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1. Introduction

In this report we give two examples of isotypies between blocks of finite groups, one
is obtained from the naturally Morita equivalence in normal subgroups, and another is
obtained from the Isaacs character correspondence. At first we recall the definition of
isotypies between blocks. Let $(\mathcal{K}, R, \mathcal{F})$ be a $p$-modular system such that $\mathcal{K}$ is algebraically
closed and $G$ be a finite group. Let $B$ be a block of $G$ with defect group $D$ and $(D, B_{D})$

be a $\dot{\max}$imal $B$-subpair of $G$ . We denote by $\mathrm{B}\mathrm{r}_{B}(G)$ the Brauer category of B. $\mathrm{B}\mathrm{r}_{B}(G)$

is the category whose objects are $B$-subpairs of $G$ and whose morphisms are defined in the
following way : For $B$-subpairs $(Q, b)$ and $(R, b’)\mathrm{M}\mathrm{o}\mathrm{r}((Q, b),$ $(R, b’))\mathrm{i}\mathrm{s}$ the set of all cosets
$gC_{G}(Q)$ of $G$ such that $g(Q, b)\subseteq(R, b’)$ (see [B-O], \S 1). We denote by $\mathrm{B}\mathrm{r}_{B,D}(G)$ the full
subcategory of $\mathrm{B}\mathrm{r}_{\dot{B}}(G)$ whose objects are the $B$-subpairs $(Q, b)$ such that $(Q, b)\subseteq(D, B_{D})$ .
We note that for any $Q\leq D$ there exists a unique block $b$ such that $(Q,\dot{b})\subseteq(D, B_{D})$ , and
we set $b=B_{Q}$ .

Let CF $(G, \mathcal{K})$ be the $\mathcal{K}$-vector space of $\mathcal{K}$-valued class functions on $G$

’

an.d let $\mathrm{C}\mathrm{F}(G, B, \mathcal{K})$

be the subspace of CF $(G, \mathcal{K})$ of class functions $\alpha$ such that $\alpha$ is a $\mathcal{K}$-linear combination of $\chi’ \mathrm{s}$

in $\mathrm{I}\mathrm{r}\mathrm{r}(B)$ . Let $\mathrm{C}\mathrm{F}_{p’}(c, B, \mathcal{K})$ be the subspace of $\mathrm{C}\mathrm{F}(G, B, \mathcal{K})$ of class functions vanishing
on the $p$-singular elements of $G$ . For a $B$-Brauer element $(x, \mathrm{b})$ of $G$ , the decomposition
map

$d_{G}^{(x,\mathrm{b})}$ : $\mathrm{C}\mathrm{F}(G, B, \mathcal{K})arrow \mathrm{C}\mathrm{F}_{p’}(CG(X), \mathrm{b}, \mathcal{K})$

is defined by $d_{G}^{(x,\mathrm{b})}(\alpha)(y)=\alpha(xye_{\mathrm{b}})$ for any $p’$-element $y$ of $C_{G}(X)$ , where $e_{\mathrm{b}}$ is the block
idempotents of $\mathcal{R}Cc(x)$ corresponding to $\mathrm{b}$ .

Let $H$ be a second finite group and $B’$ be a block of $H$ with $D$ as a defect group. Let
$(D, B_{D}’)$ be a maximal $B’$-subpair of $H$ and for any subgroup $Q$ of $D$ let $(Q, B_{Q}’)$ be the
$B’$-subpair of $H$ such that $(Q, B_{Q}’)\subseteq(D, B_{D}’)$ .

Definition. $([\mathrm{B}], 4.6)$ With the above notations $(G, B)$ and $(H, B’)$ are isotypic if the
following conditions hold :

(i) The inclusion of $D$ into $G$ and $H$ induces an equivalence of the Brauer categories
$\mathrm{B}\mathrm{r}_{B,D}(G)$ and $\mathrm{B}\mathrm{r}_{B’,D}(H)$ .
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(ii) There exists a family of perfect isometries

