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1 Introduction

An important problem in the representation theory of a finite group $G$ over a field $K$ is

the computation of tensor products, i.e. given two $KG$-modules $V$ and $W$ , we consider

the tensor product $V\otimes_{K}W$ with the group $G$ acting diagonally. In general, it is very

hard to determine such tensor products and only little information is known. For $K$ a

field of characteristic $0$ , it suffices to study the pointwise product $\chi_{V}\cdot\chi_{W}$ of the two

corresponding characters, sometimes also called Kronecker product.

In the representation theory of finite groups and in applications the representations

of the symmetric groups $S_{n}$ and related groups have always played a special r\^ole. In

particular, in many contexts the decomposition of tensor products of irreducible repre-

sentations of such groups is of great interest. The description of the decomposition of

such products is a central open problem even at characteristic $0$ . In the past 15 years a
number of results have been obtained for computing the Kronecker product for special

characters, for determining the multiplicity of special constituents, or for restricting the

set of possible constituents. Such work was motivated from different sources, e.g. by the

study of polynomial identities by Regev and his school or by the investigation of multi-

ply transitive subgroups of $S_{n}$ in the work of Saxl; algebraic combinatorialists have been

interested in this problem because of its connection with symmetric functions. It is also
lThis article is an extended version of the talk given at the conference.
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of relevance to applications in chemistry an$d$ physics, as is evident e.g. from the number

of papers on Kronecker products appearing in physics journals.

For $K$ a field of characteristic $p$ , i.e. for $p$-modular representations, the problem is

much harder. In this case, even computing the tensor product with the sign representa-

tion is difficult; in fact, a combinatorial description conjectured by Mullineux in 1979 was

only proved in recent years by the work of Kleshchev [K] and Ford-Kleshchev [FK], see

also [BO].

In the following sections some recent work is described which started with the question

of classifying irreducible Kronecker products for $S_{n}$ . Going beyond the original question,

in joint work with A. Kleshchev Kronecker products of complex $S_{n}$-characters with few

different irreducible constituent$s$ were classified and as a consequence, homogeneous Kro-

necker products of $A_{n}$-characters, i.e. those with only one irreducible constituent (up to

multiplicity), were characterized [BK]. Next, the Kronecker product problem is considered

for the double cover $\tilde{S}_{n}$ of the symmetric group $S_{n}$ . Homogeneous Kronecker products of

spin characters are characterized and families of homogeneous and almost homogeneous

mixed products are described. Finally, we mention some recent progress on modular ten-

sor products for $S_{n}$ .

For detailed proofs of these results the reader is referred to [BK] resp. forthcoming papers.

2 Kronecker products for $S_{n}$ and $A_{n}$ at characteris-

tic $0$

2.1 Setup and some known results

First we recall the classification of the irreducible characters of $S_{n}$ which was already

achieved by Frobenius.

A partition $\lambda=(\lambda_{1}, \ldots, \lambda_{l})$ of a natural number $n$ is a weakly decreasing sequence

$\lambda_{1}\geq\ldots\geq\lambda_{l}>0$ of integers with $\Sigma_{i=1}^{l}\lambda_{i}=n$ , for short we write: $\lambda\vdash n$ . The integer
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$l=l(\lambda)$ is the length of $\lambda$ , the numbers $\lambda_{i}$ are the parts of $\lambda$ . The partition is also written

exponentially as $\lambda=(l_{1}^{a_{1}}, \ldots, l_{m^{m}}^{a}),$ $l_{1}>\ldots>l_{m}>0$ . We let $p(n)$ denote the number of

partitions of $n$ .

The irreducible complex characters of $S_{n}$ are naturally labelled by partitions of $n[\mathrm{J}\mathrm{K}]$ .

We denote the complex irreducible character labelled by the partition $\lambda$ by $[\lambda]$ , and the

set of irreducible characters is denoted by $\mathrm{I}\mathrm{r}\mathrm{r}(S_{n})=\{[\lambda]|\lambda\vdash n\}$ .

The character values can be computed by a combinatorial recursion formula, the well-

known Murnaghan-Nakayama formula, which shows in particular that the character values

are all integers.

