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1. Introduction.

First introduced by Gaston Darboux, the $theory,of$ moving frames (“$rep\grave{e}res$ mo-
biles”) is most closely associated with the name of Elie Cartan, [5], who molded it
into a powerful and algorithmic tool for studying the geometric properties of subman-
ifolds and their invariants under the action of a transformation group.In the $1970’ s$ ,
several researchers, cf. [11, 10, 6, 14], began the attempt to place Cartan’s intuitive
constructions on a firm theoretical foundation. A significant step was to begin the
process of disassociating the theory of moving frames from reliance on frame bundles
and connections. More recently, $[7, 8]$ , Mark Fels and I formulated a new approach to
the basic moving frame theory that can be systematically applied to general transfor-
mation groups. These notes provide a quick survey of the basic ideas underlying our
constructions.

New and significant applications of these results have been developed in a wide
variety of directions. In $[21, 1]$ , the theory was applied to produce new algorithms
for solving the basic symmetry and equivalence problems of polynomials that form the
foundation of classical invariant theory. In [18], the differential invariants of projec-
tive surfaces were classified and applied to generate integrable Poisson flows arising in
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soliton theory. In [7], the moving frame algorithm was extended to include infinite-
dimensional pseudo-group actions. In [4], the characterization of submanifolds via
their differential invariant signatures was applied to the problem of object recognition
and symmetry detection. The moving frame method provides a direct route to the
classification of joint invariants and joint differential invariants, $[8, 23]$ , establishing a
geometric counterpart of what Weyl, [26], in the algebraic framework, calls the first
main theorem for the transformation group. The approximation of higher order differ-
ential invariants by joint differential invariants and, generally, ordinary joint invariants
leads to fully invariant finite difference numerical schemes, [24], first proposed in $[3, 4]$ .
Applications to the construction of invariant numerical algorithms and the theory of
geometric integration, $[2, 19]$ , are under development.

Throughout this paper, $G$ will denote an $r$-dimensional Lie group acting smoothly
on an $m$-dimensional manifold $M$ . Let $G_{S}=\{g\in G|g\cdot S=S\}$ denote the isotropy
subgroup of a subset $S\subset M$ , and $G_{S}^{*}= \bigcap_{z\in S}G_{z}$ its global isotropy subgroup, which
consists of those group elements which fix all points in $S$ . The group $G$ acts freely if
$G_{z}=\{e\}$ for all $z\in M$ , effectively if $G_{M}^{*}=\{e\}$ , and effectively on subseis if $G_{U}^{*}=\{e\}$

for every open $U\subset M$ . Local versions of these concepts are defined by replacing $\{e\}$ by
a discrete subgroup of $G$ . A non-effective group action can be replaced by an equivalent
effective action of the quotient group $G/G_{M}^{*}$ , and so we shall always assume that $G$

acts locally effectively on subsets. A group acts semi-regularly if all its orbits have the
same dimension; in particular, an action is locally free if and only if it is semi-regular
with $r$-dimensional orbits. The action is regular if, in addition, each point $x\in M$ has
arbitrarily small neighborhoods whose intersection with each orbit is connected.

Definition 1.1. A moving frame is a smooth, $G$-equivariant map $\rho:Marrow G$ .

The group $G$ acts on itself by left or right multiplication. If $\rho(z)$ is any right-
equivariant moving frame then $\overline{\rho}(z)=\rho(z)^{-1}$ is left-equivariant and conversely. All
classical moving frames are left equivariant, but, in many cases, the right versions are
easier to compute.

Theorem 1.2. A moving frame exis $ts$ in a $n$eighborhood of a point $z\in M$ if an$d$

only if $Gacts$ freely and $regu1$arly near $z$ .

Of course, most interesting group actions are not free, and thcrefore do not admit
moving frames in the sense of Definition 1.1. There are two basic methods for con-
verting a non-free (but effective) action into a free action. The first is to look at the
product action of $G$ on several copies of $M$ , leading to joint invariants. The second is
to prolong the group action to jet space, which is the natural setting for the traditional
moving frame theory, and leads to differential invariants. Combining the two methods
of prolongation and product will lead to joint differential invariants. In applications of
symmetry construct.ions to numerical approximations of derivatives and differential in-
variants, one requires a unification of these different actions into a common framework,
called “multispace”, [24]; the simplest version is the blow-up construction of algebraic
geometry, [12].
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The practical construction of a moving frame is based on Cartan’s method of
normalization, $[15, 5]$ , which requires the choice of a (local) cross-section to the group
orbits.

