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Abstract. In this survey article, we shall present a general framework and ap-
plications of our recent results among reproducing kernels, linear transforms and
analytic extension formulas.

1. Mystery of analytic extension
The most fundamental function $e^{x}$ is extensible analytically onto the whole complex
$z=x+iy$ plane and we have the mysteriously beautiful identity

$e^{\pi i}=-1$ , (1.1)
which states a relation among the basic numbers $-1,$ $\pi,$ $e$ , and $i$ . Note that $0$ and
1 may be arbitrarily fixed as two points on the real line and, $\pi$ and $e$ are irrational
numbers. The author stated in [39] that the best result in mathematics is the
Leonhard Euler formula (1.1) based on the idea that :

Mathematics is relations and the research in mathematics is to look for some
relations. Good relations that we call theorems will mean that the relations are
fundamental in mathematics, are beautiful and give good impacts to human beings.

In the Riemann $\zeta$-function

$\zeta(z)=n1\sum_{=}\frac{1}{n^{z}}\infty$ ,

we have, by its analytic extension

$\zeta(-1)$ $=$ $- \frac{1}{12}$ (1.2)

$( = ?! 1+2+3+\cdots )$ .

In general, an analytic function is determined locally and we have the idea of
the Riemann surface as its natural existence domain. An analytic function looks
like having a life.
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2. Reproducing kernel Hilbert spaces and deci-
sive representation formulas

Since an analytic function is determined locally, we are intuitively interested in
its analytic extensibility and representations. For these fundamental problems we
firstly would like to refer that the theory of reproducing kernels will give a decisive
method in some sense and in some general situation.

We consider any positive matrix $K(p, q)$ on $E$ ; that is, for an abstract set $E$

and for a complex-valued function $K(p, q)$ on $E\cross E$ , it satisfies that for any finite
points $\{p_{j}\}$ of $E$ and for any complex numbers $\{C_{j}\}$ ,

$\sum_{j}\sum_{j’}o_{j}\overline{c_{j’}}K(pj’,pj)\geqq 0$
.

Then, by the fundamental theorem by Moore-Aronszajn, we have:
Proposition 2.1. For any positive matrix $K(p, q)$ on $E$ , there enists a uniquely de-
termined functional Hilbert space $H_{K}$ comprising functions $\{f\}$ on $E$ and admitting
the reproducing kernel $K(p, q)$ (RKHS $H_{K}$ ) satisfying and characterized by

$K(\cdot, q)\in H_{K}$ for any $q\in E$ (2.1)

and, for any $q\in E$ and for any $f\in H_{K}$

$f(q)=(f(\cdot), K(\cdot, q))H_{K}$ . (2.2)

For some general properties for reproducing kernel Hilbert spaces and for vari-
ous constructions of the RKHS $H_{K}$ from a positive matrix $K(p, q)$ , see the recent
$\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{k}[38]$ and its Chapter 2, Section 5, respectively.

We shall assume that $H_{K}$ is separable. Then, the functions $\{K(\cdot, q);q\in E\}$

generate $H_{K}$ and there exists a countable set $S$ of $E$ such that $\{K(\cdot, qj);qj\in S\}$

is a family of linearly independent functions forming a basis for $H_{K}$ . We set $S_{n}=$

$\{q_{1}, q_{2}, \cdots, q_{n}\}\subset S$ and $||\Gamma_{jj^{\prime||}}n1\leqq j,j^{;}\leqq n$ is the inverse of $||K(q_{j}, q_{j’})||_{1\leqq j,j\leqq n}’$ . Then,
we obtain
Proposition 2.2 ([20] and see Chapter 2, Section 5 in [38]). For any $f\in H_{K}$ ,
the sequence of functions $f_{n}$ defined by

$f_{n}(p)= \sum_{j,j=1}^{n},f(q_{j})\Gamma_{j}j;nK(p,$ $qj^{\prime)}$ (2.3)

converges to $f$ as $narrow\infty$ in both the senses in norm of $H_{K}$ and everywhere on $E$ .
Furthermore, for any function $f$ defined on $E$ satisfying