We can now formulate our central problem on Kronecker products of complex charac-

ters of $S_{n}$ :

Problem. Let $\mu$ and $\nu$ be partitions of $n$ . Determine the coefficients $c_{\mu,\nu}^{\lambda}\in 1\mathrm{N}_{0}$ in the

expansion

$[ \mu]\cdot[\nu]=\sum_{\lambda\vdash n}c_{\mu,\nu}^{\lambda}[\nu]$
.

Of course, one may compute the coefficients by “brute force”, i.e. using the character

inner product. But above, “determine” means to give an (effective) combinatorial algo-

rithm for computing the coefficient$s$ .

Let us consider the easiest two cases. For the trivial character $[n]$ and a partition $\mu$ of

$n$ we have just

$[\mu]\cdot[n]=[\mu]$ .

The first non-trivial case is the tensor product with the sign representation sgn $=[1^{n}]$ .

Here we have for an arbitrary $\mu\vdash n$ :

$[\mu]$ . sgn $=[\mu]\cdot[1^{n}]=[\mu’]$

where the conjugate partition $\mu’$ is obtained from $\mu$ by reflecting its Young diagram in the

main diagonal.
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$\mathrm{R}e$call that for $\lambda=(\lambda_{1}, \ldots, \lambda_{l})\vdash n$ , its Young diagram $Y(\lambda)$ has $\lambda_{i}$ box$e\mathrm{s}$ in row $i$ , for

$i=1,$ $\ldots$ , $n$ . We will also need the notion of hooks in $\lambda$ . The $(i, j)$ -hook $H_{i,j}$ in $\lambda$ consists

of the box at position $(i,j)$ (using matrix notation) together with all boxes in $\mathrm{Y}(\lambda)$ to

the right and below. The hooklength $h_{i,j}=h_{i,j}^{\lambda}$ counts the number of boxes in $H_{i,j}$ . We

illustrat$e$ these notions by an example.

Example. For $\lambda=(4^{2},2,1)$ , its Young diagram $\mathrm{Y}(\lambda)$ is shown to the left, then the Young

diagram with the $(1,2)$-hook $H_{1,2}$ indicated; here, $h_{1,2}=5$ .

As has already been mentioned in the introduction, there are many partial results

known on the Kronecker product problem. In 1938, Murnaghan introduced the so-called

reduced notation (or: $n$-independent notation) an$d$ proved a number of formulae based
on this; further progress on this has been obtained in recent years (see [STW]). Little-

wood [L] provided in 1956 a reduction argument, using the Littlewood-Richardson rule

for computing outer tensor products and Frobenius reciprocity. In 1981, new impetus

was provided by the book of James and Kerber [JK], which contained tables for the de-
composition of Kronecker products for $S_{n}$ up to $n=8$ . In recent times, several software
package$s$ have been developed that also allow the computation of Kronecker products.

Apart from comparably big systems that have been developed for computations in group
and representation theory like GAP and MAGMA which also provide character tables for
$S_{n}$ , there are the specialized MAPLE packages ACE (Algebraic Combinatorics Environ-
ment) by S. Veigneau et al. an$d$ SF (Symmetric functions) by J. Stembridge which are
useful for computing Kronecker products.

In several papers the coefficients $c_{\mu,\nu}^{\lambda}$ are computed for special partitions $\mu,$ $\nu$ , in par-
ticular for hook partitions, 2-part partitions and special rectangular partitions, resp. for
special $\lambda\vdash n$ , notably those of small depth $n-\lambda_{1}$ , see [CM], [G], [GR], [R], [RW], [V].
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In some investigations, the focus was on computing tensor $s$quares; for the constituents

of squares slightly more information is available (see [S], [Z1], [Z2], [Z3], [MM]).

2.2 Irreducible Kronecker products for $S_{n}$ and bounds

The starting point of the joint work with A. Kleshchev described in the next section was

the following statement in [JK]:

“The inner tensor product of two ordinary irreducible representations of $S_{n}$ is an
ordinary representation of $S_{n}$ which is in general reducible $($ ... $)$ .”

Our original aim was to classify the irreducible products; in fact our methods gave

much more. We learned only later that in fact, the problem of classifying the irreducible

products had already been solved by Zisser [Z2].

