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Abstract

Third-harmonic resonance of capillary-gravity waves in two-dimensional Fara-
day waves due to the parametric excitation of the lower-ffequency mode is ex-
amined for infinite depth. The amplitude equation incorporating both a small
$\det_{1}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ from this internal resonance and that from the external resonance with
the vertical oscillation of a container is derived using the Inethod of reductive
perturbation and also including a linear damping. This equation has mixed-wave
solutions: periodic and chaotic solutions as well as stationary solutions. More-
over, we find two more hysteresis regions of stationary solutions, in addition to
the hysteresis region observed also for a single-mode Faraday wave. Some periodic
solutions become chaotic through a series of period-doubling bifurcations.

1 Introduction
Breakdown of the ordinary weakly nonlinear expansion for deep capillary-gravity
waves occurs at certain discrete wavenumbers $\hat{k}_{n}=[\rho g/(n\sigma)]^{1/2}(n=2,3, \cdots).[1]$

Here, $g,$ $\sigma$ and $\rho$ are the gravitational acceleration, the surface tension coefficient
and the density of a fluid, respectively. This breakdown is caused by the reso-
nance between the fundamental wave of wavenumber $\hat{k}_{n}$ and its n-th harmonic,
called the n-th harmonic resonance. Among this type of resonances, the third-
harmonic resonance, of $n=3$ , happens between a wave of frequency 52.6 $\mathrm{s}^{-1}$ and
wavensnber 2.12 $\mathrm{c}\mathrm{m}^{-1}$ and its third harmonic for surface waves of deep, clean
water $(\sigma=73\mathrm{d}\mathrm{y}\mathrm{n}/\mathrm{c}\mathrm{m}, \rho=1.00\mathrm{g}/\mathrm{c}\mathrm{m}^{3})$. The third-harmonic resonance of weakly
nonlinear travelling waves was investigated both theoretically and experimentally
by $\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}[2]$ and examined theoretically by Nayfeh. $[3, 4]$ However, as far as
we know, there is no study on the third-harmonic resonance of nonlinear standing
waves under no forcing and damping.

Faraday waves are widely known as standing waves subharmonically excited by
the forcing of the vertical oscillation of the container of a fluid. Weakly nonlinear
behavior of Faraday waves was theoretically studied by Miles[5] for gravity waves.
He showed that when the forcing amplitude exceeds a threshold value determined
by a damping coefficient and a detuning from the exact resonance, the quiescent
state of the fluid becomes unstable and a standing wave is excited. He also found
a hysteresis phenomenon of the excited standing wave when half of the forcing
frequency is slightly smaller than the frequency of this wave.

In the present paper, the third-harmonic resonance in two-dimensional Faraday
waves is examined in which the fundamental wave is subharmonically excited. In
\S 2, we derive nonlinear equation for the amplitudes of the fundamental Inode
and its third harmonic of capillary-gravity waves in a deep fluid. In this equation,
both small detunings from internal and external resonances as well as a small
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linear damping are included. In \S 3, the results on the properties of the stationary
solutions of this equation and the hysteresis phenomena of these solutions are
shown. Also, the chaotic solutions generated by a series of the period-doubling
bifurcations are shown in this section. Finally, conclusions are given in \S 4.

2 Amplitude Equation with Third-Harmonic
Resonance
For linear capillary-gravity surface waves in a deep fluid, their wavenumbers $k_{i}$ and
frequencies $\overline{\omega}_{i}$ satisfy the dispersion relation

$\overline{\omega}_{i}^{2}=k_{ig}(1+\Gamma_{i})$ , (1)

with $\Gamma_{i}=\sigma k_{i}^{2}/(\rho g)$ . Here, $g,$ $\sigma$ and $\rho$ are the gravitational acceleration, the surface
tension coefficient and the density of the fluid, respectively. The third-harmonic
resonance incorporating a small $\det_{1}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ between a fundamental wave $(i=1)$ and
its third harmonic $(i=3)$ occurs when the relations

$k_{3}=3k_{1}$ , $\overline{\omega}_{3}=3\overline{\omega}_{1}+\hat{\omega}$, (2)

are satisfied. Here $\hat{\omega}$ implies a small detuning from the exact third-harmonic
resonance. For these waves, $\Gamma_{1}$ and $\Gamma_{3}$ have slight discrepancies from 1/3 and 3,
respectively. Furthermore, the nondimensional frequencies $\omega_{i}(i=1,3)$ of these
waves defined by $\omega_{i}=\overline{\omega}_{i}/\sqrt{gk_{1}}$ are close to $2/\sqrt{3}$ and $2\sqrt{3}$ , respectively. In the
following part of the present paper, all variables are nondimensionalized using the
length $1/k_{1}$ and the time $1/\sqrt{gk_{1}}$.

The vertical sinusoidal oscillation of a container with a dimensionless accelera-
tion $f\cos(2\Omega t)$ can generate the standing wave of dimensionless frequency $\Omega$ . Here
$t$ is the dimensionless time. This subharmonically excited wave is called Faraday
wave. In the present paper, we consider the combination of the $\mathrm{t}l\dot{\mathrm{u}}\mathrm{r}\mathrm{d}$-harmonic
resonance and the subharmonic excitation of the fundamental wave by assuming
that forcing frequency $2\Omega$ is close to $2\omega_{1}$ .