$\{R^{Q} : \mathcal{R}_{\mathcal{K}}(cc(Q), BQ)arrow n_{\kappa}(C_{H}(Q), B\prime Q)\}_{\{}Q(CydiC)\leq D\}$

such that for any $x\in D$

$(*)$ $d_{H}^{(x,B_{\acute{\mathrm{t}}\rangle^{)}}}x\circ R^{\langle}1\rangle=R_{p}\langle x,\rangle_{\mathrm{o}}d_{c}^{()}\mathrm{t}x\rangle x,B$ ,

where $R_{p}^{\langle x\rangle}$, is the $\mathcal{K}$-linear map from $\mathrm{C}\mathrm{F}_{p’}(CG(X), B_{\langle x\rangle}, \kappa)$ onto $\mathrm{C}\mathrm{F}_{p’}(c_{H}(X), B’\mathcal{K})\langle x\rangle’$ in-
duced by $R^{\langle x\rangle}$ and we regard $R^{\langle 1\rangle}$ as a $\mathcal{K}$-linear map from $\mathrm{C}\mathrm{F}(G, B, \mathcal{K})$ onto $\mathrm{C}\mathrm{F}(H, B’, \mathcal{K})$

In the above $R^{\langle 1\rangle}$ is called an isotypy between $B$ and $B’$ and $(R^{Q})_{\{}Q(cydic)\leq D\}$ is called
the local system of $R^{\langle 1\rangle}$ .

2. Isotypies obtained from naturally $\mathrm{M}_{0.\mathrm{r}}\mathrm{i}\mathrm{t}\mathrm{a}$ equivalences

In this section we state that naturally Morita equivalent blocks of finite groups in normal
subgroups are isotypic. At first we recall the definition of naturally Morita equivalences of
blocks following [K\"ul] and [K-H].

Definition. ([K\"ul] and [H-K]) Let $O=\mathcal{R}$ or $\mathcal{F}$ . Let $H$ be a subgroup of $G$ and let
$A$ and $B$ be blocks of $OG$ and $OH$ respectively. We say $A$ and $B$ are naturally Morita
equivalent of degree $n$ if there exists an $O$-subalgebra $S$ of $A$ such that $S\cong M_{n}(O)$ as
$O$-algebras, $1_{A}\in S$ and a map $\phi$ : $B\otimes_{O}Sarrow A$ given by $\phi(b\otimes s)=bs$ is an O-algebra
isomorphism, where $1_{A}$ is the identity element of $A$ .

If $A$ and $B$ are naturally Morita equivalent of degree $n$ , then $A$ and $B$ are Morita
equivalent. Moreover $A$ covers $B$ when $H$ is normal in $G$ and, $A$ and $B$ have a common
defect group by [K\"ul], Theorem 7 and [H-K], Proposition 2.6. Moreover we have

Proposition 2.1. ([H-K], Proposition 2.4) Suppose that $A$ and $B$ are blocks of $\mathcal{R}G$ and
$\mathcal{R}H$ , respectively and put $\overline{A}=A/\mathrm{J}(\mathcal{R})A$ and $\overline{B}=B/\mathrm{J}(\mathcal{R})B$ . Then the following are
equivalent.

(i) $A$ and $B$ are naturally Morita equivalent of degree $n$ .
(ii) $\overline{A}$ and $\overline{B}$ are naturally Morita equivalent of degree $n$ .

We have the following.

Theorem 2.2. Let $H$ be a normal subgroup of $G$ , and $A$ and $B$ be blocks of $OG$ and
$OH$ respectively. If $A$ and $B$ are naturally Morita equivalent of degree $n$ and these blocks
have a common defect group $D$ , then the following hold.

(i) Let $Q$ be a subgroup of $D$ . Any block of $OC_{H}(Q)$ associated with $B$ is covered by a
unique block of $OC_{G}(Q)$ which is associated with $A$ , and those blocks are naturally Morita
equivalent of degree $n$ .
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(ii) The converse of (i) is true, that is, any block of $OC_{G}(Q)$ associated with $A$ is naturally
Morita equivalent of degree $n$ to a unique block of $OC_{H}(Q)$ associated with $B$ .

In the above the Morita equivalence between $A$ and $B$ gives a bijection between $\mathrm{I}\mathrm{r}\mathrm{r}(A)$

and $\mathrm{I}\mathrm{r}\mathrm{r}(B)$ as follows by [H-K], Proposition 2.6 : Let $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(A)$ . Then the restriction $\chi_{H}$

of $\chi$ to $H$ has a unique irreducible constituent $\zeta_{\chi},$ $\zeta_{\chi}\in \mathrm{I}\mathrm{r}\mathrm{r}(B)$ and $\chi_{H}=n\zeta_{\chi}$ . Moreover the
map $\mathrm{I}\mathrm{r}\mathrm{r}(A)arrow \mathrm{I}\mathrm{r}\mathrm{r}(B),$ $xrightarrow(_{\chi}$ gives a perfect isometry from $\mathcal{R}_{\mathcal{K}}(c, A)$ onto $\mathcal{R}_{\mathcal{K}}(H, B)$ .
Next let $(D, A_{D})$ be a maximal $A$-subpairs of $G$ and $(D, B_{D})$ be a maximal $B$-subpairs of $H$

such that $A_{D}$ and $B_{D}$ are naturally Morita equivalent of degree $n$ . Such maximal subpairs
exist by Theorem 2.2. For a subgroup $Q$ of $D$ , we denote by $(Q, A_{Q})$ (respectively, $(Q,$ $B_{Q})$ )
be the $A$-subpair (respectively, $B$-subpair) of $G$ (respectively, $H$) contained in $(D, A_{D})$

