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$\mathrm{A}_{\mathrm{B}\mathrm{S}\mathrm{T}\mathrm{R}}\mathrm{A}\mathrm{C}\mathrm{T}$ . In modular representation theory of finite groups there is a well-known
conjecture due to P.Donovan. The Donovan conjecture is on blocks of group algebras of
finite groups over an algebraically closed field $k$ of prime characteristic $p$ , which says that,
for any given finite $p$-group $P$ , up to Morita equivalence, there are only finitely many block
algebras with defect group $P$ . We prove that the Donovan conjecture holds for principal
block algebras in the case where $P$ is elementary abelian 3-group of order 9.

In modular representation theory of finite groups, there are several
important conjectures many people are interested in. One of them is the
following, which is due to P.Donovan.

Donovan conjecture ([2, Conjecture $\mathrm{M}]$ ). For any given prime $p$ and for
any given finite $p$-group $P$ , up to Morita equivalence, there are only finitely
many block algebras of finite groups $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\sim$ defect group $P$ .

There are only a few cases where the Donovan conjecture has been checked.
First of all, for the case that $P$ is cyclic, which was due to works done by
$\mathrm{E}.\mathrm{C}$ .Dade, H.Kupisch and $\mathrm{G}.\mathrm{J}$ .Janusz (see [8, Chap.VII]), and for the case
that $p=2$ and $D$ is dihedral, semi-dihedral or quaternion, which was due to
K. Erdmann [7]. The conjecture also holds when we consider only p-blocks
of $p$-solvable groups which was done by B.K\"ulshammer [14], and when we
consider only $p$-blocks of symmetric groups which was done by J.Scopes [24].

In this note, we show that the Donovan conjecture is true also when
we restrict ourselves to principal 3-blocks with elementary abelian Sylow 3-
subgroups of order 9. We also show that, if $B_{0}(kG)$ is the principal block
(algebra) of the group algebra $kG$ of any finite group $G$ with elementary
abelian Sylow 3-subgrup of order 9 over an algebraically closed field $k$ of
characteristic 3, then the Loewy length (radical length) of $B_{0}(kG)$ is exactly
5 or 7. We should confess that these two results depend on the classification
of finite simple groups.

Theorem 1. Let $P$ be the elemen$\mathrm{t}ary$ ab$eli$an $gro$up of $ord$er 9, and let $k$

be an algeb$r\mathrm{a}ic$ally closed fiield of characteris $\mathrm{t}ic3$ . Then, th$ere$ are only finitely
many non-Morita equivalent $p$rincipal block albebras of $gro$up algebras $kG$ of
finite $gro\mathrm{u}p_{\mathit{8}}Gwi$th $s\mathrm{u}ch$ a Sylow 3-subgroup $P$ .
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Theorem 2. Let $k$ be an arbitrary filed of characteris$\mathrm{t}ic3$ , and let $G$ be an
arbitrary finite group $wi$th elem$ent\mathrm{a}ry$ abelian Sylow 3-subgroup $P$ of order
9.

(i) The principal block algebra $B_{0}(kG)$ of $kGh$as Loewy length 5 or 7.
(ii) The Loewy length of the projective cover $P(k_{G})$ of the trivial module

$k_{G}$ over $kG$ is also 5 or 7 for any finite group $G$ with elementary abelian Sylo$\mathrm{w}$

3-subgroup $P$ of $or\mathrm{d}$er 9.

Throughout this paper we use the following notation and teminology. In
this paper $G$ is always a finite group, and a module is always a finitely
generated right module, unless stated otherwise. We write $(O, \mathcal{K}, k)$ for a
splitting $p$-modular system for all subgroups of $G$ , that is, $\mathcal{O}$ is a
complete discrete valuation ring of rank one with quotient field $\mathcal{K}$ and with
residue field $k$ such that $\mathcal{K}$ is a field of characteristic zero and $k$ is a field of
characteristic $p>0$ and that $\mathcal{K}$ and $k$ are both splitting fileds for all subgroups
of $G$ (note that only in the satement of Theorem 2 $k$ is an arbitrary field of
characteristic $p>0$). We denote by $B_{0}(kG)$ the principal block algebra of
the group algebra $kG$ . We write $k_{G}$ for the trivial $kG$-module of k-dimension
one. For a block algebra $A$ of $kG,$ $\mathrm{I}\mathrm{r}\mathrm{r}(A)$ is the set of all irreducible ordinary
characters of $G$ in $A$ . Let $R$ be a ring. We write $J(R)$ for the Jacobson radical
of $R$ . For an $R$-module $M$ we denote by $j(M)$ and $P(M)$ the Loewy length of
$M$ and the projective cover of $M$ (of course, if they exist), that is, $j(M)$ is the
least positive integer $j$ such that $M\cdot J(R)^{j}=0$ . Let $n$ be a positive integer.
We then write $C_{n}$ and $\Sigma_{n}$ for the cyclic group of order $n$ and the symmetric
group on $n$ letters, respectively. We denote by $\mathrm{G}\mathrm{U}_{n}(q^{2})$ the general unitary
group of degree $n$ over the Galoi field $\mathrm{F}_{q^{2}}$ of $q^{2}$ elements. For other notation
and terminlogy we follow the book of Nagao-Tsushima [18].