$\lim_{narrow\infty}\sum_{=j,j’ 1}^{n}f(qj)\Gamma_{j}j\prime n\overline{f(qj’)}<\infty$ , $q_{j}\in S$, (2.4)

the sequence of functions $f_{n}$ defined by (2.3) is a Cauchy sequence in $H_{K}$ whose
limit coincides with $f$ on E. Conversely, any member $f$ of $H_{K}$ is obtained in this
way in terms of $\{f(q_{j})\}$ .
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We see in Proposition 2.2 that extensibility and representation of $f$ in terms of
$f(q_{j}),$ $q_{j}\in S$ are established by means of the reproducing kernel $K(p, q)$ .

On the millennium occasion, the author wonders Proposition 2.2 will become a
powerful method connecting analytic functions and discrete sets in the next millen-
nium.

3. Connection with linear transforms
We shall connect linear transforms in the framework of Hilbert spaces with repro-
ducing kernels.

For an abstract set $E$ and for any Hilbert (possibly finite-dimensional) space
$H$ , we shall consider an $H$-valued function $h$ on $E$

$h$ : $Earrow H$ (3.1)

and the linear transform for $H$

$f(p)=(f, h(p))_{H}$ for $f\in H$ (3.2)

into a linear space comprising functions $\{f(p)\}$ on $E$ . For this linear transform
(3.2), we form the positive matrix $K(p, q)$ on $E$ defined by

$K(p, q)=(h(q), h(p))_{H}$ on $E\cross E$ . (3.3)

Then, we have the following fundamental results:

(I) For the RKHS $H_{K}$ admitting the reproducing kernel $K(p, q)$ defined by (3.3), the
images $\{f(p)\}$ by (3.2) for $H$ are characterized as the members of the RKHS $H_{K}$ .
(II) In general, we have the inequality in (3.2)

$||f||_{H_{K}}\leqq||f||_{H}$ , (3.4)

however, for any $f\in H_{K}$ there exists a uniquely determined $f^{*}\in H$ satisfying

$f(p)=(f*, h(p))_{H}$ on $E$ (3.5)

and

$||f||H_{K}=||f^{*}||_{H}$ . (3.6)

In (3.4), the isometry holds if and only if $\{h(p);p\in E\}$ is complete in $H$ .
(III) We can obtain the inversion formula for (3.2) in the form

$farrow f^{*}$ , (3.7)

by using the RKHS $H_{K}$ . However, this inversion formula will depend on, case by
case, the realizations of the RKHS $H_{K}$ .
(IV) Conversely, if we have an isometrical mapping $\tilde{L}$ from a RKHS $H_{K}$ admitting
a reproducing kernel $K(p, q)$ on $E$ onto a Hilbert space $H$ , then the Hilbert space
$H$-valued function $h_{\mathrm{S}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}(3.1)$ and (3.2) is given by

$h(p)=\tilde{L}K(\cdot,p)$ on $E$ (3.8)
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and, then $\{h(p);p\in E\}$ is complete in $H$ . The isometrical inversion $\tilde{L}^{-1}$ is given
by the transform (3.2).

When (3.2) is isometrical, sometimes we can use the isometrical mapping for a
realization of the RKHS $H_{K}$ , conversely–that is, if the inverse $L^{-1}$ of the linear
transform (3.2) is known, then we have $||f||_{H_{K}}=||L^{-1}f||_{H}$ .

We shall state some general applications of the results $(\mathrm{I})\sim(\mathrm{I}\mathrm{v})$ to several wide
subjects and their basic references:

(1) Linear transforms $([23],[35])$ .

(2) Integral tansforms among smooth functions ([42]).

(3) Nonharmonic integral transforms ([27]).

(4) Various norm inequalities $([27],[36])$ .

(5) Nonlinear transforms $([36],[39])$ .

