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1. CHARACTERISTIC CARTAN CONNECTION FOR SYSTEMS OF

ODE’s

The geometric approach to the study of differential equations goes
back to Sophus Lie and Elie Cartan. According to the modern inter-
pretation of this approach, based on the notion ofjet space, we consider
a differential equation as a submanifold in the jet space with induced
geometric structure.

Using the methods of filtered manifolds developed in works of Tana-
ka $[3, 4]$ and Morimoto [2], we construct a characteristic Cartan con-
nection, naturally associated with any system of $m$ equations of the
$(n+1)$-th order whenever $m\geq 2,$ $n\geq 1$ or $m=1,$ $n\geq 2$ . Then we
compute the compete set of fundamental invariants which appear as
coefficients of the curvature tensor. Here by fundamental invariants of
ordinary differential equations we understand relative invariants with
respect to the contact transformations which generate the set of all
invariants of a given ODE.

Note that in the case of single second order ODE there is a classical
result of Sophus Lie showing that all ODE’s of the second order are
contact equivalent and have an infinite dimensional symmetry algebra,
which makes it impossible to construct a characteristic connection in
this particular case.

Theorem 1 ([1]). With any system of $m$ ordinary differential equations

of the $(n+1)$ -th order, where $m\geq 2,$ $n\geq 1$ or $m=1,$ $n\geq 2$ , there is
naturally associated a Cartan connection with model $G/H$ , where

for $m=1,$ $n=2$ :

$G=SP(4, \mathbb{R}),$ $H$ is the Borel subgroup of $G$ ;
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for $m\geq 2,$ $n=1$ :

$G=SL(m+2, \mathbb{R}),$ $H=\{(_{00Z}^{x**}0y*)|x,$ $y\in \mathbb{R}^{*},$ $Z\in GL(m, \mathbb{R})\}$ ;

for $m=1,$ $n\geq 2$ or $m\geq 2,$ $n\geq 3$ :

$G=(SL(2, \mathbb{R})\cross GL(m, \mathbb{R}))\cross(E_{n}\otimes \mathbb{R}^{m}),$ $H=ST(2, \mathbb{R})\cross GL(m, \mathbb{R})$ ,

where $ST(2, \mathbb{R})$ is the Borel subgroup of $SL(2, \mathbb{R}),$ $E_{n}$ is a $(n+1)-$

dimensional irreducible $SL(2, \mathbb{R})$ -module, and $\mathbb{R}^{m}$ is the natural
$GL(m, \mathbb{R})$ -module.

In all the cases above the Lie algebra $g$ of the Lie group $G$ is naturally
supplied with the gradation $g=\sum_{i}g_{i}$ such that the subalgebra $\mathfrak{h}$ is
equal to $\sum_{i\geq 0}g_{i}$ . Let $9-= \sum_{i<0}g_{i}$ be the negative part of $g$ and let
$H^{p}( \emptyset-, g)=\sum_{q}H_{q}^{p}$ be the p-th generalized Spencer cohomology space,
which naturally inherits the gradation from $g$ .

The complete system of invariants of the characteristic Cartan con-
nection can be derived from the finite set of fundamental invariants
by means of the covariant derivatives. The fundamental invariants
are described by the positive part $\sum_{q>0}H_{q}^{2}$ of the second cohomology
space [4]. In cases, when $g$ is semisimple, i.e., for one ODE of third
order or for system of second order ODE’s, these cohomology spaces
where computed by Yamaguchi [5]. In the next section we compute the
cohomology space $H^{2}(g_{-}, g)$ in the non-semisimple case.

