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Abstract

A theory of spiral structure formation has been formulated to show that spiral

structures are rather basic entities in magnetized rotating plasmas subjected

to various kind of instabilities such as collisional drift wave instability, flute

mode instability due to centrifugal force, and Kelvin-Hehnhotz instability.

The characteristic features of spiral structures observed experimentally in

ECR plasmas are reproduced by our theory.
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Self-organized structures in magnetized plasmas have been a topic since they may give

a deep insight into self-organization in complex systems as well as transport phenomena

in plasmas. Coherent structures have been recently observed in laboratories [1-6] and are

subjects of theoretical analysis for understanding underlying physics [7]. In both ECR

plasmas [4] and gun-produced plasmas [5], two-arms spirals are commonly observed, and in

particular the spiral structure observed in the ECR plasmas have interesting features: (1)

the stationary structure is observed in a certain range of the background pressure, (2) the

direction of the arm stretching is reversed when the magnetic field is reversed, and (3) the

arm winding is identified as an Archimedes spiral, that is the curve spiraling into the origin

which in polar coordinates is given by the equation $r\propto\theta$ .

In the ECR plasmas, the ratio of the ion-neutral collision frequency to the ion cyclotron

frequency is small as $\iota/_{i}/\Omega_{i}\sim 0.05$ , and the azimuthal rotation due to $\mathrm{E}\cross \mathrm{B}$ drift, which

is $0.2\sim 0.4C_{s}$ ( $C_{s}$ : ion acoustic velocity), dominates the radial drift due to collisions.

Furthermore, the ratio of the nonlinear term to the Lorenz force term $C_{s}/r_{d}\Omega_{i}$ is as small as

$\nu_{i}/\Omega_{i}$ , where $r_{d}$ is the plasma radius. Thus, we can deal with the problem of spiral formation

using the linear approximations.

In this letter, we show that low frequency perturbations ($\omega\ll\Omega_{e},$ $\Omega_{e}$ : electron cyclotron

frequency) in an azimuthally rotating plasma may develop into spiral structures, which, in

a particular case, are stationary. Instabilities such as the collisional drift wave instability,

centrifugal instability and Kelvin-Helmholz instability are taken into account, and the linear

eigen-value problem for the perturbed potential is numerically solved to show the existence

of spiral solutions.

The spiral structures in the gun-produced plasmas [5], in which $\nu_{i}$ is comparable with

$\Omega_{i}$ , and the ion azimuthal flow is supersonic, will be discussed separately since full nonlinear

treatment is required because of no smallness parameters.

Plasmas in a cylindrical vessel are inevitably driven to rotate with the $\mathrm{E}\cross \mathrm{B}$ drift due to

the ambipolar potential. Then the ions are subjected to centrifugal force and their rotation

frequency is affected by this effective gravitational force, while the electrons are driven by
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both the $\mathrm{E}\cross \mathrm{B}$ drift and the diamagnetic drift. The difference between the azimuthal

drift velocities of the ions and electrons induce charge separation which cannot be fully

neutralized by the electrons whose axial motions are dragged by the collisions with neutral

particles. Thus fluctuations are excited and azimuthal motions are organized in such a way

that the core part of the plasmas is rotating almost rigidly, while the outer part lags behind

the core part because the azimuthal drift velocities do not increase in proportion to the

radius, consequently producing a spiral structure.

Equations for ions and elec.trons in magnetized plasmas read

$\frac{\partial n_{\alpha}}{\partial t}+\nabla(n_{\alpha}\mathrm{v}_{\alpha})=0$ , (1)

$\frac{\partial \mathrm{v}_{\alpha}}{\partial t}+\mathrm{v}_{\alpha}\cdot\nabla \mathrm{v}_{\alpha}=\frac{e_{\alpha}}{m_{\alpha}}(-\nabla\phi+\frac{1}{c}\mathrm{v}_{\alpha}\cross \mathrm{B})$

$- \delta_{\alpha,e}\frac{1}{nm_{\alpha}}\nabla p_{\alpha}-\nu_{\alpha}\mathrm{v}_{\alpha}$. (2)

where $n_{\alpha},$ $\mathrm{v}_{\alpha}$ and $\nu_{\alpha}$ ( $\alpha=e$ or $i$ ) are the density, velocity and collision frequency with

neutral particles of electrons and ions, respectively, and $\phi$ is the plasma potential. Usually

the ion temperature is much less than the electron temperature in laboratory plasmas, we

neglect the ion pressure term in $\mathrm{E}\mathrm{q}.(2)$ , for simplicity ( $\delta_{\alpha,e}=1$ for $\alpha=e$ , and $0$ for $\alpha=i$ ).