Theorem 2.1 $[Z\mathit{2}]$ Let $\mu$ and $\nu$ be partitions of $n$ . Then the Kronecker product $[\mu]\cdot[\nu]$

is irreducibie if and only if one of $\mu_{f}\nu$ is $(n)$ or $(1^{n})$ .

In other words, the tensor product of two irreducible $S_{n}$-representations at charac-

teristic $0$ is irreducible only in the two trivial cases mentioried before, namely when a
representation is tensored by a 1-dimensional representation.

Zisser’s proof only uses the following two facts. First, the complex characters are
real-valued so that the scalar product of the characters can be rewritten as

$([\mu]\cdot[\nu], [\mu]\cdot[\nu])=([\mu]^{2}, [\nu]^{2})$ .

We may assume that $n\geq 4$ , since for $n\leq 3$ the assumption is easily checked. Now the

squares of all non-linear characters have both $[n]$ and $[n-2,2]$ as constituents; in fact,

the multiplicity of $[n-2,2]$ in squares is known explicitly [S]. Hence the scalar product

above is at least 2 and thus the product $[\mu]\cdot[\nu]$ is reducible.
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The approach taken in [BK] started out with the following results by Dvir [D] resp.

Clausen and Meier [CM] describing the rectangular hull of the partition lab$e1\mathrm{s}$ of the

constituents in $[\mu]\cdot[\nu]$ and the ‘high’ constituents. Below, $\mu\cap\nu$ denotes the partition

obtained by intersecting the corresponding Young diagrams.

Theorem 2.2 $[D],$ [CM]. Let $\mu,$ $\nu$ be partitions of $n$ . Then

$\max${ $\lambda_{1}|c_{\mu,\nu}^{\lambda}\neq 0$ for some $\lambda=(\lambda_{1},$ $\lambda_{2},$ $\ldots)$ } $=$ $|\mu\cap\nu|$

$\max${ $m|c_{\mu,\nu}^{\lambda}\neq 0$ for some $\lambda=(\lambda_{1}\geq\ldots\geq\lambda_{m}>0)$ } $=$ $|\mu\cap\nu’|$

For partitions $\alpha\subseteq\beta$ (the inclusion meaning the inclusion of the corresponding Young

diagrams), we denote by $[\beta/\alpha]$ the $s\mathrm{k}e\mathrm{w}$ character corresponding to the skew diagram
$\beta\backslash \alpha$ (see [JK]).

Theorem 2.3 $[D],$ [CM]. Let $\mu,$ $\nu$ and $\lambda=(\lambda_{1}, \lambda_{2}, \ldots)$ be partitions of $n$ , and set
$\hat{\lambda}=(\lambda_{2}, \lambda_{3}, \ldots),$ $\gamma=\mu\cap\nu$ . If $\lambda_{1}=|\mu\cap\nu|$ , then

$c_{\mu,\nu}^{\lambda}=([\mu/\gamma]\cdot[\nu/\gamma], [\hat{\lambda}])$ .

Note that this gives a recursion rule as the $\mathrm{s}\mathrm{k}e\mathrm{w}$ characters $[\mu/\gamma]$ and $[\nu/\gamma]$ can be

computed by the Littlewood-Richardson rule.

There is also a dual result to Theorem 2.3 describing the multiplicity of constituents with

partition labels of maximal length.

Now the following crucial result holds:

Theorem 2.4 $[BK]$ Let $\mu,$ $\nu$ be partitions of $n_{f}$ both different from $(n)$ and $(1^{n})$ . If $[\lambda]$

is a constituent of $[\mu]\cdot[\nu]$ , then for the maximal hook length in $\lambda$ we have

$h_{11}^{\lambda}<|\mu\cap\nu|+|\mu\cap\nu’|-1$ .

In particular, this means that for a product of two non-linear irreducible characters

the rectangular hull of the labels of the constituents is not spanned by one single character

lab$e1$ .
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2.3 Kronecker products with few homogeneous components

Instead of considering only irreducible products, the previous result allow$s$ to classify al$s\mathrm{o}$

homogeneous products, i.e. those which are multiples of an irreducible character. More

generally, we were interested in the situation where the product has few homogeneous

components, i.e. few different irreducible constituents. The motivation for this was to

obtain a classification of homogeneous products also in the case of $A_{n}$ .
The results

,

$\mathrm{a}$re collected in the following theorem; part (iii) was stated as a conjecture

in [BK] but has been proved in the meantime.

