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Abstract

In this note, we define completely independent spanning trees. We say that $T_{1},$ $T_{2},$
$\ldots$ , $T_{k}$

are completely independent spanning trees in a graph $H$ if for any vertex $r$ of $H$ , they
are independent spanning trees rooted at $r$ . We present a characterization of completely
independent spanning trees. Also, we show that for any $k_{- \mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{n}\mathrm{n}}\mathrm{e}\mathrm{x}-_{\mathrm{C}\mathrm{O}}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}$ line digraph
$L(G)$ , there are $k$ completely independent spanning trees in the underlying graph of $L(G)$ .
At $1\mathrm{a}s\mathrm{t}$ , we apply our results to de Bruijn graphs, Kautz graphs, and wrapped butterflies.

1 Introduction

In a graph, two paths $P_{1}$ and $P_{2}$ from a vertex $x$ to another vertex $y$ are called openly disjoint
if $P_{1}$ and $P_{2}$ are edge-disjoint and have no common vertex except for $x$ and $y$ . (Note that if $x$ is
adjacent to $y$ , and both $P_{1}$ and $P_{2}$ only have the edge $(x, y)$ , then $P_{1}$ and $P_{2}$ have no common
vertex except for $x$ and $y$ , but they are not edge-disjoint.) Let $\tau_{1},$ $\tau_{2.’\cdots,k}\tau$ be spanning trees
in a graph $H$ . Let $r$ be a vertex of $H$ . If for any vertex $v(\neq r)$ of $H$ , the paths from $r$ to $v$

in $T_{1},$ $T_{2},$
$\ldots,$

$Tk$ , are pairwise openly disjoint, then we say that $\tau_{1},$ $\tau_{2,\ldots,k}\tau$ are $k$ independent
spanning trees rooted at $r$ . (When we treat digraphs instead of graphs, a rooted tree is defined
as an acyclic digraph in which there is a unique vertex (root) with indegree $0$ such that for any

$\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\dot{\mathrm{r}}$ vertex, the indegree is 1. Independent spanning trees in a digraph are similarly defined.)
For independent spanning trees, the following conjecture is well-known; “Let $H$ be a k-vertex-
connected graph. Then, for any vertex $r$ of $H$ , there are $k$ independent spanning trees rooted
at $r.$

” This conjecture was proved for $k\leq 3([12][3][16])$ . Also, it has been shown that the
conjecture holds for the class of planar graphs ([11]). The directed version of the conjecture was
proved for $k=2([15])$ and also for any $k\geq 1$ if we restrict ourselves to the class of line digraphs
([8]). However, in general, the directed version of the conjecture does not hold for $k\geq 3([9])$ .

Independent spanning trees have been studied from not only the theoretical point of view
but also the practical point of view because of their application to fault-tolerant broadcasting
in parallel computers ([12]). Until now, independent spanning trees in several interconnection
networks have been studied; product graphs ([14]), de Bruijn and Kautz digraphs ([6] [8]), and
chordal rings ([13]).
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Many papers have presented constructions of independent spanning trees for a given root

vertex. However, if one set of spanning trees is always a set of independent spanning trees rooted
at any given vertex, then we do not need to reconstruct independent spanning trees when the
root is changed with another vertex. Motivated by this point of view, we define the following
notion.

Definition 1.1 Let $\tau_{1},$ $\tau_{2,\ldots,k}\tau$ be spanning trees in a graph H. If for any two vertices $u,$ $v$

of $H$ , the paths from $u$ to $v$ in $T_{1},$ $T_{2,\ldots,k}T$ , are pairwise openly disjoint, then we say that
$\tau_{1},$ $\tau_{2,\ldots,k}\tau$ are completely independent.

Note that completely independent spanning trees must be edge-disjoint although independent
spanning trees are not always edge-disjoint. It is known that edge-disjoint spanning trees have
an application to worm-hole routing in parallel computers ([1]). In this note, we present a
characterization of completely independent spanning trees.