Theorem $1_{j}3$ . Let $G$ act freely, $reg$ularly on $M$ , and let $K$ be a cross-section.
Given $z\in M$ , let $g=\rho(z)$ be the unique $gro$up element that maps $z$ to the cross-
section: $g\cdot z=\rho(z)\cdot z\in K.$ Then $\rho:Marrow G$ is a right moving frame for the $gro$up
action.

Given local coordinates $z=(z_{1}, \ldots, z_{m})$ on $M$ , let $w(g, z)=g\cdot z$ be the explicit
formulae for the group transformations. The right moving frame $g=\rho(z)$ associated
with a coordinate cross-section $K=\{z_{1}=c_{1’)}\ldots z_{r}=c_{r}\}$ is obtained by solving the
normalization equations

$w_{1}(g, z)=c_{1}$ , . .. $w_{r}(g, z)=c_{r}$ , (1.1)

for the group parameters $g=(g_{1}, \ldots, g_{r})$ in terms of the coordinates $z=(z_{1}, \ldots, z_{m})$ .

Theorem 1.4. If $g=\rho(z)$ is the moving frame $solu$ tion to the normalization
$eq$uations (1.1), then the functions

$I_{1}(z)=w_{r+1}(\rho(z), z)$ , .. . $I_{m-r}(z)=w_{m}(\rho(z), z)$ , (1.2)

form a complete sys6$em$ of functionally independent in $t^{\gamma}ariants$ .

Definition 1.5. The invariantization of a scalar function $F:Marrow \mathbb{R}$ with respect
to a right moving frame $\rho$ is the the invariant function $I=\iota(F)$ defined by $I(z)=$
$F(\rho(z)\cdot z)$ .

In particular, if $I(z)$ is an invariant, then $\iota(I)=I$ , so invariantization defines a
projection, depending on the moving frame, from functions to invariants.

lkaditional moving frames are obtained by prolonging the group action to the
$n^{th}$ order (extended) jet bundle $J^{n}=J^{n}(M,p)$ consisting of equivalence classes of p-
dimensional submanifolds $S\subset M$ modulo $n^{th}$ order contact; see [20; Chapter 3] for
details. The $n^{th}$ order prolonged action of $G$ on $J^{n}$ is denoted by $G^{(n)}$ .

An $n^{th}$ order moving frame $\rho^{(n)}$ : $J^{n}arrow G$ is an equivariant map defined on an open
subset of the jet space. In practical examples, for $n$ sufficiently large, the prolonged
action $G^{(n)}$ becomes regular and free on a dense open subset $\mathcal{V}^{n}\subset J^{n}$ , the set of regular
jets.

Theorem 1.6. An $n^{th}ord$er moving frame exists in a neighborhood of a poin6
$z^{(n)}\in J^{n}$ if and only if $z^{(n)}\in \mathcal{V}^{n}$ is a regular jet.

Although there are no known counterexamples, for general (even analytic) group
actions only a local theorem, $[25, 22]$ , has been established to date.

Theorem 1.7. A Lie $gro$up $G$ acts locally effec$ti$vely on $su$ bsets of $M$ if and on$ly$

if for $n>>0$ sufficiently 1arge, $G^{(n)}$ acts locally freely on an open $su$ bset $\mathcal{V}^{n}\subset J^{n}$ .
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We can now apply our normalization construction to produce a moving frame and
a complete system of differential invariants in the neighborhood of any regular jet.
Choosing local coordinates $z=(x, u)$ on $M$ –considering the first $p$ components
$x=(x^{1}, \ldots, x^{p})$ as independent variables, and the latter $q=m-p$ components
$u=(u^{1}, \ldots, u^{q})$ as dependent variables –induces local coordinates $z^{(n)}=(x, u^{(n)})$ on
$J^{n}$ with components $u_{J}^{\alpha}$ representing the partial derivatives of the dependent variables
with respect to the independent variables. We compute the prolonged transformation
formulae

$w^{(n)}(g, z^{(n)})=g^{(n)}\cdot z^{(n)}$ , or $(y, v^{(n)})=g^{(n)}\cdot(x, u^{(n)})$

by implicit differentiation of the $v’ s$ with respect to the $y’ s$ . For simplicity, we restrict
to a coordinate cross-section by choosing $r=\dim G$ components of $w^{(n)}$ to normalize
to constants:

