k[x_{1}, \ldots, x_{n}]$

has a finite universal Gr\"obner basis.

2 $\forall_{\alpha\in \mathrm{N}^{n}}\backslash \{0\},$ $\alpha\succ 0$ We define “division” on multi-variable polyno-

For a polynomial $f$ and a term $order\succ$ , we call mial ring.
the largest term in $f$ with respect $to\succ \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$ term Theorem 2.11 Fix a monomial order $\succ$ and a
of $f$ and write $in_{\succ}(f)$ , or short, in $(f)$ . $Gr\ddot{o}bne\Gamma$ basis $\mathcal{G}=\{g_{1}, \ldots, g_{s}\}$ for I with respect

$to\succ$ . Then every $f\in k[x_{1}, \ldots, x_{n}]$ can be writtenRemark 2.2 In this paper, we line under the ini- astial term of each polynomial.
$f=a_{1}g_{1}+\cdots+a_{s}g_{s}+r,$ $a_{i},$ $r\in k[x_{1}, \ldots, x_{n}]$

We give some examples of term orders.

Definition 2.3 Fix a variable ordering $x_{i_{1}}$
$\succ$

where either $r=0$ or no term of $r$ is divisible
by any of $in_{\succ}(g_{1}),$

$\ldots,$
$in_{\succ}(g_{s})$ . $r$ is unique, and

$x_{i_{2}}\succ\cdots\succ x_{i_{n}}$ . We $say\succ is$ $a$ purely lexico- called normal form of $f$ by $\mathcal{G}$ .graphic order induced by this variable ordering if,
for any $\alpha$ and $\beta,$ $\alpha\succ\beta$ if and only if there exists
$1\leq m\leq n$ such that $\alpha_{i_{k}}=\beta_{i_{k}}$ for $k<m$ and 2.2 Toric Ideals
$\alpha_{i_{m}}>\beta_{i_{m}}$ . In this section, we consider $A\in \mathbb{Z}^{d\cross n}$ as a set
Definition 2.4 Fix a variable ordering $x_{i_{1}}$

$\succ$
of column vectors $\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\}$ . Each vector $\mathrm{a}_{i}$ is

We $say\succ is$ $a$ degree lexico- identified with a monomial $\mathrm{t}^{\mathrm{a}_{i}}$ in the Laurent poly-
$\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}\mathrm{i}_{\mathrm{C}}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}indx_{i_{2}}\succ\cdots\succ xinuCed$

by this variable ordering if, nomial ring $k[\mathrm{t}^{\pm 1}]:=k[t_{1}, \ldots , t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}]$ .
for any $\alpha$ and $\beta,$ $\alpha\succ\beta$ if and only if $\sum_{i=1}^{n}\alpha_{i}>$ Definition 2.12 Consider the homomorphism
$\sum_{i=1}^{n}\beta_{i}$ or ( $\sum_{i=1}^{n}\alpha_{i}=\sum_{i=1}^{n}\beta_{i}$ and $\alpha\succ_{plex}\beta$ ).
( $\succ_{plex}$ is purely lexicographic order induced by $\pi:k[x_{1}, \ldots, x_{n}]arrow k[\mathrm{t}^{\pm 1}],$ $x_{i}rightarrow \mathrm{t}^{\mathrm{a}:}$ .
$x_{i_{1}}\succ x_{i_{2}}\succ\cdots\succ x_{i_{n}}.)$

The kernel of $\pi$ is denoted $I_{A}$ and called the toric
Definition 2.5 Let $\omega\in \mathrm{R}_{\geq 0}^{n}$ be a non-negative ideal of $A$ .
vector $and\succ an$ arbitrary term order. We define
$a$ refinement $\succ_{\omega}$ of $\omega$ with respect $to\succ as$ follows: Every vector $\mathrm{u}\in \mathbb{Z}^{n}$ can be written uniquely as
for any $\alpha$ and $\beta$ , $\mathrm{u}=\mathrm{u}^{+}-\mathrm{u}^{-}$ where $\mathrm{u}^{+}$ and $\mathrm{u}^{-}$ are non-negative

and have disjoint support.
$\alpha\succ_{\omega}\beta\Leftrightarrow\omega\cdot\alpha>\omega\cdot\beta$ or ( $\omega\cdot\alpha=\omega\cdot\beta$ and $\alpha\succ\beta$ ).