(6) Linear integral equations ([43]).

(7) Linear differential equations with variable coefficients ([43]).

(8) Approximation theory ([10]).

(9) Representations of inverse functions ([37]).

(10) Various operators among Hilbert spaces ([40]).

(11) Sampling theorems ([38], Capter 4, Section 2).

(12) Interpolation problems of Pick-Nevanlinna type $([27],[28])$ .

In this survey article, we shall present

(13) Analytic extension formulas and their applications ([38]).

4. Typical examples for analytic extension formu-
las

We shall consider the Weierstrass transform

$u(x, t)= \frac{1}{\sqrt{4\pi t}}\int_{R}F(\xi)\exp[-\frac{(x-\xi)^{2}}{4t}]d\xi$ (4.1)

for functions $F\in L_{2}(R, d\xi)$ . Then, by using (I) and (II) we obtained in [24] simply
and naturally the isometrical identity

$\int_{R}|F(\xi)|2d\xi=\frac{1}{\sqrt{2\pi t}}\int\int_{R^{2}}|u(z, t)|^{2}\exp[-\frac{y^{2}}{2t}]dxdy$ (4.2)
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for the analytic extension $u(z, t)$ of $u(x, t)$ to the entire complex $z=x+iy$ plane.
Of course, the image $u(x, t)$ of (4.1) is the solution of the heat equation

$u_{xx}(x, t)=u_{t}(x, t)$ on $R\cross\{t>0\}$ (4.3)

satisMng the initial condition

$\lim_{tarrow+0}||u(X, t)-F(x)||L2(R,dx)=0$.

On the other hand, by using the properties of the solution $u(x, t)$ of (4.3), N.
Hayashi derived the identity

$\int_{R}|F(\xi)|2d\xi=\sum\frac{(2t)^{j}}{j!}\int j=0\infty R|\partial^{j}u(xtx,)|2dx$ . (4.4)

The two identities (4.2) and (4.4) were a starting point for obtaining our various
analytic extension formulas and their applications.

As to the equality of (4.2) and (4.4), we obtained directly

Theorem 4.1 ([15]). For any analytic function $f(z)$ on the strip $S_{r}=\{|{\rm Im} z|<r\}$

with a finite integral

$\int\int_{S_{r}}|f(_{Z)|^{2}}d_{Xd}y<\infty$,

we have the identity

$\int\int_{S_{r}}|f(_{Z})|^{2}dXdy=\sum^{\infty}\frac{(2r)^{2j+1}}{(2j+1)!}j=0\int R|\partial xjf(X)|2dx$ . (4.5)

Conversely, for a smooth function $f(x)$ with a convergence sum $(\mathit{4}\cdot \mathit{5})$ on $R$, there
exists an analytic extension $f(z)$ onto $S_{r}$ satisfying $(\mathit{4}\cdot \mathit{5})$ .

Theorem 4.2 $([\mathit{1}\mathit{5}J)$ . For any $\alpha>0$ and for an entire function $f(z)$ with a finite
integral

$\int\int_{R^{2}}|f(Z)|^{2}\exp[-\frac{y^{2}}{\alpha}]d_{X}dy<\infty$,

we have the identity

$\frac{1}{\sqrt{\alpha\pi}}\int\int_{R^{2}}|f(_{Z})|2\exp[-\frac{y^{2}}{\alpha}]dxdy=\sum^{\infty}j=0\frac{\alpha^{j}}{j!}\int R|\partial jf(x)X|2dx$. (4.6)

Conversely, for a smooth function $f(x)$ with a convergence sum $(\mathit{4}\cdot\theta)$ on $R$, there
exists an analytic extension $f(z)$ on $C$ satisfying the identity $(\mathit{4}\cdot \mathit{6})$ .
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Our typical results of another type were obtained from the integral transform

$v(x, t)= \frac{1}{t}\int_{0}^{t}F(\xi)\frac{x\exp\{\frac{-x^{2}}{4(t-\xi)}\}}{2\sqrt{\pi}(t-\xi)^{\frac{3}{2}}}\xi d\xi$ (4.7)

in connection with the heat equation (4.3) for $x>0\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ the conditions, for
$u(x, t)=tv(X, t)$

$u(\mathrm{O}, t)=tF(t)$ for $t\geqq 0$

and

$u(x, 0)=0$ on $x\geqq 0$ .