In the following, physical quantities are divided into the stationary parts and fluctuating

parts:

$=+ \sum_{\ell}e^{i(l\theta-\omega t)}+c.c$.

For the ion drift, an effective gravitational drift due to the centrifugal force is taken into

account in the azimuthal direction, and is neglected in the radial direction since $\nu_{i}/\Omega_{i}<<1$ .

For the electron drift, the diamagnetic drift is dominated over the gravitational drift due to

the centrifugal force. The rotation frequencies of the ion and electron azimuthal drift now

read

$\omega_{0}^{i}\simeq\omega_{E}(1-\frac{\omega_{E}}{\Omega_{i}})$ , $\omega_{0}^{e}\simeq\omega_{E}+\omega_{*}$ , (3)
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where $\omega_{E}$ and $\omega_{*}$ are the frequencies associated with the $\mathrm{E}\cross \mathrm{B}$ drift and the diamagnetic

drift, respectively, defined by

$\omega_{E}=\frac{C_{s}^{2}}{\Omega_{i}}\frac{1}{r}\frac{d\phi_{0}}{dr}$ , $\omega_{*}=-\frac{v_{T}^{2}}{\Omega_{e}}\frac{1}{r}\frac{d\ln n_{0}}{dr}$ , (4)

where $C_{s}^{2}=T_{e}/M,$ $v_{T}^{2}=T_{e}/m,$ $\Omega_{i}=eB/Mc$ and $\Omega_{e}=eB/mc(M$ : ion mass, $m$ : electron

mass). The normalized potential $e\phi_{0}/T_{e}$ has been replaced by $\phi_{0}$ in $\mathrm{E}\mathrm{q}.(4)$ . The second

term in the expression for $\omega_{0}^{i}$ is a contribution from the centrifugal force.

The space potential produced by the ion radial transport is short-circuited by the electron

axial transport so that we have $\nabla(n_{0}^{i}\mathrm{v}_{0}^{i})=\nabla(n_{0}^{e}\mathrm{v}_{0}^{e})$ , which determines the profile of the

equilibrium density and potential. Since the solution of this equation is sensitively dependent

on the boundary conditions at the end of the field lines unless the plasma is so long that

parallel diffusion can be neglected altogether, it is unlikely to obtain a self-consistent solution

$n_{0}(r, z)$ and $\phi_{0}(r, z)$ to the problem of ambipolar diffusion across the magnetic field. Instead,

in the following we take a phenomenological approach to assume the density and potential

profiles compatible with those observed in the experiment.

The fluctuating parts of electron velocities given by Eqs.(1) and (2) are

$u_{l}^{e}= \frac{v_{T}^{2}}{\Sigma_{e}(\omega)}[-\frac{i\ell(\Omega_{e}-2\omega_{0}^{e})}{r}+\Gamma_{e}(\omega)\frac{\partial}{\partial r}](\phi_{\ell}-\frac{n_{l}^{e}}{n_{0}})$,

$v_{l}^{e}= \frac{v_{T}^{2}}{\Sigma_{e}(\omega)}[(\Omega_{e}-\omega_{0}^{e}-\frac{dv_{0}^{e}}{dr})\frac{\partial}{\partial r}+\frac{i\ell\Gamma_{e}(\omega)}{r}](\phi_{\ell}-\frac{n_{l}^{e}}{n_{0}})$,

$w_{\ell}^{e}= \frac{v_{T}^{2}}{\Gamma_{e}(\omega)}\frac{\partial}{\partial z}(\phi_{l}-\frac{n_{l}^{e}}{n_{0}})$,

where $u_{l}^{e},$ $v_{l}^{e},$ $w_{\ell}^{e}$ are the radial, azimuthal and axial component of $\mathrm{v}_{\ell}^{e}$ , respectively, and

$\Gamma_{e}(\omega)=\nu_{e}-i(\omega-\ell\omega_{0}^{e})$ ,

$\Sigma_{e}(\omega)=(\Omega_{e}-2\omega_{0}^{e})(\Omega_{e}-\omega_{0}^{e}-\frac{dv_{0}^{e}}{dr})+\Gamma_{e}(\omega)^{2}$ .

where $v_{0}^{e}$ is the zeroth order azimuthal drift velocity for electrons $(v_{0}^{e}=r\omega_{0}^{e})$ . The fluctuating

parts of ion velocities $u_{\ell}^{i},$ $v_{\ell}^{i},$ $w_{l}^{i}$ are also obtained in a similar calculations.
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Substituting the above velocities into the electron and ion continuity equations, invoking

charge neutrality $n_{\ell}^{e}=n_{\ell}^{i}=n_{\ell}$ , and assuming the axial dependence of the potential with

the normalizations $\xi=r/r_{d}$ and $\eta=z/r_{d}$ ( $r_{d}$ : plasma radius) as