Lemma 2.13
Definition 2.6 Let I be an ideal in $k[x_{1}, \ldots, k_{n}]$

and $\succ$ a term order. $A$ finite subset $\mathcal{G}$ $=$
$I_{A}=\langle \mathrm{x}^{\mathrm{u}^{+}}\cdot-\mathrm{x}^{\mathrm{u}_{i}^{-}} : \mathrm{u}:\in \mathrm{k}\mathrm{e}\mathrm{r}(A)\cap \mathbb{Z}^{n}, i=1, \ldots, s\rangle$

$\{g_{1}, \ldots, g_{s}\}\subset I$ is $a$ reduced Gr\"obner basis for Furthermore, toric ideal is generated by finite bino-I with respect $to\succ if$ $\mathcal{G}$ satisfies the following: mials. (A binomial is a polynomial which consists
1. For any $f\in I$ , there exists some $g_{i}\in \mathcal{G}$ such of two monomials.)

that $in_{\succ}(f)$ is divisible by $in_{\succ}(g_{i})$ .
Definition 2.14 A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is

2. For any $i$ , the coefficient of $g_{i}$ is 1. called circuit if the support of $\mathrm{u}$ is minimal with
respect to inclusion in $\mathrm{k}\mathrm{e}\mathrm{r}(A)$ and the coordinates3. For any $i$ , any term of $g_{i}$ is not dinisible by of $\mathrm{u}$ are relatively prime. We denote the set of all

$in_{\succ}(_{\mathit{9}j})(i\neq j)$ . circuits in $I_{A}$ by $C_{A}$ .
We give some properties of Gr\"obner basis. Definition 2.15 A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is

Proposition 2.7 The reduced Gr\"obner basis is called primitive if there exists no other binomial
unique for an ideal and a term order. $\mathrm{x}^{\mathrm{v}^{+}}-\mathrm{x}^{\mathrm{v}^{-}}$

$\in I_{A}$ such that both $\mathrm{u}^{+}-\mathrm{v}^{+}$ and
$\mathrm{u}^{-}-\mathrm{v}^{-}$ are non-negative. The set of all prim-

Proposition 2.8 For any term order $\succ$ , $a$ itive binomials in $I_{A}$ is called the Graver basis ofGr\"obner basis for I with respect $to\succ$ is a basis $A$ and written by $Gr_{A}$ .
for $I$ .

Let $\mathcal{U}_{A}$ be the universal Gr\"obner basis of $I_{A}$ .
Definition 2.9 We call a union of reduced
Gr\"obner basis of I with respect to any term orders Proposition 2.16 $C_{A}\subseteq \mathcal{U}_{A}\subseteq Gr_{A}$ . If $A$ is a
$a$ universal Gr\"obner basis for I. unimodular matrix, then $C_{A}=Gr_{A}$ .
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2.3 Toric Ideals of Acyclic Tourna-
ment Graphs

Theorem 3.1 $Let\succ_{1}$ be a purely lexicographic or-
der induced by the following variable ordering:

Let $D_{n}$ be an acyclic tournament graph with $n$ ver- $x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j<l$).
tices which have labels 1, 2, . . . , $n$ such that each
edge $(i,j)(i<j)$ is directed from $i$ to $j$ . Let Let
$m=$ be the number of edges in $D_{n}$ . We asso-

gijk $:=\underline{x_{i}jX_{jk}}-xik(1\leq i<j<k\leq n)$

$\mathrm{C}\circ \mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}(i,\mathrm{O}j)\mathrm{w}_{1\mathrm{r}\mathrm{i}k[\cdot i}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}1\mathrm{e}xij,$$\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{w}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}Xij\cdot 1\leq<j\leq n]$ . $g_{ijkl}:=\underline{x_{ik}xjl}-XilX_{jk}(1\leq i<j<k<l\leq n)$ .
We analyze the toric ideal $I_{A_{n}}$ of incidence ma- Then reduced Gr\"obner $ba\mathit{8}i\mathit{8}\mathcal{G}1$ of $I_{A_{n}}$ with respecttrix $A_{n}$ of $D_{n}$ . This ideal is not homogeneous