In the derivation of the amplitude equation for the two resonant waves, we
assume the two-dimensional irrotational flow of an incompressible inviscid fluid.
Dimensionless ffee-surface displacement and velocity potential are denoted by $z=$

$\eta(x, t)$ and $\phi(x, z, t)$ , respectively. Here $x$ and $z$ are dimensionless horizontal and
upward vertical coordinates fixed to the container. We also assume that the depth
of the fluid is large enough to use the approximation of infinite depth.

The $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{l}\dot{\mathrm{u}}\mathrm{t}\mathrm{y}$ equation is written as Laplace’s equation

$\nabla^{2}\phi=0$ for $-\infty<z\leq\eta$ , (3)

where $\nabla=(\partial_{x}, \partial_{z})$ . From Bernoudli’s theorem, the dynamical condition at the free
surface is

$\partial_{t}\phi+\frac{1}{2}(\nabla\phi)^{2}+[1+f\cos(2\Omega t)]\eta-\Gamma_{1}\partial_{x}^{2}\eta[1+(\partial_{x}\eta)^{2}]^{-3/2}=0$ at $z=\eta$ . $(4)$

The kinematical condition at the free surface is

$\partial_{t}\eta+\partial_{x}\phi\partial_{x}\eta=\partial_{z}\phi$ at $z=\eta$ . (5)
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Furthermore, the boundary condition

$\nabla\phiarrow 0$ as $zarrow-\infty$ , (6)

should be satisfied.
Expanding $\mathrm{e}\mathrm{q}\mathrm{s}.(4)$ and (5) around $z=0$ , we obtain

$\partial_{t}\phi-\Gamma_{1}\partial_{x}^{2}\eta+[1+f\cos(2\Omega t)]\eta+\eta\partial_{z}\partial_{t}\phi$

$+ \frac{1}{2}\eta^{2}\partial_{z}^{2}\partial_{t}\phi+\frac{1}{2}(\nabla\phi)^{2}+\frac{1}{2}\eta\partial_{z}(\nabla\phi)^{2}+\frac{3}{2}\Gamma_{1}\partial_{x}^{2}\eta(\partial_{x}\eta)^{2}=0$ at $z=0,$ $(7)$

$\partial_{t}\eta-\partial_{z}\phi+\partial_{x}\eta\partial_{x}\phi+\eta\partial_{x}\eta\partial_{z}\partial_{x}\phi-\eta\partial_{z}^{2}\phi-\frac{1}{2}\eta^{2}\partial_{z}^{3}\phi=0$ at $z=0$ , (8)

after neglecting the terms of the fourth or higher order with respect to $\eta$ and $\phi$ .
Next, we introduce the expanded forms of $\phi$ and $\eta$ with respect to $\epsilon$ expressed as

$\phi=\epsilon\phi_{1}+\epsilon^{2}\phi_{2}+\epsilon^{3}\phi_{3}+\cdots,$ $\eta=\epsilon\eta_{1}+\epsilon^{2}\eta_{2}+\epsilon^{3}\eta_{3}+\cdots$ , (9)

where $\epsilon(<<1)$ is a parameter representing wave steepness. Moreover, we assume
that the relation

$\Gamma_{1}=\frac{1}{3}+\epsilon^{2}\gamma_{1}$ , (10)

is satisfied. The term $\epsilon^{2}\gamma_{1}$ in $\mathrm{e}\mathrm{q}.(10)$ represents a small detuning from the exact
third-harmonic resonance, because the dimensionless discrepancy $\hat{\omega}/\sqrt{gk_{1}}$ from
the exact resonance is expressed by $3\sqrt{3}\epsilon^{2}\gamma_{1}/2$ in the leading order. Furthermore,
assuming that $f=O(\epsilon^{2})$ and $\Omega-\omega_{1}=O(\epsilon^{2})$ , we write as

$f$ $=$
$\epsilon^{2}F$, (11)

$\Omega$ $=$ $\omega_{1}+\epsilon^{2}\delta_{1}$ . (12)

Therefore, $\delta_{1}$ expresses a small mismatch from the exact external resonance. More-
over, a slow time variable $\tau=\epsilon^{2}t$ is introduced.

Substituting $\mathrm{e}\mathrm{q}\mathrm{s}.(9)$ and (10) into the Taylor expansion of $\mathrm{e}\mathrm{q}\mathrm{s}.(7)$ and (8)
around $z=0$ , and using eq.(ll) and the replacement $\partial_{t}arrow\partial_{t}+\epsilon^{2}\partial_{\tau}$ , we obtain
the following equations in $0(\epsilon)$ :

$\partial_{t}\phi_{1}-\frac{1}{3}\partial_{x}^{2}\eta_{1}+\eta_{1}=0$ at $z=0$ , (13)

$\partial_{t}\eta_{1}-\partial_{z}\phi_{1}=0$ at $z=0$ . (14)

The equations obtained in $0(\epsilon^{2})$ and $O(\epsilon^{3})$ are shown in Appendix A as $\mathrm{e}\mathrm{q}\mathrm{s}$.(22)-
(25).