$w_{1}(g, z^{(n)})=c_{1}$ , $w_{r}(g, z^{(n)})=c_{r}$ . (1.3)

Solving the normalization equations (1.3) for the group transformations leads to the
explicit formulae $g=\rho^{(n)}(z^{(n)})$ for the right moving frame. Moreover, substituting
the moving frame formulae into the unnormalized components of $w^{(n)}$ leads to the
fundamental $n^{th}$ order differential invariants

$I^{(n)}(z^{(n)})=w^{(n)}(\rho^{(n)}(z^{(n)}), z^{(n)})=\rho^{(n)}(z^{(n)})\cdot z^{(n)}$ . (1.4)

In terms of the local coordinates, the fundamental differential invariants will be denoted

$H^{i}(x, u^{(n)})=y^{i}(\rho^{(n)}(x, u^{(n)}),$ $x,$ $u)$ , $I_{K}^{\alpha}(x, u^{(k)})=v_{K}^{\alpha}(\rho^{(n)}(x, u^{(n)}),$ $x,$ $u^{(k)})$ . (1.5)

In particular, those corresponding to the normalization components (1.3) of $w^{(n)}$ will
be constant, and are known as the phantom differential invariants.

Theorem 1.8. Let $\rho^{(n)}$ : $J^{n}arrow G$ be a moving frame of order $\leq n$ . Every $n^{th}$

order differential invarian6 can be locally written as a function $J=\Phi(I^{(n)})$ of the
fundamental $n^{th}$ order differential invarian $ts$ . The function $\Phi$ is uniq $ue$ pro$t^{r}ided$ it
does not depend on the phan6$om$ invarianis.

The invariantization of a differential function $F:J^{n}arrow \mathbb{R}$ with respect to the given
moving frame is the differential invariant $J–\iota(F)=F\circ I^{(n)}$ . As before, invariantiza-
tion defines a projection, depending on the moving frame, from the space of differential
functions to the space of differential invariants.

Example 1.9. Let us illustrate the theory with a very simple, well-known exam-
ple: curves in the Euclidean plane. The orientation-preserving Euclidean group SE$(2)$

acts on $M=\mathbb{R}^{2}$ , mapping a point $z=(x, u)$ to

$y=x\cos\theta-u\sin\theta+a$ , $v=x\sin\theta+u\cos\theta+b$ . (1.6)

For a parametrized curve $z(t)=(x(t), u(t))$ , the prolonged group transformations

$v_{y}= \frac{dv}{dy}=\frac{x_{t}\sin\theta+u_{t}\cos\theta}{x_{t}\cos\theta-u_{t}\sin\theta}$ , $v_{yy}= \frac{d^{2}v}{dy^{2}}=\frac{x_{t}u_{tt}-x_{tt}u_{t}}{(x_{t}\cos\theta-u_{t}\sin\theta)^{3}}$ , (1.7)
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and so on, are found by successively applying implicit differentiation operator

$D_{y}= \frac{1}{x_{t}\cos\theta-u_{t}\sin\theta}D_{t}$ (1.8)

to $v$ . The classical Euclidean moving frame for planar curves, [13], follows from the
cross-section normalizations

$y=0$ , $v=0$ , $v_{y}=0$ . (1.9)

Solving for the group parameters $g=(\theta, a, b)$ leads to the right-equivariant moving
frame

$\theta=-\tan^{-1}\frac{u_{t}}{x_{t}}$ , $a=- \frac{xx_{t}+uu_{t}}{\sqrt{x_{t}^{2}+u_{t}^{2}}}$ , $b= \frac{xu_{t}-ux_{t}}{\sqrt{x_{t}^{2}+u_{t}^{2}}}$ . (1.10)

The inverse group transformation $g^{-1}=(\overline{\theta},\overline{a},\overline{b})$ is the classical left moving frame,
$[5, 13]$ : one identifies the translation component ($\overline{a},\overline{b}\underline{)}=(x, u)=z$ as the point on
the curve, while the columns of the rotation matrix $R=(t, n)$ are the unit tangent
and unit normal vectors. Substituting the moving frame normalizations (1.10) into
the prolonged transformation formulae (1.7), results in the fundamental differential
invariants