Then, we obtained

Theorem 4.3 ([1] and [301). Let $\Delta(\frac{\pi}{4})$ denote the sector $\{|\arg_{Z}|<\frac{\pi}{4}\}$ . Then, for
any analytic function $f(z)$ on $\triangle(\frac{\pi}{4})$ with a finite integral

$\int\int_{\triangle(\frac{\pi}{4})}|f(z)|^{2}d_{X}dy<\infty$,

we have the identity

$\int\int_{\Delta(\frac{\pi}{4})}|f(Z)|2dXdy=\sum_{j=0}^{\infty}\frac{2^{j}}{(2j+1)!}\int_{0}^{\infty}X^{2+}|\partial_{x}jf(X)j1|^{2}d_{X}$ . (4.8)

Conversely, for any smooth function $f(x)$ on $\{x>0\}$ with a convergence sum in
$(\mathit{4}\cdot \mathit{8})$ , there exists an analytic extension $f(z)$ onto $\triangle(\frac{\pi}{4})$ satisfying $(\mathit{4}\cdot \mathit{8})$ .

Let $\triangle\langle\alpha$ ) be the sector $\{|\arg Z|<\alpha\}$ . Then, by using the conformal mapping
$e^{z}$ , H. Aikawa examined the relation between Theorem 4.1 and Theorem 4.3. Then,
he used the Mellin transform and some expansion of Gauss’ hypergeometric series
$F(\alpha, \beta;\gamma;Z)$ and we obtained a general version of Theorem 4.3 and a version for the
Szeg\"o space:

Theorem 4.4 ([2]). Let $0< \alpha<\frac{\pi}{2}$ . Then, for any analytic function $f(z)$ on $\triangle(\alpha)$

with a finite integral

$\int\int_{\triangle(\alpha)}|f(_{Z})|^{2}dXdy<\infty$ ,

we have the identity

$\int\int_{\Delta(\alpha)}|f(Z)|2dXdy$ $=$ $\sin(2\alpha)j=\sum_{0}\frac{(2\sin\alpha)^{2j}}{(2j+1)!}\infty$

$. \int_{0}^{\infty}x|2j+1yfx(_{X)}|2dX$ . (4.9)

Conversely, for a smooth function $f(x)$ with a convergence sum on $x>0$ in $(\mathit{4}\cdot \mathit{9})$ ,
there enists an analytic extension $f(z)$ onto $\Delta(\alpha)$ satisfying the identity $(\mathit{4}\cdot \mathit{9})$ .
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Theorem 4.5 $(.[\mathit{2}J)$ . $Let..0<\alpha<$.
$\frac{\pi}{2}$ . Then, for any analytic function $f(z)$ on $\Delta(\alpha)$

satisfying

$\int_{|\theta|<\alpha}|f(re^{i\theta})|2dr<\infty$,

we have the identity

$\int_{\partial\triangle(\alpha)}|f(z)|^{2}|dZ|=2\cos\alpha\sum_{j=0}\frac{(2\sin\alpha)^{2j}}{(2j)!}\infty\int_{0}\infty(X^{2j}|\partial^{j}xfX)|^{2}dx$ . (4.10)

where $f(z)$ mean Fatou’s nontangentially boundary values of $f$ on $\partial\Delta(\alpha)$ .
Conversely, for a smooth function $f(x)$ on $x>0$ with a convergence sum in

$(\mathit{4}\cdot \mathit{1}\mathit{0})$, there exists an analytic extension $f(z)$ onto $\Delta(\alpha)$ satisfying the identity
(4 $\cdot$ 10).