$to\succ_{1}i_{\mathit{8}}$

with respect to the standard grading $\deg(X_{ij})=1$ ,
but is homogeneous with respect to the grading

$\mathcal{G}_{1}$ $=$ $\{g_{ijk} : 1\leq i<j<k\leq n\}$
$\deg(x_{ij})=j-i$ .

$\cup$ $\{g_{ijk\iota:}1\leq i<j<k<l\leq n\}$

Remark 2.17 In this paper, we define $a$ circuit In particular, the number of elements in $\mathcal{G}_{1}$ equals
of $D_{n}$ as a simple cycle. $+$ .

Definition 2.18 Let $C$ be a circuit of $D_{n}$ . If we The set $\{g_{ijk} : 1 \leq i<j<k\leq n\}$ corresponds
fix a direction of $C$ , we can partition the $edge\mathit{8}$ of to all of the circuits of length three, and $\{g_{ijk}\iota:1\leq$

$C$ into two sets $C^{+}$ and $C^{-}$ such that $C^{+}$ is the $i<j<k<l$} corresponds to some of the circuits
$\mathit{8}et$ of forward edges and $C^{-}$ is the set of backward of length $\mathrm{f}_{0}\mathrm{u}\mathrm{r}(\mathrm{F}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}1)$ .
edges. Then the vector $\mathrm{x}=(x_{ij})_{1}\leq i<j\leq n\in \mathbb{R}^{m}$

defined by
$/j.\mathrm{X}_{k}’$

$x_{ij}=$ $(i,j)\in E$

Figure 1: The circuit corresponding to $g_{ijk}$ and

is called the incidence vector of $C$ . the circuit corresponding to $g_{ijkl}$ .

(Proof) For any circuit of length three defined by
Lemma 2.19 ([1]) A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A_{n}}$ three vertices $i,$ $j,$ $k(i<j<k)$ , the associated
is a circuit if and only if $\mathrm{u}$ is the incidence vector binomial equals $x_{ij}x_{jk}-x_{i}k$ , which is $g_{ijk}$ .
of a circuit of $D_{n}$ . The circuits $\overline{\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}}$ by four vertices $i<j<$

$k<l$ are $C_{1}$ $:=i,j,$ $k,$ $l,$ $i,$ $C_{2}$ $:=i,j,$ $l,$ $k,$ $i$ ,
By Proposition 2.16, $C_{A_{n}}=\mathcal{U}_{A_{n}}=Gr_{A_{n}}$ since $C_{3}:=i,$ $k,$ $j,$ $l,$ $i$ and their opposites. The bino-

the incidence matrix $A_{n}$ is unimodular. mial which corresponds to $C_{1}$ or its opposite is
$\underline{x_{ij}x_{j}k^{X}kl}-x_{il}$ , whose initial term is divisible by

Corollary 2.20 The universal Gr\"obner basis $\mathcal{U}_{A_{n}}$ in $(g_{ijk})$ . Similarly, the initial term of binomial
is the set of binomials which correspond to the cir- which corresponds to $C_{2}$ or its opposite is divisi-
cuits of $D_{n}$ . ble by in $(g_{ij}\iota)$ . The $\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{n}1\dot{\ovalbox{\tt\small REJECT}}^{1}$ which corresponds

to $C_{3}$ or its opposite is $g_{ijkl}$ .
Corollary 2.21 The number of elements in $\mathcal{U}_{A_{n}}$

is of exponential order with respect to $n$ .