Unless otherwise stated, a digraph may have loops but not multiarcs. Let $G$ be a digraph.
Then, $V(G)$ and $A(G)$ denote the vertex set and the arc set of $G$ , respectively. The line
digraph $L(G)$ of $G$ is defined as follows. The vertex set of $L(G)$ is the arc set of $G$ , i.e.,

$V(L(G))=A(G)$ . Then, there is an arc from a vertex $(u, v)$ to a vertex $(x, y)$ in $L(G)$ iff $v=x$ ,

i.e., $A(L(G))=\{((u, v), (v, w))|(u, v), (v, w)\in A(G)\}$ . When we regard “ $L$ ” as an operation on
digraphs, the operation is called the line digraph operation. The $m$-iterated line digraph $L^{m}(G)$

of $G$ is the digraph obtained from $G$ by iteratively applying the line digraph operation $m$ times.

The underlying graph $U(G)$ of $G$ is the graph obtained from $G$ by replacing each arc with the

corresponding edge and deleting loops. Note that $U(G)$ may have a 2-multiedge because $G$ may

have a pair of opposite arcs.
It has been shown in [8] that if a line digraph $L(G)$ is k-vertex-connected,. then for any vertex

$r$ of $L(G)$ , there are $k$ independent spanning trees rooted at $r$ in $L(G)$ , thus, in $U(L(G))$ too.

In this note, we strengthen such a result, i.e., we show that if a line digraph $L(G)$ is k-vertex-
connected, then there are $k$ completely independent spanning trees in $U(L(G))$ . Since the class

of the underlying graphs of line digraphs contains de Bruijn graphs, Kautz graphs, and wrapped
butterflies which are known as interconnection networks of massively parallel computers, we
finally apply our results to these interconnection networks.

The set of vertices adjacent from a vertex $v$ in $G$ is denoted by $\Gamma_{G}^{+}(v)$ , and the outdegree of
$v$ in $G$ , i.e., $|\Gamma_{G}^{+}(v)|$ , is denoted by $deg_{G}^{+}v$ . Analogously, $\mathrm{r}_{G}^{-()}v$ and $deg_{\overline{G}}v$ are defined. If for any
vertex $u$ of $G,$ $deg_{c^{u}}^{+}=deg_{\overline{G}}u=d$ , then we say that $G$ is $d$-regular. Let $B$ be a subset of $A(G)$ .
Then, the subdigraph of $G$ induced by $B$ is denoted by $\langle B\rangle_{G}$ . For a graph $H$ and $v\in V(H)$ ,
$deg_{H}v$ denotes the degree of $v$ in $H$ . A rooted tree of depth 1 is called a star. Let $T$ be a rooted
tree. The depth of $T$ is the maximum length of paths from the root in $T$ . The trees obtained
from $T$ by deleting the root are called the subtrees of $T$ .

2 A characterization of completely independent spanning trees

The notion of completely independent spanning trees can be characterized as follows.

Theorem 2.1 Let $T_{1},$ $T_{2},$
$\ldots,$

$T_{k}$ be spanning tree8 in a graph H. Then, $T_{1},$ $T_{2},$
$\ldots,$

$Tk$ are com-
pletely independent if and only if $T_{1},$ $T_{2,\ldots,k}T$ are edge-disjoint and for any vertex $v$ of $H$ , there

is at most one spanning tree $T_{i}$ such that $deg\tau_{i}v>1$ .
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Proof. $(\Leftarrow)$ : Let $T_{1},$ $T_{2},$
$\ldots,$

$Tk$ be spanning trees such that they satisfy the right condition in
the proposition. Now assume that $\tau_{1},$ $\tau_{2,\ldots,k}\tau$ are not completely independent. Then, there
exist two vertices $r,$ $v$ and two spanning trees $T_{i},$ $T_{j}$ such that the paths from $r$ to $v$ in $T_{i}$ and $T_{j}$