Since we consider the waves composed of the fundamental mode and its third
harmonic, we assume that $\eta_{1}$ and $\phi_{1}$ are written as

$\eta_{1}$ $=$ $a(\tau)\exp(-\mathrm{i}\omega t)\cos x+b(\tau)\exp(-3\mathrm{i}\omega t)\cos 3x+\mathrm{c}.\mathrm{c}.$ , (15)
$\phi_{1}$ $=$ $-\mathrm{i}\omega a(\tau)\exp(z)\exp(-\mathrm{i}\omega t)\cos x$

$-\mathrm{i}\omega b(\tau)\exp(3z)\exp(-3\mathrm{i}\omega t)\cos 3x+\mathrm{c}.\mathrm{c}.$ , (16)

where $\omega=2/\sqrt{3}$ is the value of $\omega_{1}$ in the leading order, and $\mathrm{c}.\mathrm{c}$ . denotes the
complex conjugate of the preceding terms. Also $a(\tau)$ and $b(\tau)$ express the complex
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amplitudes of the fimdamental wave and its $\mathrm{t}l\dot{\mathrm{u}}\mathrm{r}\mathrm{d}$ harmonic, respectively. Using
$\mathrm{e}\mathrm{q}\mathrm{s}.(3),$ (6)

$,$
(9), (12), (13), (14), (22)$-(25)$ , we obtain in $O(\epsilon^{2})$ the expressions

of $(\eta_{2}, \phi_{2})$ given in Appendix $\mathrm{B}$ as $\mathrm{e}\mathrm{q}\mathrm{s}.(26)$ and (27). Furthermore, in $O(\epsilon^{3})$ , the
following equation for $a$ and $b$ is derived from solvability conditions:

$\frac{\mathrm{d}a}{\mathrm{d}_{\mathcal{T}}}$ $=$ $- \mathrm{i}\frac{\gamma_{1}}{2\omega}a-\mathrm{i}\frac{F}{4\omega}a^{*}\exp(-2\mathrm{i}\triangle\tau)$

$- \mathrm{i}\omega\frac{369}{64}b(a^{*})^{2}-\mathrm{i}\omega\frac{145}{448}|a|^{2}a+\mathrm{i}\omega\frac{243}{400}|b|^{2}a$ , (17)

$\frac{\mathrm{d}b}{\mathrm{d}_{\mathcal{T}}}$ $=$ $- \mathrm{i}\frac{9\gamma_{1}}{2\omega}b-\mathrm{i}\omega\frac{123}{64}a^{3}+\mathrm{i}\omega\frac{115209}{4160}|b|^{2}b+\mathrm{i}\omega\frac{243}{400}|a|^{2}b$ , (18)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the complex conjugate, and $\Delta=\delta_{1}+\gamma_{1}/(2\omega)$ represents the small
discrepancy between $\Omega$ and $\omega$ , because of $\mathrm{e}\mathrm{q}.(12)$ and the relation $(\omega_{1}-\omega)/\epsilon^{2}=$

$\gamma_{1}/(2\omega)+O(\epsilon)$ obtained from eqs.(l) and (10).
Here, we introduce the linear damping of dimensionless coefficients $\alpha_{1}$ and $\alpha_{3}$

for the fimdamental wave and its third harmonic, respectively. If we consider the
situation in which the contribution of the damping within the boumdary layers
on the sidewalls of the container to the total damping is dominant and other
damping due to the bulk flow, surface contamination and capillary hysteresis can
be neglected, the damping coefficient is proportional to the square root of wave
frequency. $[6, 7]$ Therefore, we assume the relation $\alpha_{3}=\sqrt{3}\alpha_{1}$ .

Ifwe replace the variables a $\exp(\mathrm{i}\triangle\tau)/(2\sqrt{\alpha_{1}}/\omega),$ $3b\exp(3\mathrm{i}\triangle\tau)/(2\sqrt{\alpha_{1}}/\omega),$ $\alpha_{1}\tau$ ,
$F/(4\alpha_{1}\omega),$ $\delta_{1}/\alpha_{1}$ and $\gamma_{1}/(2\alpha_{1}\omega)$ by $A,$ $B,$ $T,$ $\beta,$

$\delta$ and $\gamma$ , respectively, $\mathrm{e}\mathrm{q}\mathrm{s}.(17)$ and
(18) with the inclusion of the above linear damping is rewritten as

$\frac{\mathrm{d}A}{\mathrm{d}T}$ $=$ $-A+ \mathrm{i}\delta A-\mathrm{i}\beta A^{*}-\mathrm{i}\frac{123}{16}B(A^{*})^{2}-\mathrm{i}\frac{145}{112}|A|^{2}A+\mathrm{i}\frac{27}{100}|B|^{2}A$, (19)