(respectively, $(D,$ $B_{D})$ ). Then we can show $A_{Q}$ and $B_{Q}$ are naturally Morita equivalent of
degree $n$ . So let $R^{Q}$ be the perfect isometry from $\mathcal{R}_{\mathcal{K}}(c_{G(Q),A}Q)$ onto $\mathcal{R}_{\mathcal{K}}(C_{H}(Q), BQ)$

for $Q\leq D$ and let $R=R^{\langle 1\rangle}$ .

Theorem 2.3. With the above notations, $R$ is an isotypy with local system $(\pm R^{Q})$

$\{Q(\mathrm{c}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}_{\mathrm{C}})\leq D\}$ . (In fact $R$ is an isotypy in the sense of Brou\’e’s good definition.)

$\mathrm{R}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}_{\backslash }$ . Let $H$ be a normal subgroup of $G$ such that $G=HC_{G}(P)$ for a Sylow p-
subgroup $P$ of $H$ and let $B$ be the principal block of $H$ . Moreover let $A$ be a block of $G$

such that $AB\neq\{0\}$ and $P$ is a defect group of $A$ . M. E. Harris proved that $A$ and $B$ are
isotypic in this situation. As Harris showed, then $A$ and $B$ are naturally Morita equivalent.
So Theorem 2.3 is a generalization of his result.

3. Isotypies obtained from Isaacs character correspondences

Let $S$ act on $G$ via automorphism such that $(|S|, |G|)=1$ and $C=C_{G}(s)$ . It is well
known that in this situation there is a natural bijection $\pi(G, S)$ from $\mathrm{I}\mathrm{r}\mathrm{r}_{S}(G)$ , the set of
$S$-invariant irreducible characters of $G$ , onto $\mathrm{I}\mathrm{r}\mathrm{r}(C)$ . When $S$ is solvable, this is obtained
by G. Glauberman and when $|G|$ is odd this is obtained by $\mathrm{I}.\mathrm{M}$ . Isaacs. In [Wal] we showed
that the Glauberman character correspondences give isotypies between blocks of $G$ and $C$ .
And in [H] it is shown that the Isaacs character correspondences give perfect isometries
between blocks of $G$ and $C$ . We will state that those are isotypies. Here we recall the
definition of Isaacs correspondences.

Lemma 3.1. ([I], Corollary 10.7 ) With the above notations and with $|G|$ odd, let
$H=[G, S]’C$ . Then there exists a bijection $\sigma(G, H, S)$ : $\mathrm{I}\mathrm{r}\mathrm{r}_{S}(c)arrow \mathrm{I}\mathrm{r}\mathrm{r}_{S}(H)$ such that
for $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}_{S}(c),$ $\sigma(G, H, S)(\chi)$ is the unique $S$-invariant irreducible character $\alpha$ of $H$ with
$(\chi_{H}, \alpha)$ odd.
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Definition. ([I], Theorem 10.8) Let $S$ act on $G$ via automorphism such that $(|S|, |G|)=1$

and $C=C_{G}(s)$ . Assume $|G|$ is odd. If $C<G$ , then let

$G=G_{0}>G_{1}>c_{2}>\cdots>G_{n}=c$

by $G_{i+1}=[c_{i}, s]’c$ , for $i\geq 0$ . The Isaacs character correspondence $\pi(G, S)$ : $\mathrm{I}\mathrm{r}\mathrm{r}_{S}(c)arrow$

$\mathrm{I}\mathrm{r}\mathrm{r}(C)$ is defined as follows : If $C<G$ , then $\pi(G, S)=\sigma(G_{n-1}, C, S)\sigma(G_{n}-2, G_{n-}1, s)$

. .. $\sigma(G_{2}, G_{1}, S)\sigma(G, G_{1}, S)$ , otherwise $\pi(G, S)$ is the identity map.

Hypothesis 3.2. Let $S$ and $G$ be finite groups such that $S$ acts on $G,$ $(|S|, |G|)=1$ and
that $|G|$ is odd. Put $C=C_{G}(s)$ .