are not openly disjoint. Since $T_{i}$ and $T_{j}$ are edge-disjoint, the paths from $r$ to $v$ have a common
vertex $w$ except for $r$ and $v$ . This means that $deg_{T_{i}}w>1$ and $deg_{T_{J}}w>1$ , which produces a
contradiction.
$(\Rightarrow)$ : Suppose that $T_{1},$ $T_{2,\ldots,k}T$ are completely independent. Clearly, $\tau_{1},$ $\tau_{2,\ldots,k}\tau$ must be
edge-disjoint. Now assume that there exists a vertex $w$ such that $deg_{T_{i}}w>1$ and $deg\tau_{j}w>1$ .
Without loss of generality, we can set $i=1$ and $j=2$ . Let $v$ be a vertex different from $w$ . Let
$\{w, t_{l}\}$ be the first edge on the path from $w$ to $v$ in $T_{l}$ for $l=1,2$ . Let $x_{l}$ be a vertex such that
the path from $w$ to $x_{l}$ in $T_{l}$ does not contain the edge $\{w, t_{l}\}$ for $l=1,2$ . Such vertices exist
since $deg_{T_{1}}w>1$ and $deg_{T_{2}}w>1$ . Both the path from $x_{1}$ to $v$ in $T_{1}$ and the path from $x_{2}$ to $v$

in $T_{2}$ contain $w$ . Thus, $x_{1}\neq x_{2}$ . Since the paths from $x_{1}$ to $v$ in $T_{1}$ and $T_{2}$ are openly disjoint,
the path from $x_{1}$ to $v$ in $T_{2}$ does not contain $w$ . Now, we regard $T_{2}$ as a tree rooted at $w$ . Then,
$x_{1}$ and $v$ are in the same subtree of $T_{2}$ . On the other hand, $x_{2}$ and $v$ are not in the same subtree
of $T_{2}$ . Thus, $x_{1}$ and $x_{2}$ are not in the same subtree of $T_{2}$ . Similarly, when we regard $T_{1}$ as a tree
rooted at $w,$ $x_{1}$ and $x_{2}$ are not in the same subtree of $T_{1}$ . Therefore, the paths from $x_{1}$ to $x_{2}$

in $T_{1}$ and $T_{2}$ have $w$ as a common vertex, which contradicts our assumption that $T_{1}$ and $T_{2}$ are
completely independent. Hence, for any vertex $v$ , there is at most one $T_{i}$ such that $deg_{T_{i}}v>1$ .
$\square$

3 Completely independent spanning trees in the underlying
graph of a line digraph

Definition 3.1 Let $F$ be a unicyclic spanning subdigraph of H. If for any vertex of $F$ , the
indegree is one, then $F$ is called a cycle-rooted tree, and the cycle is denoted by $C(F)$ .

Lemma 3.2 Let $F$ be a cycle-rooted tree. Then, $L(F)\cong F$ .

Proof. Define a bijection $\varphi$ from $V(L(F))$ to $V(F)$ as $\varphi((u, v))=v$ . Then, for any arc
$((u, v),$ $(v, w))\in A(L(F)),$ $(\varphi((u, v)),$ $\varphi((v, w)))=(v, w)\in A(F)$ . Suppose that $((u, v),$ $(x, y))\not\in$

$A(L(F))$ , i.e., $v\neq x$ . Then, $(\varphi((u, v)),$ $\varphi((X, y)))=(v, y)$ . Since the indegree of $y$ in $F$ is one,
$\Gamma_{F}^{-}(y)=\{x\}$ . Hence, $(v, y)\not\in A(F)$ . Therefore, $\varphi$ is an isomorphism from $L(F)$ to F. $\square$

Lemma 3.3 Let $G$ be a digraph. Suppose that there are $k$ arc-di8joint spanning cycle-rooted trees
$G_{1},$ $G_{2},$

$\ldots,$
$G_{k}$ in G. Then, there are $k$ arc-di8joint spanning cycle-rooted trees $F_{1},$ $F_{2},$

$\ldots,$
$F_{k}$

in $L(G)$ such that for any $F_{i}$ and any vertex $v$ of $L(G),$ $deg_{F_{i}}^{+}v=deg_{L(G)^{v}}^{+}$ , or $deg_{F_{i}}^{+}v=0$ .

Proof. Let $G_{1},$ $G_{2},$
$\ldots,$

$G_{k}$ be arc-disjoint spanning cycle-rooted trees in $G$ . For each $G_{i}$ , we
consider the following set of arcs of $L(G)$ .

$A_{i}=\{((u, v), (v, w))|(u, v)\in A(G_{i}), (v, w)\in A(G)\}$ .