$\frac{\mathrm{d}B}{\mathrm{d}T}$ $=$ $- \sqrt{3}B+\mathrm{i}(3\delta-6\gamma)B-\mathrm{i}\frac{.369}{16}A^{3}+\mathrm{i}\frac{12801}{1040}|B|^{2}B+\mathrm{i}\frac{243}{100}|A|^{2}B$ . (20)

3 Solutions of Amplitude Equation
In this section, the results on the solutions of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20) for several values
of $(\delta, \gamma, \beta)$ are shown. Furthermore, the solutions are examined in detail for the
special cases of exact internal resonance $(\gamma=0)$ , exact external resonance $(\delta=0)$

and of $\gamma=\pm\delta$ . As in the case of a single-mode Faraday wave,[5] the null solution
of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20) is linearly stable when $\beta\leq\beta_{\mathrm{c}}$ and unstable when $\beta>\beta_{\mathrm{c}}$ ,
where $\beta_{\mathrm{c}}=(1+\delta^{2})^{1/2}$ . Moreover, only the mixed-wave solutions can be expected
since eqs.(19) and (20) has no pure-wave solution.

3.1 Stationary mixed-wave solutions
If we assume that $\mathrm{d}A/\mathrm{d}T=0$ and $\mathrm{d}B/\mathrm{d}T=0$ in $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20), we obtain the
relation

$A^{2}=- \frac{\mathrm{i}}{\beta}(\frac{\sqrt{3}}{3}|B|^{2}+|A|^{2})$

$+ \frac{1}{\beta}[\delta(|A|^{2}-|B|^{2})+2\gamma|B|^{2}-\frac{145}{112}|A|^{4}-\frac{4267}{1040}|B|^{4}-\frac{81}{50}|A|^{2}|B|^{2}],(21)$
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from this equation. Taking the square of the modulus of $\mathrm{e}\mathrm{q}.(21)$ , we find that the
stationary mixed-wave solution exists only for $\beta>1$ . Furthermore, the sign of ${\rm Re} A$

of this solution is always opposite to that of ${\rm Im} A$ because ${\rm Im}(A^{2})$ is negative from
$\mathrm{e}\mathrm{q}.(21)$ . This characteristic is the same as that of the solution for a single-mode
Faraday wave. Stationary mixed-wave solutions appear through the pitchfork bi-
furcation from the null solution at $\beta=\beta_{\mathrm{c}}$ for all $(\delta, \gamma)$ . As shown in Appendix $\mathrm{C}$ ,
tlts bifurcation is supercritical (subcritical) when $\delta<0(\delta>0)$ . This sign of $\delta$ for
each bifurcation is opposite to that obtained by $\mathrm{M}\mathrm{i}\mathrm{l}\mathrm{e}\mathrm{s}[5]$ for a single-mode Faraday
wave. This is because the sign of the coefficient of nonlinear term $|A|^{2}A$ of $\mathrm{e}\mathrm{q}.(19)$

for $\mathrm{C}\mathrm{a}_{\mathrm{P}^{\mathrm{i}\mathrm{U}\mathrm{a}\mathrm{I}}\mathrm{y}}$-gravity waves with $\Gamma_{1}\approx 1/3$ is different from that for gravity waves
examined by him. The stationary mixed-wave solutions of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20) were
also examined numerically using the Brent method. Figure 1 shows the regions of
the existence of the mixed-wave solutions and their stability on the $(\delta, \beta)$ or $(\gamma, \beta)$

plane. Within the region of $\beta>\beta_{c}$ or regions $H_{1}$ and $H_{2}$ in this figure, there is at
least one stable stationary mixed-wave solution except for region $U$ shown in Figs.
1 (a), 1 (b) and 1 (c). In regions $H_{1},$ $H_{2}$ and $H_{3}$ , we find the hysteresis phenomena of
this solution, as will be shown in detail in the following part of this subsection. No
stable stationary solution exists in region $U$ , at the boundary of which the stable
stationary solutions become unstable by the Hopf bifurcations. Examples of the
dependence of the stationary mixed-wave solutions on $\beta$ are given in Fig. 2 for a
few pairs of $(\delta, \gamma)$ . Although the mixed-wave solutions are obtained as a pair with
different signs, only the solutions with ${\rm Re} A>0$ are shown in this figure.

The solutions for $\gamma=0$ (shown in Fig. $1(\mathrm{a})$ ) and for $\gamma=-\delta$ (shown in Fig. 1 $(\mathrm{c})$ )

have similar characteristics. In region $H_{1}$ of these figures, the solution subcritically
bifurcating from the null solution at $\beta=\beta_{\mathrm{c}}$ gives the hysteresis behavior. As
illustrated in Fig. $2(\mathrm{a})$ , the branch of $\mathrm{t}l\dot{\mathrm{u}}\mathrm{s}$ solution is folded once at the lower
boundary of region $H_{1}$ , and its stability changes at the point of the saddle-node
bifurcation. Although region $H_{1}$ exists for all positive $\delta$ , its width in the $\beta$ direction
decreases to zero as $\delta$ tends to zero. If-0.994 $\leq\delta<0$ for $\gamma=0$ or if-0.580 $\leq$