3 Some Gr\"obner bases of $I_{A_{n}}$

In this section, we show that the elements in re-
duced Gr\"obner bases with respect to some specific Figure 2: The circuits $C_{1},$ $C_{2},$ $C_{3}$ .
term orders can be given in terms of graphs. As
a corollary, we can show that there exist term or- Let $C$ be a circuit of length more than 5. Let $i_{1}$

ders for which reduced Gr\"obner bases remain in be the vertex whose label is minimum in $C$ , and
polynomial order. $C:=i_{1},$ $i_{2},$

$\ldots$ , $i_{s},$ $i_{1}$ . Without loss of generality,
We first show the term order for which the ele- we set $i_{2}<i_{s}$ . Let $f_{C}$ be the binomial correspond-

ments in reduced Gr\"obner basis correspond to the ing to $C$ , then in $(f_{c})$ is product of all variables
circuits of length three and some circuits of length whose associated edges have same direction with
four of $D_{n}$ . $(i_{1}, i_{2})$ on $C$ . We show that in $(f_{C})$ is divisible by
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initial term of a binomial in $\mathcal{G}_{1}$ , which implies that
$\mathcal{G}_{1}$ is Gr\"obner basis of $I_{A_{n}}$ with respect $\mathrm{t}\mathrm{o}\succ_{1}$ .

If $i_{2}<i_{3}$ , then $(i_{1}, i_{2})$ and $(i_{2}, i_{3})$ have same
direction on $C$ . Thus the variables $x_{i_{1}i_{2}}$ and
$x_{i_{2}i_{3}}$ appear in in $(f_{C})$ , and in $(f_{C})$ is divisible by
in $(g_{i_{1}}i_{2}i_{3})$ (Figure 3 left).

If $i_{2}>i_{3}$ , then since $i_{3}<i_{2}<i_{s}$ , there exists $k$

$(3\leq k<s)$ such that $i_{1}<i_{k}<i_{2}<i_{k+1}$ . Then
the variables $x_{i_{1}i_{2}}$ and $x_{i_{k}i\iota+1}$ appear in in $(fc)$ ,
and in $(f_{C})$ is divisible by in $(gi_{1}i_{k}i_{2}ik+1)$ (Figure 3
right).

term of other binomial in $\mathcal{G}_{2}$ , which implies that
$\mathcal{G}_{2}$ is reduced. 1

We $1\mathrm{a}s\mathrm{t}$ show that there exist two term orders
for which reduced Gr\"obner bases are same as $\mathcal{G}_{1}$ .

Theorem 3.3 $Let\prec_{3}$ be a purely lexicographic or-
der induced by the following variable ordering:

$x_{ij}\succ x_{kl}\Leftrightarrow j<l$ or ($j=l$ and $i<k$ ).

Then reduced Gr\"obner $baSi\mathit{8}$ of $I_{A_{n}}$ with respect to
$\prec_{3}$ is $\mathit{8}ame$ as $\mathcal{G}_{1}$ in Theorem 3.1.

(Proof) For the circuits of length less than four,
we can show similarly as the proof of Theorem 3.1.

Let $C$ be a circuit of length more than five. Let
$i_{1}$ be the vertex whose label is minimum in $C$ , and
$C:=i_{1},$ $i_{2},$

$\ldots,$
$i_{s},$ $i_{1}$ . Without loss of generality,

Figure 3: $x_{i_{1}i_{2}}$ and $x_{i_{2}i_{3}}$ (left) or $x_{i_{1}i_{2}}$ and $x_{i\iota^{i}\iota}+1$ we set $i_{2}<i_{s}$ . Let $f_{C}$ be the associated binomial.
(right) appear in in $(f_{C})$ . Let $T_{C}:=\{i_{S}\in C:i_{s-1}<i_{s}\}\cup\{i_{s}\in C:i_{s+1}<$