The following proposition was informed by S.Yoshiara. The author is
grateful to him.

Proposition 3 (S.Yoshiara). Let $G$ be a finite group with elementary
abelian Sylow 3-subgroup of order 9 such that $O_{3’}(G)=1$ and $O^{3’}(G)=G$ .
Then, $G$ is one of the following $(i)-(ii)$ .

(i) $G=X\cross \mathrm{Y}$ for finite $si\mathrm{m}ple$ groups $X$ and $\mathrm{Y}_{\mathit{8}}\mathrm{u}ch$ that both of them
$h\mathrm{a}ve$ cyclic Sylow 3-subgroups of order 3.

(ii) $G$ is a $\mathrm{n}$on-abelian Finite simple $gro$up with elementary abelian Sylow
3-subgroup of $ord$er 9.

By making use of the classification of finite simple groups and Proposition 3,
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we get the following list of finite non-abelian simple groups $G$ with elementary
abelian Sylow 3-subgroup of order 9.

Proposition 4. If $G$ is a non-abelian finite simple group with elementary
abelian Sylow 3-subgroup of$ord$er 9, then $G$ is on$\mathrm{e}$ of the following nine types:

(i) $A_{6},$ $A_{7},$ $A8,$ $M11,$ $M22,$ $M23,$ $HS$ .
(ii) $\mathrm{P}\mathrm{S}\mathrm{L}_{\mathrm{s}()}q$ for a power $q$ of a prime with $q\equiv 4$ or 7 (mod 9).
(iii) $\mathrm{P}\mathrm{S}\mathrm{U}_{3}(q^{2})$ for a power $q$ of a prime with $2<q\equiv 2$ or 5 (mod 9).
(iv) $\mathrm{P}\mathrm{S}\mathrm{p}_{4}(q)$ for a power $q$ of a prime with $q\equiv 4$ or 7 (mod 9).
(v) $\mathrm{P}\mathrm{S}_{\mathrm{P}_{4}}(q)$ for a power $q$ of a prime with $2<q\equiv 2$ or 5 (mod 9).
(vi) $\mathrm{P}\mathrm{S}\mathrm{L}_{4}(q)$ for a power $q$ of a prime with $2<q\equiv 2$ or 5 (mod 9).
(vii) PSU4 $(q^{2})$ for a power $q$ of a prime with $q\equiv 4$ or 7 (mod 9).
(viii) $\mathrm{P}\mathrm{S}\mathrm{L}5(q)$ for a power $q$ of a prime with $q\equiv 2$ or 5 (mod 9).
(ix) $\mathrm{P}\mathrm{S}\mathrm{U}_{5}(q^{2})$ for a pwer $q$ of a prime with $q\equiv 4$ or 7 (mod 9).

Proposition 5 (S.Koshitani and H.Miyachi). Let $G$ be $\mathrm{G}\mathrm{U}_{4}(q^{2})$ or
$\mathrm{G}\mathrm{U}_{5}(q^{2})$ for a power $q$ of a prime $wi$th $q\equiv 4$ or 7 (mod 9). Then, $B_{0}(\mathcal{O}G)$ an$\mathrm{d}$

$B_{0}(\mathcal{O}H)$ are Puig equivalent, where $H$ is the normalizer ofa Sylow 3-8ubgroup
of $G$ .

Proof. This follows from the fact that all simple $kG$-modules in $B_{0}(kG)$ are
trivial source ($p$-permutation) modules and resulst of Okuyama [19, Lemma
2.2], Linckelmann [17,. Theorem 2.1 $(\mathrm{i}\mathrm{i}\mathrm{i})$ ] and Rickard [23, Theorem 5.2].

Corollary 6 (S.Koshitani and H.Miyachi). Let $G=\mathrm{P}\mathrm{S}\mathrm{U}_{4}(q^{2})$ or $\mathrm{P}\mathrm{S}\mathrm{U}_{5}(q^{2})$

for a power $q$ of a prime $wi$th $q\equiv 4$ or 7 (mod 9). Then, $B_{0}(\mathcal{O}G)$ and $B_{0}(oH)$

are Puig $eq$uivalen $\mathrm{t}$ , where $H$ is the normalizer of a Sylow 3-s $\mathrm{u}$ bgroup of
G. (He$\mathrm{n}$ce, $Bro$ u\’e $conje\mathrm{C}\mathrm{t}ure([3,6.2.\mathrm{Q}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}], [4,4.9.\mathrm{C}_{0}\mathrm{n}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}])$ holds for
$p=3$ and for $Gh\mathrm{e}re$).

Proof. This follows from Proposition 5 and a theorem of Alperin-Dade
([1] and [6]).

Proof of Theorem 1. First of all, a theorem of K\"ulshammer [15,
Proposition, p.305] implies that we may assume $O^{3’}(G)=G$ . Then, by [16],
[12], [22], [21], [13] and Corollary 6, we get the assertion.

Proof of Theorem 2. This is obtained by Proposition 3, Proposition 4,
results of Waki ([25], [26], [27]), [12], [22], [13], Corollary 6 and [20].
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