$\phi_{l}(\xi, \eta)=\phi_{\ell}(\xi)e^{-(\kappa-ik)\eta}$ , (5)

we have

$\frac{d^{2}\phi_{\ell}}{d\xi^{2}}+[\frac{1}{\xi}+\frac{d\ln n_{0}}{d\xi}]\frac{d\phi_{l}}{d\xi}+[\beta(\xi)-\frac{l^{2}}{\xi^{2}}]\phi_{\ell}=0$, (6)

where the quantity $\beta(\xi)$ is given by

$\beta(\xi)=\frac{(\kappa-ik)^{2}\Omega_{e}\Omega_{i}}{\Gamma_{e}(\omega)\Gamma_{i}(\omega)}(1-\frac{\ell\omega}{\omega-\ell\omega_{E}}*)-\frac{i\ell}{\xi}\frac{1}{\Gamma_{i}(\omega)}[(\omega_{0}^{i}+\frac{1}{r_{d}}\frac{dv_{0}^{i}}{d\xi}+\frac{\ell\omega_{E}^{2}}{\omega-\ell\omega_{E}})\frac{d\ln n_{0}}{d\xi}+\frac{d\omega_{0}^{i}}{d\xi}+\frac{1}{r_{d}}\frac{d^{2}v_{0}^{i}}{d\xi^{2}}]$ .

(7)

In deriving $\mathrm{E}\mathrm{q}.(6)$ , we have neglected the terms of the order of or less than $O(\Omega_{i}/\Omega_{e})$ and

$O(\omega_{0}^{i}/\Omega_{i})$ , and used the following approximation derived from the electron or ion continuity

equation,

$\frac{n_{\ell}}{n_{0}}\simeq-\frac{v_{T}^{2}}{\Omega_{e}^{2}}\frac{\ell\Omega_{e}}{\omega-\ell(\omega_{0}^{e}-\omega_{*})}\frac{1}{r}\frac{d\ln n_{0}}{dr}\phi_{\ell}=\frac{p_{\omega}}{\omega-\ell\omega_{E}}*\phi_{\ell}$ . (8)

Equation (6) describes low frequency fluctuations excited by collisional drift wave instability

(the first term of $\beta(\xi)$ ) $[9]$ and flute mode instability such as the gravitational instability

due to centrifugal force acting on ions (the second term of $\beta(\xi)$ ) $[10]$ and Kelvin-Helmholz

instability (the third and fourth terms of $\beta(\xi)$ ) $[11]$ . The difference between $\mathrm{E}\mathrm{q}.(6)$ and

the equation derived by Rosenbulth and Simon [8] is lhat the collisional drag is taken into

account and the charge neutrality is assumed in $\mathrm{E}\mathrm{q}.(6)$ , while in Ref. [8] the collisional drag

is not included and the ion diamagnetic drift is taken into account instead of the electron

diamagnetic drift. Putting that $\phi_{\ell}(\xi)=\psi_{l}(\xi)/\sqrt{n_{0}(\xi)},$ $\mathrm{E}\mathrm{q}.(6)$ is transformed to

$\frac{d^{2}\psi_{l}}{d\xi^{2}}+\frac{1}{\xi}\frac{d\psi_{\ell}}{d\xi}+[A(\xi)-\frac{\ell^{2}}{\xi^{2}}]\psi_{l}=0$. (9)

The ratio of the contribution from the drift wave to that from the flute mode is estimated

to be $(\kappa^{2}+k^{2})(\Omega_{e}/\nu_{e})(r_{d}\Omega_{i}/C_{s})$ . The collisional drift wave instability is dominant when
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$\kappa^{2}+k^{2}>>(\nu_{e}/\Omega_{e})(C_{s}/r_{d}\Omega_{i})$ is satisfied. The quantity $(\nu_{e}/\Omega_{e})(C_{s}/r_{d}\Omega_{i})$ is of the order of

$10^{-4}$ to $10^{-5}$ for the ECR plasmas and thus we only consider the fluctuations due to the

collisional drift wave instability:

$A( \xi)\simeq\frac{(\kappa-ik)^{2}\Omega_{e}\Omega_{i}}{\Gamma_{e}(\omega)\Gamma_{i}(\omega)}\frac{(\omega-p\omega_{0}^{e})}{(\omega-p\omega_{E})}$ .