2. COMPUTATION OF COHOMOLOGY SPACES

The symbol algebra $g$ of a system of $m$ ODE’s of $(n+1)$ -th order
is isomorphic to the semidirect product of ${}_{\lrcorner}C^{\cdot}\downarrow(2, \mathbb{R})\cross gt(m, \mathbb{R})$ and an
abelian ideal $V=E_{n}\otimes \mathbb{R}^{m}$ , where $E_{n}$ is the irreducible $z1(2, \mathbb{R})$ -module
isomorphic to $S^{n}(\mathbb{R}^{2})$ (here $\mathbb{R}^{2}$ is considered as the canonical $g\mathfrak{l}(2, \mathbb{R})-$

module) and $\mathbb{R}^{m}$ is the natural $gl(m, \mathbb{R})$-module.
In the sequel we assume that $m=1,$ $n\geq 3$ or $m\geq 2,$ $n\geq 2$ , so

that we consider only single ODE’s of order $\geq 4$ or systems of ordinary

differential equations on order $\geq 3$ .
Let us fix the standard basis $x,$ $y,$ $h$ of $st(2, \mathbb{R})$ :

$x=(\begin{array}{ll}0 10 0\end{array})$ , $y=(\begin{array}{ll}0 01 0\end{array})$ , $h=(\begin{array}{ll}1 00 -1\end{array})$ .
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Put $e_{i}=f_{1}^{n-i}f_{2}^{i}/i!$ , where $f_{1},$ $f_{2}$ is the standard basis in $\mathbb{R}^{2}$ . We denote
also by $\{E_{1}, \ldots, E_{m}\}$ and $\{E_{j}^{i}\}$ the natural bases of $\mathbb{R}^{m}$ and $g\mathfrak{l}(m, \mathbb{R})$

respectively. ....

The gradation of $g$ is defined as follows:

$g_{1}=\mathbb{R}y$ ,

$g_{0}=\mathbb{R}h\oplus \mathfrak{g}\mathfrak{l}(m, \mathbb{R})$ ,

$g_{-1}=\mathbb{R}x\oplus \mathbb{R}e_{n}\otimes \mathbb{R}^{m}$ ,

$g_{-i}=\mathbb{R}e_{n+1-i}\otimes \mathbb{R}^{m}$ for all $i=2,$ $\ldots,$ $n+1$ ,

and $g_{n}=\{0\}$ for all other $n\in \mathbb{Z}$ .
We compute the cohomology space $H^{2}(g_{-}, g)$ by means of the Serre-

Hochschild spectral sequence, determined by the subalgebra $V$ of 9- $\cdot$

Namely, since $V$ is an ideal, tlle second term $E_{2}$ of this spectral sequence
has the form: $E_{2}=\oplus_{p,q}E_{2}^{p,c_{l}}$ , where

$E_{2}^{p,q}=H^{p}(\mathbb{R}x, H^{q}(V, g))$ for all $p,$ $q\geq 0$ .

Since the algebra $\mathbb{R}x$ is one-dimensional, we see that $E_{2}^{p,q}=\{0\}$ for all
$p>1$ . Therefore, the differential

$d_{2}^{p,q}$ : $E_{2}^{p,q}arrow E_{2}^{p+2,q-1}$

is trivial and the spectral sequence is stabilized in the second term.
Therefore, we get the following intermediate result

Lemma 1: The second cohomology space $H^{2}(g_{-}, g)$ is naturally iso-
morphic with the subspace $E_{2}^{1,1}\oplus E_{2}^{0,2}$ of the Serre-Hochschild spectral
sequence determined by the ideal $V\subset 9-\cdot$

Moreover, we have

$E_{2}^{1,1}=H^{1}(\mathbb{R}x, H^{1}(V, g))$ ,

$E_{2}^{0,2}=H^{0}(\mathbb{R}x, H^{2}(V, g))=Inv_{x}H^{2}(V, g)$ .