$v_{yy} rightarrow\kappa=\frac{x_{t}u_{tt}-x_{tt}u_{t}}{(x_{t}^{2}+u_{t}^{2})^{3/2}}$ , $v_{yyy}$
$\mapsto$ $\frac{d\kappa}{ds}$ , $v_{yyyy}$

$rightarrow$
$\frac{d^{2}\kappa}{ds^{2}}+3\kappa^{3}$ ,

where $D_{s}=(x_{t}^{2}+u_{t}^{2})^{-1/2}D_{t}$ is the arc length derivative –which is itself foun
$dby(lll)$

substituting the moving frame formulae (1.10) into the implicit differentiation operator
(1.8). A complete system of differential invariants for the planar Euclidean group is
provided by the curvature and its successive derivatives with respect to arc length:
$\kappa,$ $\kappa_{s},$ $\kappa_{ss},$ $\ldots$ .

The one caveat is that the first prolongation of SE(2) is only locally free on $J^{1}$ since
a 180 rotation has trivial first prolongation. The even derivatives of $\kappa$ with respect to $s$

change sign under a 180 rotation, and so only their absolute values are fully invariant.
The ambiguity can be removed by including the second order constraint $v_{yy}>0$ in the
derivation of the moving frame. Extending the analysis to the full Euclidean group
$E(2)$ adds in a second sign ambiguity which can only be resolved at third order. See
[23] for complete details.

As we noted in the preceding example, substituting the moving frame normal-
izations into the implicit differentiation operators $D_{y^{1}},$

$\ldots,$
$D_{y^{p}}$ associated with the

transformed independent variables gives the fundamental invariant differential opera-
tors $D_{1},$

$\ldots,$
$D_{p}$ that map differential invariants to differential invariants.

Theorem 1.10. If $\rho^{(n)}$ : $J^{n}$ -a $G$ is a$nn^{th}$ order moving frame, then, for any
$k\geq n+1$ , a complete sys6$em$ of $k^{th}$ order differential invarian$ts$ can be found by
$su$ccessively applying the invarian6 differential operators $D_{1},$

$\ldots,$ $D_{p}$ to the non-cons6an6
(non-phantom) fundamen$tal$ differential invarian$tsI^{(n+1)}$ of order at most $n+1$ .
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Thus, the moving frame provides two methods for computing higher order differ-
ential invariants. The first is by normalization –plugging the moving frame formulae
into the higher order prolonged group transformation formulae. The second is by invari-
ant differentiation of the lower order invariants. These two processes lead to different
differential invariants; for instance, see the last formula in (1.11). The fundamental
recurrence formulae

$D_{j}H^{i}=\delta_{j}^{i}-L_{j}^{i}$ , $D_{j}I_{K}^{\alpha}=I_{K,j}^{\alpha}-M_{K,j}^{\alpha}$ , (1.12)

connecting the normalized and the differentiated invariants (1.5) are of critical impor-
tance for the development of the theory, and in applications too.

A remarkable fact, $[8, 9]$ , is that the correction terms $L_{j}^{i},$ $M_{K,j}^{\alpha}$ can be effectively
computed, without knowledge of the explicit formulae for the moving frame or the
normalized differential invariants. Let

$prv_{\kappa}=\sum_{i=1}^{p}\xi_{\kappa}^{i}(x, u)\frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q}\sum_{k=\# J\geq 0}\varphi_{J,\kappa}^{\alpha}(x, u^{(k)})\frac{\partial}{\partial u_{J}^{\alpha}}$ , $\kappa=1,$
$\ldots,$

$r$ ,

be a basis for the Lie algebra $g^{(n)}$ of infinitesimal generators of $G^{(n)}$ . The coefficients
$\varphi_{J,\kappa}^{\alpha}(x, u^{(k)})$ are given by the standard prolongation formula for vector fields, cf. [20],
and are assembled as the entries of the $n^{th}$ order Lie matrix

$L_{n}(z^{(n)})=(_{\xi_{r}^{1}}^{\xi_{1}^{1}}\cdot.$
$\cdot$ . $\xi_{r}^{p}\xi_{1}^{p}.\cdot$ $\varphi_{r}^{1}\varphi_{1}^{1}..$

$\cdot$ . $\varphi_{1}^{q}\varphi_{r}^{q}..$

$\cdot$ . $\varphi_{J,r}^{\alpha}\varphi_{J,1}^{\alpha}.\cdot$

$.$ . $)$ . (1.13)