Now the characteristic features of the solutions for $\mathrm{E}\mathrm{q}.(9)$ can be examined as follows.

The solution is approximated in the case of weak $\xi$-dependence of the zeroth order quantities

by $\psi_{l}(\xi)\simeq J_{l}(\xi\sqrt{A})$ , where $J_{\ell}$ is the Bessel function of the first kind. The real part of the

argument of the Bessel function should be positive to give a convergent behavior while the

imaginary part is responsible for spiral structure, which comes from the imaginary parts of

$\omega,$ $\Gamma_{e}(\omega)$ and $\Gamma_{i}(\omega)$ . Multiplying $\psi_{l}^{*}$ to $\mathrm{E}\mathrm{q}.(9)$ and integrating the resultant equation from

the center to the edge of the plasma under the boundary condition $\psi_{l}(0)=\psi_{l}(1)=0$ , we

have

$\int_{0}^{1}\xi\{|\frac{d\psi_{\ell}}{d\xi}|^{2}+\frac{\ell^{2}}{\xi^{2}}|\psi_{\ell}|^{2}-A(\xi)|\psi_{\ell}|^{2}\}d\xi=0$ . (10)

From the imaginary part of this equation we have

$\int s[\propto A(\xi)]\xi|\psi_{l}(\xi)|^{2}d\xi=0$ , (11)

which corresponds to the Rayleigh condition. For a collisional drift mode, we have at the

marginal instability $(\gamma\sim 0)$ with $\kappa>>k$

$\propto s[A(\xi)]=\frac{\nu_{e}\kappa^{2}\Omega_{e}\Omega_{i}(\omega_{r}-\ell\omega_{0}^{e})(\omega_{r}-\ell\omega_{0}^{i})(\omega_{r}-\ell\omega_{E})}{|\Gamma_{e}(\omega)|^{2}|\Gamma_{i}(\omega)|^{2}[(\omega_{r}-\ell\omega_{E})^{2}+\gamma^{2}]}$ ,

from which the Rayleigh condition holds even when $\omega_{r}=0$ , indicating the formation of

stationary spiral structures. The winding direction of spiral arms is reversed when the

magnetic fields is changed in sign since the imaginary part of $A(\xi)$ is proportional to odd

power of the magnetic field for $\omega_{r}=0$ . Certainly rotating spirals exist as well.

Here we solve $\mathrm{E}\mathrm{q}.(6)$ numerically with the boundary condition $\phi_{\ell}(0)=\phi_{l}(1)=0$ . Since,

according to the experimental observations, the profile of $\mathrm{E}\cross \mathrm{B}$ drift frequency $\omega_{E}$ has
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one zero between $\xi=0$ and $\xi=1$ , we have used the $\omega_{E}$ profile as shown in Fig.1 in the

calculations. Furthermore, the density profile $n_{0}(r)$ has been assumed to be Gaussian, from

which the diamagnetic drift frequency $\omega_{*}$ is depicted in the same figure. We have both

the stationary $(\omega_{r}=0)$ and rotating $(\omega_{r}\neq 0)$ spiral solutions for a given profile of the

zeroth order quantities $n_{0}(r)$ and $\omega_{E}(r)$ . The numerical results for the stationary solution

$(\ell=2)$ are shown in Fig.2, where Fig. $2(\mathrm{a})$ is the radial potential profile, and Fig. $2(\mathrm{b})$

the density perturbation contour calculated by $\mathrm{E}\mathrm{q}.(8)$ . The spiral structure is identified

as an Archimedes spiral, which is seen from the eikonal approximation for the solution of

$\mathrm{E}\mathrm{q}.(6)$ ; in the case of weak $\xi$ -dependence of $\beta(\xi),$ $\phi_{\ell}(\xi)\exp[i\ell\theta]\sim\exp[i\int\Re[\sqrt{\beta}]d\xi+i\ell\theta]\sim$

$\exp[i\Re[\sqrt{\beta}]\xi+i\ell\theta]$ and the spiral curves are given by $\xi\propto\theta$ . The density contour structure

is similar to the observed spiral.

The vector field plot of the ion velocity $\{ut, v_{l}^{i}\}$ associated with this spiral structure is

depicted in Fig.3. In the figure, each arrow is colored by red for positive radial velocity $u_{\ell}^{i}>0$

and by green for negative radial velocity $u_{l}^{i}<0$ . The flow pattern exhibits the similar spiral

structure, which well explained by the $\mathrm{E}\cross \mathrm{B}$ drift due to the perturbed potential $\phi_{\ell}$ . It

should be noted that the spiral structure induces both the outward-going (counterclockwise)

flow and the inward-going (clockwise) flow, exhibiting a material circulation between the core

and peripheral regions.