$i_{s}\}$ . (We set $i_{s+1}=i_{1}$ ) This is the set of vertices
Any term of $g_{ijk}$ is not divisible by the initial which are the terminal points of edges in $C$ . Let

term of any other binomials in $\mathcal{G}_{1}$ , and so as $g_{ijkl}$ . $i_{k}$ be the vertex whose label is minimum in $T_{C}$ .
This implies that $\mathcal{G}_{1}$ is reduced. 1 If $k=2$ , then the variable $x_{i_{1}i_{2}}$ is the maximum

Next we show the term order for which the ele- variable in $fc$ with respect to $\prec_{3}$ . Then in $(fc)$

ments in reduced Gr\"obner basis correspond to the is product of all variables whose associated edges
fundamental circuits for a certain spanning tree of have same direction with $(i_{1}, i_{2})$ on $C$ . In this case,
$D_{n}$ . we can show that $\mathcal{G}_{1}$ is the reduced Gr\"obner basis

with respect $\mathrm{t}\mathrm{o}\prec_{3}$ by similar way as Theorem 3.1.
Theorem 3.2 $Let\succ_{2}$ be a purely lexicographic or- Let $k\neq 2$ . If $i_{k-1}<i_{k}<i_{k+1}$ (Figure 4 left),
der induced by the following variable ordering: the variable $x_{i_{k-1}i_{k}}$ is the maximum variable in $fc$

by the choice of $k$ . Then the variables $x_{i_{k-1}}i_{k}$ and
$x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j>l$ ).

$x_{i_{k}i_{k}}.+1$ appear in in $(f_{C})$ , and in $(f_{C})$ is divisible

For $1\leq i<j-1<n$ , let by in $(g_{i_{k-1}}i_{k}i_{k}+1)$ . Similarly we can show for the
case of $i_{k-1}>i_{k}>i_{k+1}$ .

$g_{ij}:=\underline{x_{i}j}-x_{i},i+1xi+1,i+2\ldots X_{j-1},j$

Then reduced Gr\"obner basis $\mathcal{G}_{2}$ of $I_{A_{n}}$ with respect
$to\succ_{2}$ is

$\mathcal{G}_{2}=\{gij:1\leq i<j-1<n\}$ .

In particular, the number of $element_{\mathit{8}}$ in $\mathcal{G}_{2}$ equals Figure 4: The cases $i_{k-1}<i_{k}<i_{k+1}$ (left) and
$-(n-1)$ . $i_{k-1}<i_{k+1}<i_{k}$ (right).

The elements of reduced Gr\"obner basis $\mathcal{G}_{2}$ cor- Let $i_{k-1}<i_{k}$ and $i_{k+1}<i_{k}$ (Figure 4 right).
respond to the fundamental circuits of $D_{n}$ for the If $i_{k-1}<i_{k+1}$ , then the variable $x_{i_{k-1}i_{k}}$ is the
spanning tree $T:=\{(i, i+1):1\leq i<n\}$ . maximum variable in $f_{C}$ . Thus the variable $x_{i_{k-1}}i_{k}$

(Proof) Let $C$ be a circuit which is not the fun- appears in in $(f_{C})$ . By the choice of $k$ , it can be
damental circuit of $T$ . Let $i_{1}$ be the vertex whose shown that $i_{k-1}<i_{k+1}<i_{k}<i_{k+2}$ . (We set
label is minimum in $C$ , and $C:=i_{1},$ $i_{2},$

$\ldots,$
$i_{s},$ $i_{1}$ . $i_{m+2}=i_{2}.$ ) In fact, if $i_{k+2}<i_{k+1}$ (Figure 5 left),

Without loss of generality, we set $i_{2}<i_{s}$ . Then then $i_{k+2}<i_{k+1}<i_{k}$ . Thus $i_{k+1}$ is the vertex
the variable $x_{i_{1}i_{s}}$ appears in the initial term of as- whose label is minimum in $T_{C}$ , which implies $i_{k+1}$

sociated binomial $f_{C}$ . Thus in $(fc)$ is divisible by contradicts the choice of $k$ . If $i_{k+1}<i_{k+2}<i_{k}$