Theorem 2.5 $[BK]$ Let $\mu$ and $\nu$ be partitions of $n_{f}$ and let $r$ be the number of homoge-

neous components of the Kronecker product $[\mu]\cdot[\nu]$ . Then

(i) $r=1$ if and only if one of the partitions $\mu,$ $\nu$ is $(n)$ or $(1^{n})$ (and $i^{-}n$ this case the

product is irreducible).

(ii) $r=2$ if and only if one of the partitions $\mu,$ $\nu$ is a rectangle $(a^{b})$ with a, $b>1$ , and

the other one is $(n-1,1)$ or $(2, 1^{n-2})$ . In these cases we have :

$[n-1,1]\cdot[a^{b}]$ $=$ $[a+1, a^{b-2}, a-1]+[a^{b-1}, a-1,1]$ ,
$[2, 1^{n-2}]$ $\cdot[a^{b}]$ $=$ $[b+1, b^{a-2}, b-1]+[b^{a-1}, b-1,1]$ .

(iii) $r=3$ if and only if $n=3$ and $\mu=\nu=(2,1)$ or $n=4$ and $\mu=\nu=(2^{2})$ .

Remarks. Part (i) follows immediately from Theorem 2.4. For part (ii), a much more
detailed analysis of the product is required (see [BK]). Note that a weaker version of (ii)

was also obtained by Zisser [Z2]. For part (iii), the methods in [BK] have been refined

and carried further.

The computer experiments also led to the following conjecture stated in [BK], where the

‘if’-part is prove$d$ , describing the products explicitly:

Conjecture (notation as above) $r=4$ if and only if one of the following holds:

(a) $n\geq 4$ and $\mu,$ $\nu\in\{(n-1,1), (2,1^{n-2})\}$ ;
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(b) $n=2k+1$ for some $k\geq 2$ , and one of $\mu,$ $\nu$ is in $\{(2k, 1), (2,1^{2k-1})\}$ while the other

one is in $\{(k+1, k), (2^{k}, 1)\}$ ;

(c) $n=6$ and $\mu,$ $\nu\in\{(2^{3}),$(3) $\}$ .

While it seems hopeful to find a proof of this conjecture, from the computer cal-

culations it seems that there might not be a good characterization of products with $r$

components, for general $r$ . Also, for $r\leq 4$ , all the products above have been found to be

multiplicity-free; for $r=5$ we have $[3, 2]$ $\cdot[3,1^{2}]$ as an example with 5 components and

$[3, 1^{2}]$ occurring with multiplicity 2.

Apart from the numerical investigations, further evidence for the conjecture above is

given by the following result:

Theorem 2.6 $[BK]$ Let $\mu$ and $\nu$ be symmetric partitions of $n$ . Then $[\mu]\cdot[\nu]$ never has

exactly 4 homogeneous components.

2.4 Homogeneous Kronecker products of $A_{n}$-characters

We first recall the classification of the complex irreducible $A_{n}$-characters (see [JK]). If $\mu$ is

a non-symmetric partition of $n$ , i.e. $\mu\neq\mu’$ , then the restriction $[\mu]_{A_{n}}$ is again irreducible

and it coincides with $[\mu’]_{A_{n}}$ . We denote the corresponding irreducible $A_{n}$-character by

$\{\mu\}=\{\mu’\}$ . If $\mu$ is symmetric, i.e. $\mu=\mu’$ , then $[\mu]_{A_{n}}$ is a sum of two different irreducible

$A_{n}$-characters, which we denote by $\{\mu\}_{+}$ and $\{\mu\}_{-};$ these characters are conjugat$e$ via a

transposition in $S_{n}$ . Then the set of irreducible characters of $A_{n}$ is

$\mathrm{I}\mathrm{r}\mathrm{r}(A_{n})=\{\{\mu\}_{+}, \{\mu\}_{-}|\mu\vdash n, \mu=\mu’\}\cup\{\{\mu\}|\mu\vdash n, \mu\neq\mu’\}$

We can now state the classification of the homogeneou$s$ Kronecker products of irre-

ducible $A_{n}$-characters. Of course, we obtain irreducible products when one of the char-

acters is of degree 1. For $n>4$ the only 1-dimensional character is the trivial one. For

$n=3$ and 4 we also have the 1-dimensional characters $\{2, 1\}_{\pm}$ and $\{2^{2}\}_{\pm}$ .
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The theorem below gives a family of non-trivial irreducible Kronecker products (see also
[Z2] for an $e$arlier weaker result).