The imaginary part of the eigenvalue $\gamma$ decreases with the azimuthal mode number $p$ ,

which corresponds to the fact that the observed stationary spirals are always with two arms.

The mass ratio of ion and electron is taken to be 80000 in the above calculations since

the experiments were curried out in an argon plasma. The spiral solutions are independent

on the mass ratio and also obtained for the hydrogen case $(M/m=2000)$ .

Even when we neglect the contributions from the centrifugal and the Kelvin-Helmholz

instabilities in $\mathrm{E}\mathrm{q}.(6)$ , there is no change in the pattern of the spiral. Thus, the spiral

structure formation for this choice of parameters is attributable to the collisional drift wave

instability.

In the numerical calculations, we have used the special profile for the $n_{0}(r)$ and $\omega_{E}(r)$
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since we need to compare the numerically obtained spirals with those observed in the exper-

iment [4]. However, it has been confirmed that the spiral solutions of $\mathrm{E}\mathrm{q}.(6)$ are insensitive

to the profiles of these quantities.

For the different parameters $(\Re[\omega]=0, \propto s[\omega]=0.27, \kappa= 0.115, \mathrm{k}= 0.0259)$, a gran-

ulated density structure is obtained, which is regarded as a formation of vortex crystal.

Although the vortex crystallization has been reported in pure electron plasmas [2], this type

of structures may be general entities excited in magnetized plasmas.

It should be noted that we used the $e^{-(\kappa-ik)\eta}$ as an axial mode function to include the

axial variations observed in the experiment. When we set $\kappa=0$ , we have also obtained

spiral solutions as shown in Fig.2. Thus, the finiteness of $\kappa$ does not affect the spiral pattern

formation. Strictly, the axial profile is determined in the higher order equations in terms

of smallness parameter associated with the fluctuation quantities. Nonlinear calculations

show that the axial profile is generated by the balance between dispersion, diffusion and

nonlinearlity, and is written by the Gintzburg-Landau equation, which admits localized

solutions [12]. Since the mechanism of axial structure formation is different from that of

radial pattern in the present case, the nonlinear results are omitted here, and will be reported

elsewhere.

Formation of spiral structures is a rather general characteristic of magnetized rotating

plasmas since the energy stored in the plasma inhomogeneity such as density and velocity

shear is released to give instabilities, which cause the phase difference between the real and

imaginary parts of eigen-functions, driving a spiral structure. The instabilities could be

the collisional drift wave instability, centrifugal instability, Kelvin-Helmholz instability, and

inhomogeneous energy-density driven instability (IEED) $[6,13]$ . In the present case, in which

$(\kappa^{2}+k^{2})\gg(\Omega_{e}/\nu_{e})(r_{d}\Omega_{i}/C_{s})$ is satisfied, the drift wave instability is dominant, which is

destabilized by collisions. Thus, the collision play a key role on the formation of drift wave

spiral.

Under the special condition that $\omega_{E}(\xi)$ becomes zero somewhere between $\xi=0$ and $\xi=1$ ,

the characteristic of the stationary spiral structure becomes similar to those observed in the
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experiment. For a wide variety of density and potential profiles, rotating spiral structures

are normally excited.

We have obtained the linear eigen-functions to show the spiral structure formations in

magnetized rotating plasmas. We are planning to develop our theory to understand the

spiral structures observed in a gun-produced plasma [5]. It is worth noting that our study

may contribute for understanding the mechanism of spiral galaxy formation.
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FIGURES
FIG. 1. The radial profiles of the normalized $\mathrm{E}\cross \mathrm{B}$ drift frequency $\omega_{E}/\Omega_{i}$ and the normalized

diamagnetic drift frequency $\omega_{*}/\Omega_{i}$ .

FIG. 2. The numerical results for a stationary spiral solution ($M/m=$ 80000, $\kappa=$ 0.0675,

k $=$ 0.0225, $\gamma/\Omega=0.024$). (a): the radial profile of the perturbed potential $\phi_{\ell}(\xi)$ , in which the

solid line is the real part, and the dotted line the imaginary part. (b): the density perturbation

contour $\Re[(n_{\ell}/n_{0})\exp(i\ell\theta)]$ .

FIG. 3. The vector field plot of ion velocity associated with the spiral structure corresponding

to Fig.2 ( $u_{\ell}^{i}>0$ : red; $u_{\ell}^{i}<0$ : green).
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