As a general form of the right hand side of (4.9), we consider the infinite order
Sobolev space $W(c_{j;}R^{+})$ on the positive real line $R^{+}$ defined by

$W(c_{j;}R^{+})=\{f$ ; $\sum_{j=0}^{\infty}c_{j}\int R^{+}|^{2}X|2j+1\partial_{x}^{j}f(x)dx<\infty\}$

for a sequence $\{C_{j}\}$ of nonnegative numbers $C_{j}$ . Then, Aikawa [4] proved that if
$\alpha>\frac{\pi}{2}$ , then for any $\{C_{j}\}$ with $W(c_{j;}R^{+})\neq\{0\}$ , there is $f\in W(c_{j;}R^{+})$ that
fails to have an analytic continuation to the “concave” sector $\Delta(\alpha)$ . He also showed
that $\frac{\pi}{2}$ is sharp.

5. Various analytic extension formulas and appli-
cations

We obtained various analytic extension formulas in the above line in [1, 2, 3, 4, 7,
8, 11, 12, 13, 14, 15, 16, 21, 22, 24, 25, 26, 29, 30, 31, 32, 33, 34] containing multi-
dimensional spaces. As applications to nonlinear partial differential equations, the
author expects Professor N. Hayashi to publish a survey article in this Koukyuroku,
so the author would like to refer to applications to the Laplace transform and recent
related results in the sequel.

6. Real inversion formulas of the Laplace trans-
form

The inversion formula of the Laplace transform is, in general, given by complex
forms. The observation in many cases however gives us real data only and so, it is
important to establish the real inversion formula of the Laplace transform, because
we have to extend the real data analytically onto a half complex plane. The analytic
extension formula is, in general, very involved and makes the stability unclear. In
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particular, in the Reznitskaya transform combining the solutions of hyperbolic and
parabolic partial differential equations, we need the real inversion formula, because
the observation data of the solutions of hyperbolic partial differential equations are
real-valued. See [41].

Since the image of the Laplace transform is, in general, analytic on a half-plane
on the complex plane, in order to obtain the real inversion formula, we need a
half plane version $\Delta(\frac{\pi}{2})$ of Theorem 4.4 and Theorem 4.5, which is a crucial case
$\alpha=\frac{\pi}{2}$ in those theorems. By using the famous Gauss summation formula and
transformation properties in the Mellin transform we obtained, in a very general
version containing the Bergman and the Szeg\"o spaces:

Theorem 6.1 $([\mathit{3}\mathit{2}J)$ . For any $q>0$ , let $H_{K_{q}}(R^{+}..\cdot)$ denote the Bergman-Selberg
space admitting the reproducing kemel

$K_{q}(Z, \overline{u})=\frac{\Gamma(2q)}{(z+\overline{u})^{2q}}$

on the right half plane $R^{+}=\{z;{\rm Re} z>0\}$ . Then, we have the identity

$||f||_{H(}^{2}K_{q}R+)$ $=$ $( \frac{1}{\Gamma(2q-1)\pi}\int\int_{R^{+}}|f(z)|^{2}(2X)2q-2dXdy,$ $q> \frac{1}{2})$

$=$ $\sum_{n=0}^{\infty}\frac{1}{n!\Gamma(n+2q+1)}$

$\int_{0}^{\infty}|\partial_{x}^{n}(xf’(x))|^{2}x^{2n+}-d2q1x$ . (6.1)

Conversely, any smooth function $f(x)$ on $\{x>0\}$ with a convergence $summati_{\mathit{0}}n$ in
(6.1) can be extended analytically onto $R^{+}$ and the analytic extension $f(z)$ satisfying
$\lim_{xarrow\infty}f(x)=0$ belongs to $H_{K_{q}}(R^{+})$ and the identity $(\theta.\mathit{1})$ is valid.