$\delta<0$ for $\gamma=-\delta$ , no hysteresis region of the stationary solutions is found. This is
because the branch of the solution supercritically bifurcating from the null solution
at $\beta=\beta_{\mathrm{c}}$ extends to large $\beta$ monotonically, as illustrated in Fig. $2(\mathrm{b})$ . When
$\delta<$ -0.994 in Fig. $1(\mathrm{a})$ or $\delta<$ -0.580 in Fig. $1(\mathrm{c})$ , we find another hysteresis
region $H_{2}$ . As illustrated in Fig. $2(\mathrm{c})$ , the branch of the solution supercritically
bifurcating at $\beta=\beta_{c}$ is folded twice before it finally reaches sufficiently large $\beta$ .
The $\beta’ \mathrm{s}$ of the first and second saddle-node bifurcations of the solutions on this

brasch give the upper and lower bolmdaries of region $H_{2}$ , where the stability of
the solution changes. This upper boundary is just above $\beta=\beta_{c}$ both for $\gamma=0$

and for $\gamma=-\delta$ .
If exact external resonance $(\delta=0)$ is assumed, no hysteresis region is observed,

as shown in Fig. 1 (b). The branch of the solution bifurcating from the null solution
at $\beta=1$ extends to large $\beta$ monotonically, similarly to the solution shown in Fig.
$2(\mathrm{b})$ . Next, for $\gamma=\delta$ , we find hysteresis region $H_{3}$ in addition to region $H_{1}$ , as
shown in Fig. 1 (d). Although the width of region $H_{1}$ is too narrow to be recognized
in $\mathrm{t}l\dot{\mathrm{u}}\mathrm{s}$ figure, this region exists just below the curve of $\beta=\beta_{\mathrm{c}}$ for all positive $\delta$ .
As illustrated in Fig. $2(\mathrm{d})$ , the branch of the solution subcritically bifurcating at
$\beta=\beta_{c}$ is folded three times, which results in the change of its stability at each
point of the saddle-node bifurcations. The $\beta’ \mathrm{s}$ of the second and third foldings
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(a) (b)

(c) (d)

Figure 1: Regions of the existence of the stationary mixed-wave solutions on the $(\delta, \beta)$

or $(\gamma, \beta)$ plane. (a) $\gamma=0,$ $(\mathrm{b})\delta=0,$ $(\mathrm{c})\gamma=-\delta,$ $(\mathrm{d})\gamma=\delta$ . Regions denoted by $H_{1}$ ,
$H_{2}$ and $H_{3}$ are hysteresis regions. There is no stable stationary solution in region $U$ .

69



(a) (b)

(C) (d)

Figure 2: Examples of the dependence of the stationary mixed-wave solutions on $\beta$ . $(\mathrm{a})$

$(\mathit{5},\gamma)=(1.4,0),$ $(\mathrm{b})(\mathit{5}, \gamma)=(-0.5,0),$ $(\mathrm{c})(\delta, \gamma)=(-1.4,0)$ , and (d) $(\delta,\gamma)=(1.4,1.4)$ .
Only the values of ${\rm Re} A$ are shown. The magnification of ${\rm Re} A$ around $\beta=\beta_{c}$ is also in
(c). Thick and thin curves denote stable and unstable solutions, respectively.
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$\delta^{\sim}$

Figure 3: Regions $\tilde{H}_{i}(i=1,2,3)$ on the $(\delta,\gamma)$ plane wit,hin which hysteresis regions $H_{i}$

are found.

(4’

Figure 4: Examples of the saddle-node bifurcation points on the $(\delta,\beta)$ or $(\gamma,\beta)$ plane.
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correspond to the upper and lower boundaries of region $H_{3}$ .
Figure 3 shows regions $\tilde{H}_{1},\tilde{H}_{2}$ and $\tilde{H}_{3}$ on the $(\delta, \gamma)$ plane within which hystere-

sis regions $H_{1},$ $H_{2}$ and $H_{3}$ are folmd, respectively. Since the bifurcation at $\beta=\beta_{c}$

is subcritical when $\delta>0$ , region $\tilde{H}_{1}$ covers all the half plane $\delta>0$ . Moreover,
hysteresis region $H_{3}$ also exists in the region denoted by $\tilde{H}_{1}+\tilde{H}_{3}$ . On the other
hand, if $\delta\leq 0$ , no hysteresis phenomenon is observed in the white region of this
figure, and only hysteresis region $H_{2}$ exists in region $\tilde{H}_{2}$ . As $|\delta|$ decreases, region
$H_{2}$ always terminates as a cusp, as shown in Figs. $1(\mathrm{a})$ and $1(\mathrm{c})$ , and this cusp
point corresponds to the $\mathrm{b}\mathrm{o}\iota \mathrm{m}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ of region $\tilde{H}_{2}$ in Fig. 3.