Theorem 2.7 $[BK]$ Let $\phi,$ $\psi$ be irreducible $A_{n}$ -characters of degree greater than 1. Then
$\phi\cdot\psi$ is homogeneous if and only if $n=a^{2}$ for some $a>2$ and one of the characters is

$\{n-1,1\}$ , while the other is $\{a^{a}\}_{+}$ or $\{a^{a}\}_{-}$ . In the exceptional case we have:

$\{n-1,1\}\cdot\{a^{a}\}_{\pm}=\{a+1, a^{a-2}, a-1\}$ .

3 Kronecker products of characters of $\overline{S}_{n}$

Let $n\geq 4$ , and let $\tilde{S}_{n}$ be one of the two double covers of $S_{n}$ (except for $n=6$ they are
non-isomorphic); so $\tilde{S}_{n}$ is a non-split extension of $S_{n}$ by a central subgroup $\langle z\rangle$ of order 2.

As the representation theory of the two double covers is ‘the $s\mathrm{a}\mathrm{m}\mathrm{e}$

’ for $\mathrm{a}.11$ representation

theoretical purposes, the choice does not matter below.

Now $\overline{S}_{n}$ has as irreducible complex characters the (non-faithful) irreducible characters

lifted from $S_{n}$ and the faithful characters, which are called spin characters. For the

classification of the irreducible spin characters of the double cover $\tilde{S}_{n}$ we have to introduce

some notation.

The set of partitions of $n$ into odd parts $\mathrm{o}\mathrm{n}\ddagger \mathrm{y}$ is denoted by $\mathcal{O}[n$)$j$ , and the set of

partitions of $n$ into distinct parts is denoted by $D(n)$ . We write $D^{+}(n)$ resp. $D^{-}(n)$ for

the sets of partitions $\lambda$ in $D(n)$ with $n-l(\lambda)$ even resp. odd; the partition $\lambda$ is then also

called even resp. odd. The conjugacy classes of $S_{n}$ which split in $\tilde{S}_{n}$ (i.e. when $g$ and $gz$

are not conjugate) are labelled by the set $O(n)\cup D^{-}(n)$ .
The associate classes of spin characters of $\tilde{S}_{n}$ are labelled canonically by the partitions

in $D(n)$ . For each $\lambda\in D^{+}(n)$ there is a self-associate spin character $\langle\lambda\rangle=s\mathrm{g}\mathrm{n}\langle\lambda\rangle$ , and to

each $\lambda\in D^{-}(n)$ there is a pair of associate spin characters $\langle\lambda\rangle,$ $\langle\lambda\rangle’=s\mathrm{g}\mathrm{n}\langle\lambda\rangle$ . We write
$\langle\lambda\rangle^{o}$ for a choice of associate, and

$\overline{\langle\lambda\rangle}=\{$

$\langle\lambda\rangle$ if $\lambda\in D^{+}(n)$

$\langle\lambda\rangle+\langle\lambda\rangle’$ if $\lambda\in D^{-}(n)$
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The values of the spin characters on classes of type $O(n)$ can be computed by a spin

analogue of the Murnaghan-Nakayama formula which is due to Morris. The values on the
$D^{-}$-classes ar$e$ given explicitly in terms of the parts of the labelling partition $\lambda$ .

3.1 Classification of homogeneous spin products

The theorem of Dvir resp. Clausen and Meier can be stated in short form by saying that

the rectangular hull of (the partition labels of the constituents of) $[\mu]\cdot[\nu]$ is the rectangular

partition $(|\mu\cap\nu|^{|\mu\cap\nu’|})$ . The spin analogue of this result is slightly more complicated.