Clearly, $A_{i}\cap A_{j}=\emptyset$ for $1\leq i<j\leq k$ since $A(G_{i})\cap A(G_{j})=\emptyset$ for $1\leq i<j\leq k$ . Now we
divide $A_{i}$ into two subsets $A_{i}’$ and $A_{i}’’$ as follows;

$\{$

$A_{i}’=\{((u, v), (v, w))|(u, v), (v, w)\in A(G_{i})\}$,
$A_{i}’’=\{((u, v), (v, w))|(u, v)\in A(G_{i}), (v, w)\not\in A(G_{i})\}$ .
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From Lemma 3.2, $\langle A_{i}’\rangle_{L(c})\cong G_{i}$ . Clearly, $\langle A_{i}’’\rangle_{L}(G)$ is a union of stars such that each root is a

vertex of $\langle A_{i}’\rangle_{L(G})$ and each leaf is not a vertex of $\langle A_{i}’\rangle_{L(c})$ . Hence, $\langle A_{i}\rangle_{L(G)}=\langle A_{i^{\cup A_{i}}}’’’\rangle L(c)$ is

also a cycle-rooted tree. Since $G_{i}$ is spanning, it is easily checked that $\langle A_{i}\rangle_{L(G})$ is also spanning.

Here, let $F_{i}=\langle A_{i}\rangle_{L(G})$ for $i=1,2,$ $\ldots,$
$k$ .

Now, consider a vertex $(u, v)$ of $L(G)$ . Suppose that $(u, v)$ is contained in $G_{j}$ , i.e., $(u, v)$ is

a vertex of $\langle A_{j}’\rangle_{L(c)}$ . Then, for any $(v, w)\in A(L(G)),$ $((u, v),$ $(v, w))$ is contained in $F_{j}$ , i.e.,

$deg_{F_{J}}^{+}(u, v)=deg_{L(G}^{+})(u, v)$ . Thus, in this case, for any $F_{i},$ $i\neq j,$ $deg_{F_{t}}^{+}(u, v)=0$ . Suppose that

$(u, v)$ is not contained in any $G_{i}$ . In this case, $deg_{F_{t}}^{+}(u, v)=0$ for any $F_{i}$ . $\square$

Lemma 3.4 Let $G$ be a digraph. Suppose that there are $k$ arc-disjoint spanning cycle-rooted

trees in G. Then, there are $k$ completely independent spanning trees in $U(L(G))$ .

Proof. Let $G_{1},$ $G_{2},$
$\ldots,$

$Gk$ be $k$ arc-disjoint spanning cycle-rooted trees in $G$ . Then, let $F_{i}$

be the digraph defined as $\langle A_{i}\rangle_{L(G)}$ in the proof of Lemma 3.3 for $i=1,2,$ $\ldots,$
$k$ . Let $T_{i}$ be

the spanning tree in $U(L(G))$ obtained from $U(F_{i})$ by deleting one edge in $U(C(F_{i}))$ for $i=$

$1,2,$ $\ldots,$
$k$ . Then, clearly $T_{1},$ $T_{2,\ldots,k}T$ are edge-disjoint. Also, for any vertex $v$ of $U(L(G))$ ,

$deg_{T_{i}}v\leq deg_{F_{t}}^{+}v+deg_{\overline{F}_{i}}v=deg_{F_{i}}^{+_{v}}+1$ .

From Lemma 3.3, there is at most one $F_{j}$ such that $deg_{F_{J}}^{+}v\geq 1$ . Therefore, from Theorem 2.1,

$T_{1},$ $T_{2\cdot\cdot k},.,$$T$ are completely independent spanning trees in $U(L(G))$ . $\square$

Theorem 3.5 [4] Let $G$ be a $k_{- arc}-connected$ digraph. Then, for any vertex $r$ of $G$ , there are $k$

arc-disjoint spanning tree8 rooted at $r$ in $G$ .

Edmonds’ Theorem is corresponding to the arc-version of the conjecture mentioned in the

introduction.

Theorem 3.6 Let $L(G)$ be a $k- ve\Gamma teX$-connected line digraph. Then, there are $k$ completely

independent $\mathit{8}panning$ tree8 in $U(L(G))$ .