The rank of $L_{n}(z^{(n)})$ equals the dimension of the orbit through $z^{(n)}$ . The invariantized
Lie matrix is obtained by $I_{n}=\iota(L_{n})=L_{n}(I^{(n)})$ , replacing the jet coordinates $z^{(n)}=$

$(x, u^{(n)})$ by the corresponding fundamental differential invariants (1.4). We perform a
Gauss-Jordan row reduction on the matrix $I_{n}$ so as to reduce the $r\cross r$ minor whose
columns correspond to the normalization variables $z_{1},$ $\ldots,$ $z_{r}$ in (1.3) to an $r\cross r$ identity
matrix –let $K_{n}$ denote the resulting matrix of differential invariants. Further, let
$Z(x, u^{(n)})=(D_{i}z_{\kappa})$ denote the $p\cross r$ matrix whose entries are the total derivatives of
the normalization coordinates $z_{1},$ $\ldots,$ $z_{r}$ , and $W=\iota(Z)=Z(I^{(n)})$ its invariantization.
The main result is that the correction terms in (1.12) are the entries of the matrix
product

$W\cdot K_{n}=M_{n}=(_{L_{r}^{1}}^{L_{1}^{1}}$
$..$

$\cdot$ . $L_{p}^{p}L_{1}^{p}.$.
$M_{r}^{1}M_{1}^{1}.\cdot$

$.$ . $M_{r}^{q}M_{1}^{q}..$

$\cdot$ . $M_{K,r}^{\alpha}M_{K,1}^{\alpha}.\cdot$
$.$ . ) (1.14)

Example 1.11. The infinitesimal generators of the planar Euclidean group SE$(2)$

are
$v_{1}=\partial_{x}$ , $v_{2}=\partial_{u}$ , $v_{3}=-u\partial_{x}+x\partial_{u}$ .
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Prolonging these vector fields to $J^{5}$ , we find the fifth order Lie matrix

$L_{5}=(\begin{array}{llllllll}1 0 0 0 0 0 00 1 0 0 0 0 0-u x 1+ u_{x}^{2} 3u_{x}u_{xx} M_{3} M_{4} M_{5}\end{array})$ , (1.15)

where
$M_{3}=4u_{x}u_{xxx}+3u_{xx}^{2}$ , $M_{4}=5u_{x}u_{xxxxx}+10u_{xx}u_{xxx}$ ,

$M_{5}=6u_{x}u_{xxxx}+15u_{xx}u_{xxxx}+10u_{xxx}^{2}$ .

Under the normalizations (1.9), the fundamental differential invariants are

$yrightarrow J=0$ , $v-I=0$, $v_{y}\mapsto I_{1}=0$ , $v_{yy}\mapsto I_{2}=\kappa$, (1.16)

and, in general, $v_{k}=D_{y}^{k}v-I_{k}$ ; see (1.11). The recurrence formulae will express
each normalized differential invariant $I_{k}$ in terms of arc length derivatives of $\kappa=I_{2}$ .
Using (1.16), the invariantized Lie matrix takes the form

$\iota(L_{5})=I_{5}=(\begin{array}{lllllll}1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 3\kappa^{2} 10\kappa I_{3} 15\kappa I_{4}+10I_{3}^{2}\end{array})$ .

Since our chosen cross-section (1.9) is based on the jet coordinates $x,$ $u,$ $u_{x}$ that index
the first three columns of $I_{5}$ is already in the appropriate row-reduced form, and so
$K_{5}=I_{5}$ . Differentiating the normalization variables and then invariantizing produces
the matrices

$Z=(1u_{x}u_{xx})$ , $\iota(Z)=W=(10I_{2})=(10\kappa)$ .

Therefore, the fifth order correction matrix is

$M_{5}=W\cdot K_{5}=(10003\kappa^{3}10\kappa^{2}I_{3}15\kappa^{2}I_{4}+10\kappa I_{3}^{2})$ ,

whose entries are the required the correction terms. The recurrence formulae (1.12)
can then be read off in o.rder:

$D_{s}J=D_{s}(0)=1-1$ , $D_{s}I=D_{s}(0)=0-0$ ,
$D_{s}I_{1}=D_{s}(0)=0-0$ , $D_{s}I_{2}=D_{s}\kappa=I_{3}-0$ ,
$D_{s}I_{3}=I_{4}-3\kappa^{3}$ , $D_{s}I_{4}=I_{5}-10\kappa^{2}I_{3}$ , $D_{s}I_{5}=I_{6}-15\kappa^{2}I_{4}-10\kappa I_{3}^{2}$ ,