$in(g_{i_{1}i_{S}})$ . (Figure 5 right), then $i_{k+2}$ contradicts the choice
The initial term of $g_{ij}$ corresponds to an edge of $k$ .

which is not contained in $T$ , and other term corre- Since $i_{k-1}$ $<i_{k+1}$ $<i_{k}$ $<i_{k+2}$ , the vari-
sponds to several edges which are contained in T. ables $x_{i_{k-1}i_{k}}$ and $x_{i_{\iota+1}}i_{k+2}$ appear in in $(f_{C})$ . Thus
Thus any term of $g_{ij}$ is not divisible by the initial in $(f_{C})$ is divisible by in $(gi\iota-1i\iota+1i\iota i\iota+2)$ . If $i_{k-1}>$
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various term orders. The number of elements for
general toric ideals are not well understood. For
the case of the toric ideals of acyclic tournament
graphs, since those vertex-edge incidence matrices
are unimodular, the size of reduced Gr\"obner bases

Figure 5: $i_{k+1}$ (left) or $i_{k+2}$ (right) contradict the may be bounded.
choice of $k$ . For the number of elements in reduced Gr\"obner

bases, we can get lower bound by Proposition 2.8.

$i_{k+1}$ , similarly we can show that in $(f_{C})$ is divisi- Theorem 4.1 The minimum number of elements
ble by in $(gi_{k+-\mathrm{l}kk}1ikii-2)$ . Thus $\mathcal{G}_{1}$ is the Gr\"obner in reduced Gr\"obner bases for $I_{A_{n}}$ is $-(n-1)$ .
basis of $I_{A_{n}}$ with respect to $\prec_{3}$ . The basis we have shown in Theorem 3.2 is the

The proof that $\mathcal{G}_{1}$ is reduced is same as the proof example achieving this bound.
of Theorem 3.1. 1

Theorem 3.4 $Let\prec_{4}$ be a degree lexicographic or- (Proof) Because of Proposition 2.8, the number
der induced by the following variable ordering: of elements in reduced Gr\"obner basis is more than

the number of elements in the basis for $I_{A_{n}}$ . Since
$x_{ij}\succ x_{kl}\Leftrightarrow i<k$ or ($i=k$ and $j<l$).

$I_{A_{n}}$ corresponds to the cycle space of $D_{n}$ , the num-
Then reduced Gr\"obner basis of $I_{A_{n}}$ with respect to ber of elements in the basis for $I_{A_{n}}$ equals the di-

$\prec_{4}$ is $\mathit{8}ame$ as $\mathcal{G}_{1}$ in Theorem 3.1. mension of the cycle space, which is $-(n-1)$ .
1

(Proof) For the circuits of length less than four, To analyze the upper bound for the number
we can show similarly as the proof of Theorem 3.1. of elements in reduced Gr\"obner bases, we calcu-

Let $C$ be a circuit of length more than five. Let late all reduced Gr\"obner bases for small $n$ using
$i_{1}$ be the vertex whose label is minimum in $C$ , and

$\mathrm{T}\mathrm{i}\mathrm{G}\mathrm{E}\mathrm{R}\mathrm{S}[8]$ . $\mathrm{T}\mathrm{i}\mathrm{G}\mathrm{E}\mathrm{R}\mathrm{S}$ is a software system imple-
$i_{2}$ be the vertex adjacent to $i_{1}$ in $C$ satisfying the mented in $\mathrm{C}$ which computes the state polytope of
following: let $C_{1}$ be the set of edges in $C$ whose di- a homogeneous toric ideal [9]. Table 1 is the result
rection in $C$ are same as $(i_{1}, i_{2})$ and $C_{2}$ be the set for $n=4,5,6,7$ .
of edges in $C$ which do not contained in $C_{1}$ , then
the cardinality of $C_{1}$ is more than that of $C_{2}$ , or if
the cardinality equals, then $i_{2}$ is the vertex adja-
cent to $i_{1}$ in $C$ whose label is minimum. We write
$C:=i_{1},$ $i_{2},$ $\cdots,$

$i_{s},$ $i_{1}$ . Let $f_{C}$ be the associated
binomial. Then in $(f_{C})$ is product of all variables
whose associated edges are contained in $C_{1}$ .