Proof. It is easily checked that if $L(G)$ is $k_{-\mathrm{V}}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}-\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d}$, then $G$ is $k_{-}\mathrm{a}\mathrm{r}\mathrm{c}- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$ . From

Edmonds’ Theorem, there are $k$ arc-disjoint spanning trees rooted at any vertex $r$ . Since $G$ is
$k_{- \mathrm{a}}\mathrm{r}\mathrm{c}-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{d},$ $deg_{\overline{c}}r\geq k$ . Adding an arc adjacent to the root to each spanning tree disjointly,

we can obtain $k$ arc-disjoint spanning cycle-rooted trees in $G$ . Hence, by Lemma 3.4, there are
$k$ completely independent spanning trees in $U(L(G))$ . $\square$

4 Applications to de Bruijn graphs, Kautz graphs, and wrapped
butterflies

Applying Lemma 3.3 iteratively and discussing similarly to the proof of Lemma 3.4, we can see

that the following proposition holds.

Proposition 4.1 Let $G$ be a digraph. Suppose that there are $k$ arc-disjoint spanning cycle-rooted

trees in G. Then, there are $k$ completely independent spanning trees in $U(L^{m}(c))$ .
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In the above proposition, if we add some conditions, then we can obtain a more interesting
result. The depth of a cycle-rooted tree $T$ is the maximum depth of the trees obtained from $T$

by deleting all the edges in the cycle.

Proposition 4.2 Let $G$ be a regular digraph. Suppose that there are $k$ isomorphic arc-disjoint
spanning cycle-rooted tree8 of cycle-length $r$ and depth $c$ in G. Then, there are $ki_{\mathit{8}omo}rphiC$

completely independent spanning trees of depth at most $2(m+c)+r-1$ in $U(L^{m}(c))$ .

Proof. Let $G$ be $d$-regular. We use the same notations introduced in the proof of Lemma 3.3.
By the assumption, $\langle A_{i}’\rangle_{L(c)}\cong\langle A_{j}’\rangle_{L(c)}$ for $1\leq i<j\leq k$ . By adding arcs in $A_{i}’’$ to $\langle A_{i}’\rangle_{L(G)}$ ,
for any vertex of $\langle A_{i}’\rangle_{L}(G\rangle$ , if the outdegree is not equal to $d$ , then it becomes $d$ in $\langle A_{i}\rangle_{G}$ . Thus,
we can see that $F_{i}\cong F_{j}$ for $1\leq i<j\leq k$ . From this observation, the isomorphic property in
the proposition is induced.

By adding arcs in $A_{i}’’$ , the depth of each subtree of a spanning cycle-rooted tree increases by
one. On the other hand, the cycle-length is invariant with respect to the line digraph operation.
Since we consider the underlying graph of a spanning cycle-rooted tree and delete one edge in
the cycle, the upper bound on the depth shown in the proposition is obtained. $\square$

Let $K_{d}^{*}$ denote the complete symmetric digraph with $d$ vertices. Also, let $K_{d}^{\mathrm{O}}$ denote the
complete digraph with $d$ vertices, i.e., the digraph obtained from $K_{d}^{*}$ by adding a loop to each
vertex. Then, the de Bruijn digraph $B(d, D)$ and the Kautz digraph $K(d, D)$ are defined as
$B(d, D)=L^{D-1}(K_{d}^{\mathrm{O}})$ and $K(d, D)=L^{D-1}(\Lambda_{d1}^{\mathit{7}}*+)$ . We abbreviates $U(B(d, D))$ and $U(K(d, D))$

to $UB(d, D)$ and $UK(d, D)$ , respectively. It is easily checked that $K_{d}^{\mathrm{O}}$ and $\mathrm{A}_{d+1}^{r}*$ have $d$ iso-
morphic arc-disjoint spanning cycle-rooted trees. Hence, from Proposition 4.2, the following
corollaries are obtained. The fact of Corollary 4.3 has been shown in [6].

Corollary 4.3 [6] There are $d$ isomorphic completely independent spanning tree8 of depth $2D$

in $UB(d, D)$ .

Corollary 4.4 There are $d$ isomorphic completely independent spanning trees of depth $2D$ in
$UK(d, D)$ .