Theorem 3.3. ([H], Theorem 1) Under the above hypothesis, let $B$ be an S-invariant
block of $G$ such that a defect group $D$ of $B$ is centralized by $S$ . Then there exists a block
$b$ of $C$ such that $\mathrm{I}\mathrm{r}\mathrm{r}(b)=\{\pi(G, S)(x)|\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(B)\}$ and $\pi(G, S)$ gives a perfect isometry $R$

between $B$ and $b$ . Moreover $D$ is a defect group of $b$ .

In the above theorem the assumption for $B$ implies that X $\in \mathrm{I}\mathrm{r}\mathrm{r}(B)$ is $S$-invariant by
[Wal], Proposition 1. We call $b$ in the theorem the Isaacs correspondent of $B$ .

Proposition 3.4. With the same notations in the above theorem, let $(Q, B_{Q})$ be an S-
invariant $B$-subpair of $G$ such that $Q\subseteq D$ and that a defect group of $B_{Q}$ is centralized by
$S$ . Then the Isaacs correspondent $b_{Q}$ of $B_{Q}$ is associated with $b$ in the sense of Brauer.

With the same notation in Theorem 3.3, let $(D, B_{D})$ be an $S$-invariant maximal B-
subpair and let $(Q, B_{Q})$ be a $B$-subpair contained in $(D, B_{D})$ for $Q\leq D$ . Then $B_{Q}$

is uniquely determined, and $B_{Q}$ is $S$-invariant, because $B_{D}$ is $S$-invariant. In fact let
$(Q, B_{Q})\underline{\triangleleft}(R, B_{R})$ be $B$-subpairs contained in $(D, B_{D})$ . If $B_{R}$ is $S$-invariant, then $B_{Q}$ is
$S$-invariant. Moreover we can show that a defect group of $B_{Q}$ is centralized by $S$ for any
$Q\leq D$ . In fact we show that a defect group of $(B_{Q})^{T}$ is centralized by $S$ where $T$ is the
inertial group of $B_{Q}$ in $N_{G}(Q)$ . Let $U$ be a defect group of $(B_{Q})^{T}$ . Since $(B_{Q})^{T}$ is associated
with $B,$ $Q^{v}\leq U^{v}\leq D$ for some $v\in G$ . So we have $C_{\Gamma}(Q)\geq S^{v^{-1}}$ and $C_{\Gamma}(Q)\geq S$ . Since
$C_{\Gamma}(Q)=SC_{G}(Q)$ , by the Schur-Zassenhaus theorem there exists an element $u\in C_{G}(Q)$

such that $S^{v^{-1}}=S^{u}$ . Then $v^{-1}u^{-1}\in C$ . Hence we have $U^{u^{-1}}\leq D^{vu}-1-1\subseteq C$ . Thus $U^{u^{-1}}$

is a defect group of $(B_{Q})^{T}$ centralized by $S$ . Now let $b_{Q}$ be the Isaacs correspondent of $B_{Q}$

and let $R^{Q}$ be the perfect isometry from $\mathcal{R}_{\mathcal{K}}(c_{G(Q),B}Q)$ onto $R_{\mathcal{K}}(Cc(Q), bQ)$ for $Q\leq D$ .
We have the followings noticing that $(Q, b_{Q})$ is a $b$-subpair of $C$ by Proposition 3.4.

Proposition 3.5. With the above notations we have the following.
(i) $(D, b_{D})$ is a maximal -subpair of $C$ and $(Q, b_{Q})\subseteq(D, b_{D})$ for any $Q\leq D$ .
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(ii) The Brauer categories $\mathrm{B}\mathrm{r}_{B,D}(G)$ and $\mathrm{B}\mathrm{r}_{b,D}(C)$ are equivalent.

Theorem 3.6. Assume Hypothesis 3.2 and let $B$ be an $S$-invariant block of $G$ such that
a defect group $D$ of $B$ is centralized by $S$ and $b$ be the Isaacs correspondent of $B$ . Then
$R^{\langle 1\rangle}$ is an isotypy between $B$ and $b$ with local system $(\pm R^{Q})_{\{Q}(_{\mathrm{C}}\mathrm{y}\mathrm{c}\mathrm{l}\mathrm{i}_{\mathrm{C}})\leq D\}$ , where $R^{Q}$ is as in
the above.

We use results in [I] and [Wol, 2] in order to prove the above propositions and theorem.
Details of this section will be found in [Wa2].
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