Since the bifurcations in the region of $\delta>0$ in Fig. 3 can be a little complicated,
these bifurcations are explained by showing in Fig. 4 the bifurcation points on the
$(\delta, \beta)$ or $(\gamma, \beta)$ plane for a few fixed values of $\gamma$ or $\delta$ . If $\gamma$ is fixed to a value
sufficiently smaller than the lower end of region $\tilde{H}_{1}+\tilde{H}_{3}$ of Fig. 3, the width of
region $H_{1}$ in the $\beta$ direction increases rapidly with increasing $\delta$ , as illustrated for
$\gamma=-0.5$ in Fig. $4(\mathrm{a})$ . However, if we choose a larger fixed value of $\gamma$ above this
lower end, this width is small up to a relatively large value of $\delta$ . An example is
shown in Fig. $4(\mathrm{a})$ for $\gamma=0.6$ . For this $\gamma$ , if $0<\delta<$ 1.439, since the curve of
$\beta=\beta_{\mathrm{c}}$ is just above a thick solid curve expressing the saddle-node bifurcation point
corresponding to the lower bolmdary of region $H_{1}$ , the width of region $H_{1}$ is quite
small. However, at $\delta=$ 1.095, a pair of the saddle-node bifurcations expressed
by thin solid and thick dashed curves appear on the branch of the solutions, on
the opposite side to the bifurcation point of $\beta=\beta_{c}$ from the existing saddle-
node bifurcation point. This appearance yields region $H_{3}$ . With increasing $\delta$ , the
saddle-node bifurcation points denoted by the thick dashed and thick solid curves
coalesce and disappear at $\delta=1.439$ . Therefore, at this $\delta$ , region $H_{3}$ vanishes and
region $H_{1}$ expands abruptly due to the change of its lower boundary from the thick
solid curve to the thin solid curve

Next, if $\delta$ is fixed to a positive value which is on the left of the cusp point at the
lower boundary of region $\tilde{H}_{1}+\tilde{H}_{3}$ of Fig. 3 and inside it, as $\gamma$ increases, the width
of region $H_{1}$ in the $\beta$ direction first decreases and then keeps small for large $\gamma$ , as
illustrated for $\delta=1.0$ in Fig. $4(\mathrm{b})$ . Moreover, a pair of the saddle-node bifurcations
appear at $\gamma=0.686$ . These bifurcations generate hysteresis region $H_{3}$ sunounded
by thick dashed and thin solid curves for $\gamma>0.686$ . However, for a larger fixed $\delta$

which is within region $\tilde{H}_{1}+\tilde{H}_{3}$ for sufficiently large $\gamma$ , the abrupt change in the
width of region $H_{1}$ is observed. An example is shown for $\delta=1.4$ in Fig. $4(\mathrm{c})$ ,
in which a thick solid curve gives the lower boundary of region $H_{1}$ if $\gamma<$ 0.574.
However, at $\gamma=$ 0.574, a pair of the saddle-node bifurcations denoted by thick
dashed and $\mathrm{t}l\dot{\mathrm{u}}\mathrm{n}$ solid curves appear on the branch of the solution, between the
existing saddle-node bifurcation point and the bifurcation point of $\beta=\beta_{c}$ . This
causes the abrupt decrease in the width of region $H_{1}$ because the lower boundary of
this region changes to the thin solid curve at this $\gamma$ . ffirthermore, the appearance
of these bifurcations yields region $H_{3}$ delimited by the thick dashed and thick
solid curves. For $\gamma>$ 0.574, as $\gamma$ increases, region $H_{3}$ shifts to larger $\beta$ and its
width increases, whereas the width of region $H_{1}$ first decreases and then increases
gradually. A little different behavior of bifurcation points is observed for $\delta=1.13$ .
That is, as shown in Fig. $4(\mathrm{d})$ , with increasing $\gamma$ , after the appearance of the
saddle-node bifurcation points expressed by thick dashed and thin solid curves at
$\gamma=0.377$ , the saddle-node bifurcation points denoted by thick dashed and thick
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solid curves coalesce and vanish at $\gamma=0.423$ , which results in the disappearance
of region $H_{3}$ . However, a pair of the saddle-node bifurcations appear again at $\gamma=$

0.544, and region $H_{3}$ bounded by thick dashed and $\mathrm{t}l\dot{\mathrm{u}}\mathrm{c}\mathrm{k}$ solid curves is observed
again for $\gamma>$ 0.544. This non-existence of region $H_{3}$ for 0.423 $<\gamma<$ 0.544
corresponds to the concave part of region $\tilde{H}_{1}+\tilde{H}_{3}$ near its lower end in Fig. 3.

In Faraday waves without the third-harmonic resonance, that is, in $\mathrm{e}\mathrm{q}.(19)$

without the terms $B(A^{*})^{2}$ and $|B|^{2}A$ , we obtain the hysteresis region of the sta-
tionary solutions surrounded by $\beta=\beta_{\mathrm{c}}$ and $\beta=1$ for $\delta>0$ . Although hysteresis
region $H_{1}$ in the present study corresponds to this hysteresis region, region $H_{1}$

is smaller than this region irrespective of the value of $\gamma$ , because the stationary
mixed-wave solutions are possible only for $\beta>1$ , as was shown in the beginning
of this subsection. Furthermore, no other hysteresis region is found for this case.
Therefore, one of the characteristics of Faraday waves with the third harmonic
resonance in comparison with a single-mode Faraday wave is the existence of two
additional hysteresis regions $H_{2}$ and $H_{3}$ for $(\delta, \gamma)$ within regions $\tilde{H}_{2}$ and $\tilde{H}_{3}$ .