We conclude that the higher order normalized differential invariants are given in terms
of arc length derivatives of the curvature $\kappa$ by

$I_{2}=\kappa$ , $I_{3}=\kappa_{s}$ , $I_{4}=\kappa_{ss}+3\kappa^{3}$ ,
$I_{5}=\kappa_{sss}+19\kappa^{2}\kappa_{s}$ , $I_{6}=\kappa_{ssss}+34\kappa^{2}\kappa_{ss}+48\kappa\kappa_{s}^{2}+45\kappa^{4}\kappa_{s}$ ,

and so on. The direct derivation of these and similar formulae is, needless to say,
considerably more tedious. Even sophisticated computer algebra systems have difficulty
owing to the appearance of rational algebraic functions in many of the expressions.
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A syzygy is a functional dependency $H($ . . . $D_{J}I_{\nu}\ldots)\equiv 0$ among the fundamental
differentiated invariants. In Weyl’s algebraic formulation of the “Second Main Theo-
rem” for the group action, [26], syzygies are defined as algebraic relations among the
joint invariants. Here, since we are classifying invariants up to functional independence,
there are no algebraic syzygies, and so the classification of differential syzygies is the
proper setting for the Second Main Theorem in the $geometric/analytic$ context. See
$[8, 23]$ for examples and applications.

Theorem 1.12. A genera$6ing$ system of differential in$t^{\gamma}ariants$ consists of a) all
non-phantom differential invarian$tsH^{i}$ and $I^{\alpha}$ coming from the un-normalized zeroth
order $jef$ coordinates $y^{i},$ $v^{\alpha}$ , and b) all $n$on-phantom differential invarian$ts$ of the form
$I_{J,i}^{\alpha}$ where $I_{J}^{\alpha}$ is a phantom differential $iI1t^{\gamma}ariant$ . The fundamen6$al$ syzygies among the
$differentia\mathfrak{t}ed$ invarian$ts$ are
(i) $\cdot D_{j}H^{i}=\delta_{j}^{i}-L_{j}^{i}$ , when $H^{i}$ is non-phantom,
(ii) $D_{J}I_{K}^{\alpha}=c-M_{K,J}^{\alpha}$ , when $I_{K}^{\alpha}$ is a generating differential invariant, while $I_{J,K}^{\alpha}=c$

is a phantom differential invarian$t$ , and
(iii) $D_{J}I_{LK}^{\alpha}-D_{K}I_{LJ}^{\alpha}=M_{LJ,K^{-}}^{\alpha}M_{LK,J}^{\alpha}$ , where $I_{LK}^{\alpha}$ an$dI_{LJ}^{\alpha}$ are generating differential

$inr^{r}ariants$ and $K\cap J=\emptyset$ are disjoint and non-zero.
All other syzygies are all differential consequences of these generating syzygies.

Two submanifolds $S,\overline{S}\subset M$ are said to be equivalent if $\overline{S}=g\cdot S$ for some $g\in G$ .
A symmetry of a submanifold is a group transformation that maps $S$ to itself, and so
is an element $g\in G_{S}$ . As emphasized by Cartan, [5], the solution to the equivalence
and symmetry problems for submanifolds is based on the functional interrelationships
among the fundamental differential invariants restricted to the submanifold.

A submanifold $S\subset M$ is called regular of order $n$ at a point $z_{0}\in S$ if its $n^{th}$

order jet $j_{n}S|_{z_{0}}\in \mathcal{V}^{n}$ is regular. Any order $n$ regular submanifold admits a (locally
defined) moving frame of that order –one merely restricts a moving frame defined in
a neighborhood of $z_{0}$ to it: $\rho^{(n)}\circ j_{n}S$ . Thus, only those submanifolds having singular
jets at arbitrarily high order fail to admit any moving frame whatsoever. The complete
classification of such totally singular submanifolds appears in [22]; an analytic version
of this result is:

Theorem 1.13. Let $G$ act effec $tir^{\gamma}ely,$ analytically. An analytic submanifold
$S\subset M$ is totally singular if and only if $G_{S}$ does $no6$ act locally freely on $S$ itself.