Theorem 3.1 Let $n\geq 4_{f}$ and let $\mu_{f}\nu\in D(n)$ .

$(a)$ Let $\mu=\nu\in D^{-}(n)$ .

If $n-l(\mu)\equiv 1$ mod 4, then the rectangular hull of $\langle\mu\rangle\cdot\langle\mu\rangle$ is $((n-1)^{n})$ , unless

$n=$ is a triangular number and $\mu=(k, k-1, \ldots, 2,1)$ , when the rectangular

hull is $((n-2)^{n})$ .

If $n-l(\mu)\equiv 3$ mod 4, then the rectangular hull of $\langle\mu\rangle\cdot\langle\mu\rangle$ is $(n^{n-1})_{f}$ unless $n=$
is a triangular number and $\mu=(k, k-1, \ldots, 2,1)$ , when the rectangular hull is

$(n^{n-2})$ .

$(b)$ If we are not in the situation described in $(a)$ , then the rectangular hull of $\langle\mu\rangle\cdot\langle\nu\rangle$

(and all associate products) is $(|\mu\cap\nu|^{|\mu\cap\nu|})$ .

Theorem 3.2 Let $n\geq 4_{f}\mu,$ $\nu\in D(n)$ . Then $\langle\mu\rangle\cdot\langle\nu\rangle$ is homogeneous if and only

if $n$ is a triangular number, say $n=$ , one of $\mu,$ $\nu$ is $(n)$ and the other one is

$(k, k-1, \ldots, 2,1)$ . In this case, we have

$\langle n\rangle\cdot\langle k, k-1, \ldots, 2,1\rangle=2^{a(k)}[k, k-1, \ldots , 2, 1]$ ,

where

$a(k)=\{$

$\frac{k-2}{2}$ if $k$ is even
$\frac{k-1}{2}$ if $k\equiv 1$ mod 4
$\frac{k-3}{2}$ if $k\equiv 3$ mod 4
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In particular, the only irreducible products occur for $n=6$ , namely:

$\langle 6\rangle\cdot\langle 3,2,1\rangle=\langle 6\rangle’\cdot\langle 3,2,1\rangle=\langle 6\rangle\cdot\langle 3,2,1\rangle’=\langle 6\rangle’\cdot\langle 3,2,1\rangle’=[3,2,1]$ .

3.2 Mixed Kronecker products of characters of $\tilde{S}_{n}$

In this section we describe some families of characters with homogeneous and almost

homogeneous mixed products.

In [St], Stembridge provided an explicit combinatorial description of the inner tensor

products $\langle n\rangle[\mu]$ . The coefficient $g_{\lambda\mu}$ appearing below is the number of “shifted tableaux”

$S$ of unshifted shape $\mu$ and content $\lambda$ such that the tableau word $w=w(S)$ satisfies a

suitable lattice property and the leftmost $i$ of $|w|$ is unmarked in $w$ for $1\leq i\leq l(\lambda)$ (see

[St] for details). Furthermore, we set

$\epsilon_{\lambda}=\{$

1 if $\lambda\in D^{+}(n)$

$\sqrt{2}$ if $\lambda\in D^{-}(n)$

Theorem 3.3 $([St], \mathit{9}.\mathit{3})$ Let $\mu$ be a partition of $n,$ $\lambda\in D(n)$ . We have

$( \langle n\rangle[\mu], \langle\lambda\rangle^{o})=\frac{1}{\epsilon_{\lambda}\epsilon_{(n)}}2^{(\mathrm{t}(\lambda)-1)/2}g_{\lambda\mu}$ ,

unless $\lambda=(n),$ $n$ is even, and $\mu$ is a hook partition. In that case, the multiplicity of $\langle\lambda\rangle^{o}$

is $0$ or 1 according to choice of associates.

Theorem3.4’ Let $\mu\vdash n,$ $\mu\neq(n),$ $(1^{n})$ . Then the product $\langle n\rangle\cdot[\mu]$ is almost homogeneous,

$i.e$ . of the form $c\langle\lambda\rangle$ or $c\overline{\langle\lambda\rangle}$ for some $\lambda\in D(n)$ and $c\in 1\mathrm{N}$ , if and only if $\mu$ is a rectangle.