3.2 Non-stationary mixed-wave solutions
In this subsection, the results on the non-stationary mixed-wave solutions of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$

and (20) are given. We numerically computed the solutions of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20)
using the Adams method. After discarding initial transients, the solutions are
expressed by the set composed of the values of ${\rm Re} B$ when the orbit of the solu-
tion intersects a hyperplane ${\rm Re} A=\langle{\rm Re} A\rangle$ in the decreasing direction of ${\rm Re} A$ . Here
$\langle{\rm Re} A\rangle$ is the average value of ${\rm Re} A$ on each attractor. This set is composed of only
a few points for limit cycles, whereas it is composed of many points for chaotic
attractors. The variations of the solutions with slow increase in $\beta$ are shown in Fig.
5 for a values of $(\delta, \gamma)=(-1.2,0.7)$ . We can observe the appearance of chaotic
solutions through a series of the period-doubling bifurcations and their return to
the simple periodic solutions through a series of the reversed period-doubling bi-
furcations in Fig. 5.

4 Conclusions
Third-harmonic resonance of capillary-gravity waves in two-dimensional Faraday
waves due to the parametric excitation of the lower-frequency mode is examined
for infinite depth. We derive amplitude equations (19) and (20) which includes
both a small detuning from this internal resonance and that from the external
resonance with the vertical oscillation of a container and also a linear damping,
using the method of reductive perturbation.

We obtain a few kinds of mixed-wave solutions of this equation: periodic and
chaotic solutions as well as stationary solutions. Moreover, we find two more
hysteresis regions $H_{2}$ and $H_{3}$ of stationary solutions, in addition to hysteresis
region $H_{1}$ observed also for a single-mode Faraday wave. Region $H_{1}$ is smaller
than that obtained for a single-mode Faraday wave, irrespective of the value of the
$\det_{1}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ from the exact internal resonance.
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Figure 5: Variations of non-stationary solutions of $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20) with slow increase in
$\beta$ for $(\delta,\gamma)=(-1.2,0.7)$ The increment of $\beta$ is 0.001, and the data for $1500\leq T\leq 2000$

are used in drawing this figure. These solutions are expressed by showing the values of
${\rm Re} B$ when the conditions ${\rm Re} A=\langle{\rm Re} A\rangle$ and ${\rm Re}(\mathrm{d}A/\mathrm{d}T)<0$ are satisfied. Here $\langle{\rm Re} A\rangle$ is
the average value of ${\rm Re} A$ on each periodic orbit. Thick solid curve denotes the values of
${\rm Re} B$ of the stable stationary solutions. $Q$ is the Hopf bifurcation point of the stationary
solution. This bifurcation occurs at $\beta=1.872$ .
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A Equations in $O(\epsilon^{2})$ and $\mathit{0}(\epsilon^{3})$

In $O(\epsilon^{2})$ , we obtain

$\partial_{t}\phi_{2}-\frac{1}{3}\partial_{x}^{2}\eta_{2}+\eta_{2}+\eta_{1}\partial_{z}\partial_{t}\phi_{1}+\frac{1}{2}(\nabla\phi_{1})^{2}=0$ at $z=0$ , (22)

$\partial_{t}\eta_{2}-\partial_{z}\phi_{2}+\partial_{x}\phi_{1}\partial_{x}\eta_{1}-\eta_{1}\partial_{z}^{2}\phi_{1}=0$ at $z=0$ . (23)

Furthermore, the following equations are derived in $O(\epsilon^{3})$ :

$\partial_{t}\phi_{3}+\partial_{\tau}\phi_{1}-\frac{1}{3}\partial_{x}^{2}\eta_{3}-\gamma_{1}\partial_{x}^{2}\eta_{1}+\eta_{3}+F\cos(2\Omega t)\eta_{1}$

$+ \frac{1}{2}\partial_{x}^{2}\eta_{1}(\partial_{x}\eta_{1})^{2}+\eta_{2}\partial_{z}\partial_{t}\phi_{1}+\eta_{1}\partial_{z}\partial_{t}\phi_{2}$

$+ \frac{1}{2}\eta_{1}^{2}\partial_{z}^{2}\partial_{t}\phi_{1}+\nabla\phi_{2}\cdot\nabla\phi_{1}+\frac{1}{2}\eta_{1}\partial_{z}(\nabla\phi_{1})^{2}=0$ at $z=0$ , (24)

..
$\partial_{t}\eta_{3}+\partial_{\tau}\eta_{1}-\partial_{z}\phi_{3}-\eta_{2}\partial_{z}^{2}\phi_{1}-\eta_{1}\partial_{z}^{2}\phi_{2}$