Let $a$ be the subalgebra of $gt(V)$ corresponding to the action of
$zt(2, \mathbb{R})\cross gt(m, \mathbb{R})$ on $V$ . Then the cohomology spaces $H^{k}(V, g)$ are
precisely the classical Spencer cohomology spaces determined by the
subalgebra $a\subset gt(V)$ . The first and second cohomology spaces are be
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easily computed in terms of the Spencer operator

$S^{k}$ : $Hom(\wedge^{k}V, a)arrow Hom(\wedge^{k+1}V, V)$ ,

$S^{k}( \phi)(v_{1}\wedge v_{2}\wedge\cdots\wedge v_{k+1})=\sum_{i=1}^{k+1}(-1)^{i}\phi(v_{1}\wedge\cdots\wedge\hat{v}_{i}\wedge\cdots\wedge v_{k+1})v_{i}$ .

Lemma 2. We have $H^{0}(V, g)=V$ and

$H^{k}(V, g)=kerS^{k}\oplus Hom(\wedge^{k}V, V)/imS^{k-1}$

for all $k\geq 1$ .

Proof. Indeed, let us represent an arbitrary cocycle $c\in C^{k}(V, g)$ as
$c=c_{a}+c_{V}$ , where $c_{a}\in Hom(\wedge^{k}V, a)$ and $c_{V}\in Hom(\wedge^{k}V, V)$ . Since $V$

is commutative Lie algebra, we have

$(\partial c)=S^{k}(c_{\mathfrak{a}})\in Hom(\wedge^{k+1}, V, V)$ .

This immediately implies the statement of the lemma. $\square$

For $k=1,2$ the mappings $S^{k}$ are easily described explicitly.

Lemma 3.
1. The mapping $S^{1}$ is injective for $m=1,$ $n\geq 3$ and $m=2,$ $n\geq 2$ .
2. The mapping $S^{2}$ is injective for $m=1,$ $n\geq 5$ , or $m=2,$ $n\geq 4_{Z}$

or $m\geq 3,$ $n\geq 3$ .
3. In all other cases the structure of the $\epsilon t(2, \mathbb{R})$ -module $kerS^{2}$ is

given in the following table:

$n\backslash m$ $1$ $2$ $\geq 3$

$2$ $E_{2}+E_{0}\otimes S^{2}(\mathbb{R}^{2})^{*}$ $E_{0}\otimes S^{2}(\mathbb{R}^{m})^{*}$

$.3$ $E_{2}+E_{4}$ $E_{0}$ $0$

$4$ $E_{0}$ $0$ $0$

$\geq 5$ $0$ $0$ $0$

where $E_{l}$ is an $(l+1)$ -dimensional irreducible $\mathfrak{s}\mathfrak{l}(2, \mathbb{R})$ -module.

Proof.
1. Let us note that $kerS^{1}$ is precisely the first prolongation $a^{(1)}$ of

the subalgebra $\alpha\subset g1(V)$ . Suppose that $a^{(1)}\neq\{0\}$ . Then the algebra
$V+ \mathfrak{a}+\sum_{i=1}^{\infty}a^{(i)}$ is an irreducible graded Lie algebra of order $\geq 2$ .

All these algebras are described in [6]. In particular, Lemma 7.3 of [6]

formulates necessary conditions on the highest root of $\alpha$ and the highest
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weight the $a$-module $V$ . It is easy to check that in the. cases $m=1,$ $n\geq 3$

and $m\geq 2,$ $n\geq 2$ the subalgebra $\alpha$ does not satisfy these conditions.
This proves that $kerS^{1}=\alpha^{(1)}=\{0\}$ .

2. We consider only the case $m=1$ . All other $case\dot{s}$ can be dealt in
the same manner. Let us denote for simplicity the elements $e_{i}\otimes E_{1}$ of
$V$ also by $e_{i}$ and the element $E_{1}^{1}$ of $gl(1, \mathbb{R})$ by $z$ .

Let $\alpha$ be an arbitrary element of $kerS^{2}$ . Put $\alpha_{ij}=\alpha(e_{i}, e_{j})$ for all
$0\leq i<j\leq n$ . Let us show that $\alpha_{ij}=0$ for all $i,j\geq 3$ and $i,j\leq n-3$ .
Indeed, for $i,j\geq 3$ we have

$\alpha_{ij}e_{0}-\alpha_{0j}e_{i}+\alpha_{0i}e_{j}=0$ .