The wrapped butterfly $wb(k, r)$ can be defined by the underlying graph of $L^{r-1}(\Lambda_{k}\prime \mathrm{O}\otimes C_{r})$

$([7])$ , where $C_{r}$ is the cycle of length $r$ , and $\otimes \mathrm{i}\mathrm{s}$ the Kronecker product, i.e., for two digraphs
$G_{1}$ and $G_{2}$ ,

$\{$

$V(G_{1}\otimes G_{2})=V(G_{1})\cross V(G_{2})$ ,
$A(G_{1}\otimes G_{2})=\{((u_{1,2}u), (v_{1}, v_{2}))|(u_{1}, v_{1})\in A(G_{1})$

and $(u_{2}, v_{2})\in A(G_{2})\}$ .
Since $Ii_{k}^{r}\circ\otimes C_{r}$ has $k$ isomorphic arc-disjoint spanning cycle-rooted trees, the next corollary
follows from Proposition 4.2.

Corollary 4.5 There are $k$ isomorphic completely independent spanning trees of depth $3r-1$
in $wb(k, r)$ .

Note that the numbers of completely independent spanning trees in $UB(d, D),$ $UK(d, D)$

and $wb(k, r)$ shown in the corollaries are best possible. In fact, there is no remaining edge in
$UB(d, D)$ . Also, there are only $d$ (resp, $k$ ) remaining edges in $UK(d, D)$ (resp, $wb(k,$ $r)$ ).
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5 Concluding remarks

In this note, we have shown that there are $k$ completely independent spanning trees in the
underlying graph of a $k_{- \mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}}\mathrm{e}\mathrm{X}$-ected line digraph. It is well-known that there are $k$ edge-
disjoint spanning trees in a $\mathit{2}k$-edge-connected graph. We have the following conjecture on
completely independent spanning trees.
Conjecture: There are $k$ completely independent spanning trees in a $2k- \mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{X}\prime \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$

graph.

References

[1] B. Barden, R. Libeskind-Hadas, J. Davis, and W. Williams, On edge-disjoint spanning trees
in hypercubes, Inform. Process. Lett. 70 (1999) 13-16.

[2] J.-C. Bermond and P. Fraigniaud, Broadcasting and gossiping in de Bruijn networks, SIAM
J. Comput. 23 (1994) 212-225.

[3] J. Cheriyan and S.N. Maheshwari, Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs. J. Algorithms 9 (1988) 507-537.

[4] J. Edmonds, Submodular functions, matroids and certain polyhedra, in: R. Guy et al.
(Eds.) Combinatorial Structures and Their Applications (Gordon and Breach, New York,
1969) 69-87.

[5] M.A. Fiol, J.L.A. Yebra, and I. Alegre, Line-digraph iterations and the (d,k) problem, IEEE
Trans. Comput. C-33 (1984) 400-403.

[6] Z. Ge and S.L. Hakimi, Disjoint rooted spanning trees with small depths in de Bruijn and
Kautz graphs, SIAM J. Comput. 26 (1997) 79-92.

[7] T. Hasunuma, Embedding iterated line digraphs in books, submitted.

[8] T. Hasunuma and H. Nagamochi, Independent spanning trees with small depths in iterated
line digraphs, submitted.

[9] A. Huck, Disproof of a conjecture about independent spanning trees in $k$ -connected directed
graphs, J. Graph Theory 20 (1995) 235-239.

[10] A. Huck, Independent branchings in acyclic digraphs, Discrete Math. 199 (1999) 245-249.

[11] A. Huck, Independent trees in planar graphs, Graphs and Combin. 15 (1999) 29-77.

[12] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform.
and Comput. 79 (1988) 43-59.

[13] Y. Iwasaki, Y. Kajiwara, K. Obokata, and Y. Igarashi, Independent spanning trees of
chordal rings, Inform. Process. Lett. 69 (1999) 155-160.

[14] K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi, Independent spanning trees in product
graphs and their construction, IEICE Trans. E79-A (1996) 1894-1903.

[15] R.W. Whitty, Vertex-disjoint paths and edge-disjoint branchings in directed graphs, J.
Graph Theory 11 (1987) 349-358.

[16] A. Zehavi and A. Itai, Three tree-paths, J. Graph Theory 13 (1989) 175-188.

192