Given a regular submanifold $S$ , let $J^{(k)}=I^{(k)}|S=I^{(k)}\circ j_{k}S$ denote the $k^{th}$ order
restricted differential invariants. The $k^{th}$ order signature $S^{(k)}=S^{(k)}(S)$ is the set
parametrized by the restricted differential invariants; $S$ is called fully regular if $J^{(k)}$

has constant rank $0\leq t_{k}\leq p=\dim S$ . In this case, $S^{(k)}$ forms a submanifold of
dimension $t_{k}$ –perhaps with self-intersections. In the fully regular case,

$t_{n}<t_{n+1}<t_{n+2}<\cdots<t_{s}=t_{s+1}=\cdots=t\leq p$,

where $t$ is the differential invariant rank and $s$ the differential invariant order of $S$ .
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Theorem 1.14. $LeGS,\overline{S}\subset M$ be $reg$ular $p$-dimensional $su$ bmanifolds with re-
spect to a $mo$ving frame $\rho^{(n)}$ . Tben $S$ and $\overline{S}$ are (locally) equivalen6, $\overline{S}=g\cdot S$ , if and
only if they have the same differential invarian 6 order $s$ and their signature manifolds
of order $s+1$ are identical: $S^{(s+1)}(\overline{S})=S^{(s+1)}(S)$ .

Example 1.15. A curve in the Euclidean plane is uniquely determined, modulo
translation and rotation, from its curvature invariant $\kappa$ and its first derivative with
respect to arc length $\kappa_{s}$ . Thus, the curve is uniquely prescribed by its Euclidean
signature curve $S=S(C)$ , which is parametrized by the two differential invariants
$(\kappa, \kappa_{s})$ . The Euclidean (and equi-affine) signature curves have been applied to the
problems of object recognition and symmetry detection in digital images in [4].

Theorem 1.16. If $S\subset M$ is a fully regular $p-\dot{d}$imension$al$ submanifold of differ-
ential invariant rank $t$ , then $i\mathfrak{t}s$ symmetry group $G_{S}$ is an $(r-t)$ -dimensiorlal $su$bgroup
of $G$ tha6 acts locally freely on $S$ .

A submanifold with maximal differential invariant rank $t=p$ is called nonsingular.
Theorem 1.16 says that these are the submanifolds with only discrete symmetry groups.
The index of such a submanifold is defined as the number of points in $S$ map to a
single generic point of its signature, i.e., ind $S= \min\{\neq\sigma^{-1}\{\zeta\}|\zeta\in S^{(s+1)}\}$ , where
$\sigma(z)=J^{(s+1)}(z)$ denotes the signature map from $S$ to its order $s+1$ signature $S^{(s+1)}$ .
Incidentally, a point on the signature is non-generic if and only if it is a point of
self-intersection of $S^{(s+1)}$ . The index is equal to the number of symmetries of the
submanifold, a fact that has important implications for the computation of discrete
symmetries in computer vision, [4], and in classical invariant theory, $[1, 21]$ .

Theorem 1.17. If $S$ is a nonsingular $su$ bmanifold, tben its symmetry $gro$up is a
$d$iscre$tesu$bgroup of cardinali $ty$ a $G_{S}=indS$ .

At the other extreme, a rank $0$ or maximally symmetric submanifold has all con-
stant differential invariants, and so its signature degenerates to a single point.

Theorem 1.18. A regular $p$-dimension$al$ submanifold $S$ has differential invarian6
rank $0$ if and only if it is an orbi6, $S=H\cdot z_{0}$ , of a p-dimensiorlal subgroup $H=G_{S}\subset G$ .

For example, in planar Euclidean geometry, the maximally symmetric curves have
constant Euclidean curvature, and are the circles and straight lines. Each is the orbit
of a one-parameter subgroup of SE(2), which also forms the symmetry group of the
orbit.

In equi-affine planar geometry, when $G=SA(2)=SL(2)\ltimes \mathbb{R}^{2}$ acts on planar
curves, the maximally symmetric curves are the conic sections, which admit a one-
parameter group of equi-affine symmetries. The straight lines are totally singular, and
admit a three-parameter equi-affine symmetry group, which, in accordance with Theo-
rem 1.13, does not act freely thereon. In planar projective geometry, with $G=SL(3, \mathbb{R})$
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acting on $M=\mathbb{R}P^{2}$ , the maximally symmetric curves, having constant projective cur-
vature, are the “$W$-curves” studied by Lie and Klein, $[16, 17]$ .
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