But for any element $X\in$ $a$ and any $i=0,$ $\ldots$ , $n$ we have $Xe_{i}\subset$

$\langle e_{i-1}, e_{i}, e_{i+1}\rangle$ . Hence, $\alpha_{ij}e_{0}=0$ , that is

(1) $\alpha_{ij}\subset\langle x, h-z\rangle$

Similarly,
$\alpha_{ij}e_{1}-\alpha_{1j}e_{\mathfrak{i}}+\alpha_{1i}e_{j}=0$ .

From (1) we see that $\alpha_{ij}e_{1}\subset\langle e_{0}, e_{1}\rangle$ . Therefore, $\alpha_{ij}e_{1}=0$ , which is
only possible if $\alpha_{ij}=0$ . In the same way we can prove that $\alpha_{ij}=0$ for
all $i,j\leq n-3$ .

Consider now the following subspace $W\subset\wedge^{2}V$ :

$W=$ { $w\in\wedge^{2}V|\alpha(w)=0$ for all $\alpha\in kerS^{2}$ }.

It is clear that $W$ is a submodule of the $\mathfrak{s}\mathfrak{l}(2, \mathbb{R})$ -module $\wedge^{2}V$ . As we
have just proved, $e_{i}\wedge e_{j}\subset W$ for all $i,j\geq 3$ and $i,j\leq n-3$ . Hence,
$W$ contains also the submodule generated by these elements. But it is
easy to check that these elements generate whole $V$ for $n\geq 6$ . In the

remaining case $n=5$ they generate the submodule of codimension 1,
complimentary to the submodule $\mathbb{R}(e_{0}\wedge e_{5}-e_{1}\wedge e_{4}+e_{2}\wedge e_{3})$ . Therefore,

any non-trivial element $\alpha$ of $kerS^{2}$ must be of the form:

$\alpha:e_{0}\wedge e_{5}rightarrow X,$ $e_{1}\wedge e_{4}rightarrow-X,$ $e_{2}\wedge e_{3}-tX$ , $X\in a$ ,

and $\alpha(e_{i}\wedge e_{j})=0$ in all other cases. Then we have $\alpha(e_{0}\wedge e_{5})e_{i}=Xe_{i}=0$

for $i=1,$ $\ldots,$
$4$ , which is possible only if $X=0$ .

3. This table is obtained by direct computation. $\square$
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Let $E_{m}$ be an arbitrary irreducible $\epsilon 1(2, \mathbb{R})$ -module of dimension $m+1$ .
Then the cohomology spaces $H^{k}(\mathbb{R}x, E_{m})$ have the form:

Lemma 4. The space $H^{k}(\mathbb{R}x, E_{m})$ is trivial for $k\geq 2$ and is one-
dimensional for $k=0,1$ .

Let $v_{0}$ and $v_{m}$ be highest and lowest vectors of $E_{m}$ (that is $h.v_{0}=$

$mv_{0}$ and $h.v_{m}=-mv_{m}$). Then $H^{0}(\mathbb{R}x, E_{m})$ is generated by $v_{0}$ , and
$H^{1}(\mathbb{R}x, E_{m})$ is generated by $[\alpha:xarrow v_{m}]$ .

Proof. Immediately follows from the explicit description of irreducible
$\mathfrak{s}\mathfrak{l}(2, \mathbb{R})$ -modules. $\square$

Thus, description of $H^{2}(g_{-}, g)$ reduces essentially to the decomposi-
tion of $\epsilon 1(2, \mathbb{R})$-modules $Hom(V, V)/a$ and $Hom(\wedge^{2}V, V)/S(Hom(V, \alpha))$

into sums of irreducible submodules.
The gradation of $H^{2}(g_{-}, g)$ can be derived by means of the following

result.