$- \frac{1}{2}\eta_{1}^{2}\partial_{z}^{3}\phi_{1}+\partial_{x}\phi_{1}\partial_{x}\eta_{2}+\partial_{x}\phi_{2}\partial_{x}\eta_{1}+\eta_{1}\partial_{x}\eta_{1}\partial_{z}\partial_{x}\phi_{1}=0$ at $z=0$ . (25)
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$\mathrm{B}$ Expressions of $\eta_{2}$ and $\phi_{2}$

$\eta_{2}=2a^{2}\exp(-2\mathrm{i}\omega t)\cos(2x)-\frac{6}{5}b^{2}\exp(-6\mathrm{i}\omega t)\cos(6x)$

$-4ab \exp(-4\mathrm{i}\omega t)\cos(4x)-\frac{8}{25}ab\exp(-4\mathrm{i}\omega t)\cos(2x)$

$+8a^{*}b \exp(-2\mathrm{i}\omega t)\cos(2x)+\frac{4}{5}a^{*}b\exp(-2\mathrm{i}\omega t)\cos(4x)$

$+ \frac{2}{7}|a|^{2}\cos(2x)+\frac{6}{13}|b|^{2}\cos(6x)+\mathrm{c}.\mathrm{c}$ . (26)

$\phi_{2}=-\frac{3}{2}\mathrm{i}\omega a^{2}\exp(2z)\exp(-2\mathrm{i}\omega t)\cos(2x)+\mathrm{i}\frac{27}{10}\omega b^{2}\exp(6z)\exp(-6\mathrm{i}\omega t)\cos(6x)$

$+6 \mathrm{i}\omega ab\exp(4z)\exp(-4\mathrm{i}\omega t)\cos(4x)+\frac{57}{25}\mathrm{i}\omega ab\exp(2z)\exp(-4\mathrm{i}\omega t)\cos(2x)$

$-6 \mathrm{i}\omega a^{*}b\exp(2z)\exp(-2\mathrm{i}\omega t)\cos(2x)+\frac{3}{5}\mathrm{i}\omega a^{*}b\exp(4z)\exp(-2\mathrm{i}\omega t)\cos(4x)$

$+ \frac{1}{2}\mathrm{i}\omega a^{2}\exp(-2\mathrm{i}\omega t)+\frac{3}{2}\mathrm{i}\omega b^{2}\exp(-6\mathrm{i}\omega t)+\mathrm{c}.\mathrm{c}$ . (27)

$\mathrm{C}$ Bifurcation at $\beta=\beta_{c}$

From $\mathrm{e}\mathrm{q}\mathrm{s}.(19)$ and (20), we find that for sufficiently small stationary solutions
bifurcating from $(A, B)=(\mathrm{O}, 0)$ at $\beta=\beta_{c},$ $|B|$ should be $O(|A|^{3})$ and the following
relations should be satisfied:

$B=c_{1} \frac{3\delta-6\gamma-\mathrm{i}\sqrt{3}}{1+3(\delta-2\gamma)^{2}}A^{3}+O(|A|^{5})$ , (28)

$-A+\mathrm{i}\delta A-\mathrm{i}\beta A^{*}-\mathrm{i}c_{2}|A|^{2}A-(p_{1}+\mathrm{i}p_{2})|A|^{4}A=O(|A|^{7})$ , (29)

where $c_{1}=$ 123/16 and $c_{2}=$ 145/112, $p_{1}=\sqrt{3}c_{1}^{2}/[1+3(\delta-2\gamma)^{2}](>0)$ and
$p_{2}=c_{1}^{2}(3\delta-6\gamma)/[1+3(\delta-2\gamma)^{2}]$ .

From $\mathrm{e}\mathrm{q}\mathrm{s}.(28)$ and (29), we obtain the following expansion of the non-zero
solutions with respect to $\beta-\beta_{c}$ :

$A$ $=$ $[ \frac{\beta_{c}}{c_{2}\delta}(\beta_{\mathrm{c}}-\beta)]^{1/2}\exp(\mathrm{i}\theta)+O(|\beta-\beta_{c}|^{3/2})$ for $\delta\neq 0$ , (30)

$A$ $=$ $[ \frac{2}{2p_{1}+c_{2}^{2}}(\beta-1)]^{1/4}\exp(\mathrm{i}\frac{\pi}{4})+O(|\beta-1|^{5/4})$ for $\delta=0$ , (31)

where $\exp(\mathrm{i}\theta)=[(\beta_{c}+\delta)/(2\beta_{c})]^{1/2}+\mathrm{i}[(\beta_{\mathrm{c}}-\delta)/(2\beta_{c})]^{1/2}$ . In $\mathrm{e}\mathrm{q}\mathrm{s}.(30)$ and (31),
$\delta(\beta_{c}-\beta)$ and $\beta-1$ must be positive. Therefore, the solution (30) exists for $\beta>\beta_{c}$

$(\beta<\beta_{c})$ when $\delta<0(\delta>0)$ . Since the bifurcation at $\beta=\beta_{\mathrm{c}}$ is codimension 1
and the nffi solution is stable (lmstable) when $\beta<\beta_{\mathrm{c}}(\beta>\beta_{c})$ , this bifurcation is
supercritical (subcritical) when $\delta<0(\delta>0)$ .
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