If there exists $k$ which satisfies $i_{k-1}<i_{k}<i_{k+1}$

(we set $i_{s+1}=i_{1}$ ), then the variables $x_{i_{k-1}}i_{k}$ and
$x_{i_{k}i_{k+1}}$ appears in in $(fc)$ . Thus in $(fc)$ is divisible Table 1: The number of reduced Gr\"obner basis,
by in $(g_{i_{k}i_{k}}-1ik+1)$ . maximum of the number of elements and minimum

If there does not exist such $k$ , then between any of the number of elements.
two edges which are contained in $C_{1}$ , there exists
at least one edge which are contained in $C_{2}$ . Then For $n\leq 5$ , the reduced Gr\"obner basis in The-
by the choice of $i_{2}$ , the cardinality of $C_{1}$ equals orem 3.1 is the example achieving maximum ele-
that of $C_{2}$ . Thus $i_{3}<i_{2}<i_{s}$ by hypothesis, and ments, but it is not for $n\geq 6$ . For $n=6$, the
there exists $k(3\leq k<s)$ such that $i_{1}<i_{k}<i_{2}<$ Gr\"obner bases of size 37 are not the bases with
$i_{k+1}$ . Then the variables $x_{i_{1}i_{2}}$ and $x_{i_{k}i_{k+1}}$ appear respect to purely lexicographic orders. Thus the
in in $(f_{C})$ , and in $(fc)$ is divisible by in $(g_{ii_{k}i}12i_{k}+1)$ . reduced Gr\"obner bases which achieve the maxi-

The proof that $\mathcal{G}_{1}$ is reduced is same as the proof mum number of elements seem to be complicated
of Theorem 3.1. 1 and difficult to characterize.

4 Bounds for Size of Gr\"obner
Bases for Various Term Or- 5 Application to Integer Pro-
ders gramming

In this section, we deal with the number of ele- In this section, we apply the toric ideals $I_{A_{n}}$ to the
ments of reduced Gr\"obner bases with respect to minimum cost flow problem.

138



5.1 $\mathrm{C}_{0\mathrm{n}}\mathrm{t}\mathrm{i}-r\mathrm{b}\mathrm{a}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}$ Algorithm result for the size of reduced Gr\"obner bases. But
the upper bound for the number of elements is not

Conti and Traverso [2] introduced an algorithm known. Analyzing the upper bound for the num-
based on Gr\"obner basis to solve integer pro- ber of elements should be a future work.
grams. We describe the condensed version of We also showed the $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}.\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ to minimum cost
Conti-Traverso Algorithm $(\mathrm{S}\mathrm{e}\mathrm{e}[11])$ . This version flow problems. We can apply the reduced Gr\"obner
is useful for highlighting the main computational bases of acyclic tournament graphs to the mini-
step involved. For the original version of Conti- mum cost flow problems using Conti-Traverso Al-
Traverso Algorithm, see [2]. gorithm. This algorithm is similar to the minimum

Let $A\in \mathbb{Z}^{d\cross n},$ $b\in \mathbb{Z}^{d},$
$c\in \mathrm{R}_{\geq 0}^{n}$ . We consider mean cycle-canceling algorithm. But the complex-

the integer program ity of canceling cycles are not known. Analyzing
the complexity of this algorithm should be also a

$IP_{A,c}(b):=minimize\{c\cdot x:Ax=b, x\in \mathrm{N}^{n}\}$ . future work.

Conti-Traverso Algorithm is the algorithm which
solves $IP_{A,c}(b)$ using the toric ideal $I_{A}$ . Acknowledgement
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