Lemma 5. Let $[c]\in H^{k}(g_{-}, g)$ and $h.c=\alpha c_{f}z.c=\beta c$ . Then $[c]\subset$

$H_{p}^{k}(g_{-}, g)$ , where
$p=- \frac{\alpha n+\beta(n+2)}{2n}$ .

In particular, let $E_{l}$ be an irreducible submodule of $Hom(V, V)/\mathfrak{a}$ .
Then the subspace $H^{1}(\mathbb{R}x, E_{\iota})\subset H^{2}(g_{-}, g)$ has degree $(l+2)/2$ . Simi-
larly, let $E_{l}$ be an irreducible submodule of $Hom(\wedge^{2}V, V)/S(Hom(V, \alpha))$ .
Then the subspace $H^{0}(\mathbb{R}x, E_{l})\subset H^{2}(g_{-}, g)$ has degree $(n+2-l)/2$.

Example 1. Let us compute $H^{2}(g_{-}, g)$ for $n=3$ . From Lemma 3 we
have:

$H^{1}(V, g)=Hom(V, V)/\alpha\cong(E_{3}\otimes E_{3})/(E_{0}\oplus E_{2})\cong E_{6}\oplus E_{4}$;

$H^{2}(V, g)=kerS^{2}\oplus Hom(\wedge^{2}V, V)/imS^{1}$ ,

where $kerS^{2}=E_{2}\oplus E_{4}$ , and

$Hom(\wedge^{2}V, V)/imS^{1}=(\wedge^{2}E_{3}\otimes E_{3})/(E_{3}\otimes(E_{2}\oplus E_{0}))\cong$

$((E_{4}\oplus E_{0})\otimes E_{3})/(E_{3}\otimes(E_{2}\oplus E_{0}))\cong$

$(E_{7}\oplus E5\oplus 2E_{3}\oplus E_{1})/(E_{5}\oplus 2E_{3}\oplus E_{1})\cong E_{7}$.
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Hence, we see that the space $E_{2}^{1,1}$ is two-dimensional, and by Lemma 5
the corresponding two elements of $H^{2}(g_{-}, g)$ have degrees 3 and 4. Sim-
ilarly, the space $E_{2}^{0,2}$ is three-dimensional, and the only element, cor-
responding to $Hom(V, V)/imS^{1}$ has degree-l. Let us find degrees of
two elements corresponding to $kerS^{2}$ . Let $v_{0}$ be the highest vector of
the submodule $E_{2}\subset kerS^{2}$ . Then we have $h.v_{0}=2v_{0}$ and $z.v_{0}=-6v_{0}$ .
Hence, by Lemma 5 the corresponding element of $H^{2}(g_{-}, g)$ is of de-
gree 4. In the same way we compute that the element corresponding to
$E_{4}\subset kerS^{2}$ is of degree 3.

Hence, we see that the space $H^{2}(g_{-}, g)$ is 5-dimensional and is spanned
by one element of degree-l, two elements of degree 3 and two elements
of degree 4.

Example 2. Let us compute dimension and degree of $H^{2}(9-, \emptyset)$ for
$n=4$ . Rom Lemma 3 we have the following decompositions:

$Hom(V, V)/a\cong E_{4}\otimes E_{4}/(E_{2}+E_{0})\cong E_{8}\oplus E_{6}\oplus E_{4}$ ,

and

$Hom(\wedge^{2}V, V)/S(Hom(V, a))\cong\wedge^{2}E_{4}\otimes E_{4}/(E_{4}\otimes(E_{2}\oplus E_{0}))=$

$(E_{6}\oplus E_{2})\otimes E_{4}/(E_{6}\oplus 2E_{4}\oplus E_{2})=$

$(E_{10}\oplus E_{8}\oplus E_{6}\oplus E_{4}\oplus E_{2}\oplus E_{6}\oplus E_{4}\oplus E_{2})/(E_{6}\oplus 2E_{4}\oplus E_{2})=$

$E_{10}\oplus E_{8}\oplus E_{6}\oplus E_{2}$ .