In this case, if $\mu=(b^{a})$ wiih $1<a\leq b$ , then for $a$ odd and $b$ even we have

$\langle n\rangle\cdot[b^{a}]=\langle n\rangle’\cdot[b^{a}]=2^{\frac{a-3}{2}}\langle a+b-1, a+b-3, \cdots, b-a-+1\rangle$

while in all other cases we have

$\langle n\rangle\cdot[b^{a}]=\langle n\rangle’\cdot[b^{a}]=2^{[\frac{a-1}{2}]}\langle a+b-1, a+b-3, \cdots , b-a+1\rangle$ .

We have found a further family of almost homogeneous mixe$d$ products which do not

involve the $\mathrm{b}\mathrm{a}s$ic spin character:
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Theorem 3.5 Let $n$ be a triangular number, say $n=$ . Then

$\langle k, k-1, \ldots, 2,1\rangle\cdot[n-1,1]=\langle k+1, k-1\overline{k},-2, \ldots , 3, 2\rangle$ .

4 Tensor products for $S_{n}$ at characteristic $p$

We now turn to p–modular representation theory of $S_{n}$ . Let $F$ be a field of characteris-

tic $p>0$ . Studying tensor products of modular representations is motivated by applica-

tions in the investigation of maximal subgroups of finite groups of Lie type.

The classification of the $p$-modular irreducible $S_{n}$-representations is wellknown, see [JK].

A partition $\lambda$ of $n$ is called $p$-regular, if no part is repeat$e\mathrm{d}p$ or more times. For each

p–regular partition $\lambda$ there is a corresponding irreducible module, denoted by $D^{\lambda}$ . The

modules $D^{\lambda}$ , where $\lambda$ runs through the $p$-regular partitions of $n$ , form a complete system

of representatives for the (isomorphism classes of) irreducible $FS_{n}$-modules.

In section 2, we have discussed tensor products of complex irreducible $S_{n^{-}}\mathrm{r}e$presentations;

while there was no good answer for general such tensor products, at least tensoring with

the sign representation was easy. At characteristic $p>2$ , even computing the tensor prod-

uct with the sign repesentation was a hard problem. In 1979, Mullineux [Mu] defined a

rather complicated p–analogue of conjugation for $p$-regular partitions and conjectured that

this gave the combinatorial answer to the question on the tensor product with the sign

representation for $p$-modular irreducible $S_{n^{-}}\mathrm{r}e$presentations; so for a $p$-regular partition $\lambda$

the Mullineux map describes the $p$-regular partition $\lambda^{M}$ defined by

$D^{\lambda}\otimes \mathrm{s}\mathrm{g}\mathrm{n}\cong D^{\lambda^{M}}$

Applying his branching results, Kleshchev [K] had reduced this conjecture to a purely

combinatorial conjecture which was subsequently proved by him and Ford [FK]; a short

proof of this combinatorial conjecture providing further insights was given in [BO].

Despite these difficulties even in the first non-trivial case, recently strong informa-
tion has been obtained on modular tensor products. On the basis of their results at
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characteristic 2 and experimental evidence, Gow and Kleshchev conjectured the following

characterization of irreducible tensor products [GK]:

Conjecture. Let $D_{1}$ and $D_{2}$ be two irreducible $FS_{n}$-module of dimensions $\mathrm{g}\mathrm{r}e$ater than 1.

Then $D_{1}\otimes D_{2}$ is irreducible if and only if $p=2,$ $n=2+4l$ for some positive integer $l$ ,

one of the modules corresponds to the partition $(2l+2,2l)$ and the other corresponds to

a partition of the form $(n-2j-1,2j+1),$ $0\leq j<l$ . Moreover, in the exeptional cases

one has
$D^{(2l+2,2l)}\otimes D^{(n-2j-1,2j+1)}\cong D^{(2l+1-j,2l-j,j+1,j)}$ .

In the meantime, a big step towards this conjecture has been taken; in particular, it

has been shown that indeed irreducible tensor $\mathrm{p}\mathrm{r}.$.oducts can only occur at characteristic

$p–2$ an$d$ when $n$ is even.
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