Let us also find the degree of $H^{0}(\mathbb{R}x, \mathbb{R}[\alpha])=\mathbb{R}[\alpha]$ , where $\alpha$ is the
$\epsilon \mathfrak{l}(2, \mathbb{R})$ invariant $mapping\wedge^{2}Varrow a$ . We have $h.\alpha=0,$ $z.\alpha=-8\alpha$ .
Hence, by Lemma 5 the element $[\alpha]$ has degree 6.

Summarizing all these computations we see that $H^{2}(g_{-}, g)=E_{2}^{1,1}\oplus$

$E_{2}^{0,2}$ , where $E_{2}^{1,1}$ has dimension 3 and is generated by elements of degree
5, 4, and 3. The space $E_{2}^{0,2}$ has dimension 5 and is generated by elements
of degree $-2,$ $-1,0,2$ and 6. Thus, the positive part of $H^{2}(g_{-}, g)$ is
5-dimensional and is generated by elements of degree 2, 3, 4, 5 and 6.

3. EXPLICIT FORMULAS FOR FUNDAMENTAL INVARIANTS

In the table below we give the form of fundamental invariants in
case of one ordinary differential equation of order $\geq 4$ . This result
was obtained by explicit computation using Maple V. The fundamental
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Degree Invariant
4th order equation

3 $L_{3}$

3 $I_{1}=f_{333}$

4 $L_{4}$

4 $I_{2}=6f_{233}+f_{33}^{2}$ mod $\langle I_{1}\rangle$

5th order equation
2 $I_{1}=f_{44}$

3 $L_{3}$

4 $L_{4}$

5 $L_{5}$

6 $I_{2}=6f_{234}-4f_{333}-3f_{34}^{2}$ mod $\langle I_{1}, L_{3}\rangle$

6th order equation
2 $I_{1}=f_{55}$

3 $L_{3}$

3 $I_{2}=f_{45}$ mod $\langle I_{1}\rangle$

4 $L_{4}$

5 $L_{5}$

6 $L_{6}$

equation of order $n+1\geq 7$

2 $I_{1}=f_{n,n}$

3 $L_{3}$

3 $I_{2}=f_{n,n-1}$ mod $\langle I_{1}\rangle$

4 $L_{4}$

4 $I_{3}=f_{n,n-2}$ mod $\langle I_{1}, I_{2}, L_{3}\rangle$

$5\leq i\leq n+1$ $L_{i}$

invariants of third order ODE’s were obtained by S.-S. Chen [7], and
for systems of second order ODE’s by M. Fels [8].

We use the following notation:

equation: $y^{(n+1)}=f(x, y, y’, \ldots , y^{(n)})$ ;
partial derivatives: $F_{i}= \frac{\partial F}{\partial y_{i}}$ for $i=0,$ $\ldots,$

$n$ , where $y_{0}=y$ ;
total derivative: $F_{x}= \frac{\partial\Gamma}{\partial x}+\sum_{i=0}^{n-2}y_{i+1}F_{i}+f(x, y, y_{1}, \ldots, y_{(n)})F_{n}$ ;
linear invariants: by $L_{i},$ $i=3,$ $\ldots$ , $n+1$ we denote $n-1$ invari-

ants, corresponding to the term $E^{1,1}$ in the decomposition of
$H^{2}(g_{-}, g)$ given in Lemma 1. It appears that they are expressed
in terms only of $f_{0},$

$\ldots,$
$f_{n}$ and their total derivatives and can be

obtained from corresponding linear invariants of an n-th order
linear ODE as described in the classical work of Wilczynski [9]
(see also the work of Se-ashi [10]) by substituting the usual de-
rivative by total derivative.
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