For the Laplace transform

$f(z)– \int_{0}^{\infty}F(t)e-ztdt$ , (6.2)

we have, immediately, the isometrical identity, for any $q>0$

$||f||_{H}^{2}\kappa_{q}(R+)$ $=$ $\int_{0}^{\infty}|F(t)|21-t2qdt$

$( := ||F||_{L_{q}^{2}}^{2})$ (6.3)

from (I) and (II). By using (6.3) and (6.1), we obtain

Theorem 6.2 ([8]). For the Laplace transform (6.2), we have the inversion for-
mula

$F(t)= \mathrm{s}-\lim_{arrow \mathrm{N}\infty}\int_{0}^{\infty}f(x)e-xtPN,q(xt)dX$ $(t>0)$ (6.4)
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where the limit is taken in the space $L_{q}^{2}$ and the polynomials $P_{N,q}$ are given by

.
$P_{N,q}(\xi)$ $=$

$0 \leqq \mathcal{U}\sum_{\leqq n\leqq N}\frac{(-1)^{\nu}+1\mathrm{r}(2n+2q)}{\nu!(n-\nu)!\mathrm{r}(n+2q+1)\Gamma(n+\nu+2q)}\xi n+\nu+2q-1$

. $\{\frac{2(n+q)}{n+\nu+2q}\xi^{2}-(\frac{2(n+q)}{n+\nu+2q}+3n+2q)\xi$

$+(n+\nu+2q)\}$ . (6.5)

The truncation error is estimated by the inequality

$||F(t)- \int^{\infty}0|f(X)e-xtPN,q(Xt)dX|_{L^{2}}2q$

$\leqq$ $\sum_{n=N+1}^{\infty}\frac{1}{n!\Gamma(n+2q+1)}\int^{\infty}0|\partial_{x}^{n}[xf’(x)]|^{2}X^{2n+}-d2q1x$ . (6.6)

In order to obtain an inversion formula which converges pointwisely in (6.4),
we considered an inversion formula of the Laplace transform for the Sobolev space
$\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi \mathrm{i}\mathrm{n}\mathrm{g}$

$\int_{0}^{\infty}(|F(t)|2+|F’(t)|2)dt<\infty$ ,

in [5]. In some subspaces of $H_{K_{q}}(R^{+})$ and $L_{q}^{2}$ , we established an error estimate for
the inversion formula (6.4) in [6]. Some characteristics of the strong singularity of
the polynomials $P_{N,q}(\xi)$ and some effective algorithms for the real inversion formula
(6.4) are examined by J. Kajiwara and M. Tsuji [18,1.9]. Furthermor.e, they gave
numerical experiments by using computers.

7. Representations and harmonic extension for-
mulas on half spaces

Let $R_{+}^{n+1}=\{(y, x);y>0, x\in R^{n}\}$ be the half space, where $x–(x_{1}, x’),$ $x’=$
$(x_{2}, \cdots, x_{n})$ . We consider the Poisson integral

$U(y, X)= \int_{R^{n}}F(\xi)P(x-\xi, y)d\xi$ (7.1)

for

$P(x, y)$ $=$ $\frac{1}{(2\pi)^{n}}\int_{R^{n}}e^{-}e^{-i}dy|t|x\cdot tt$

$=$ $\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}.\backslash \cdot\frac{y}{(y^{2}+|X|^{2})\frac{n+1}{2}}$

and for functions $F\in L^{2}(R^{n}, d\xi)$ . For these harmonic functions $U(y,x)$ we ob-
tained in [22] :
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(A) $F$ and so, $U(y, x)$ are determined and simply represented by the functions

$\frac{\partial U(y,X_{1},X’)}{\partial x_{1}}|_{x_{1}=0}$ and $\frac{\partial^{2}U(y,x1,X’)}{\partial x_{1}^{2}}|_{x_{1}=0}$ (7.2)

for $y>0$ and for $x’\in R^{n-1}$ , by using Fourier’s integral and real inversion formulas
for the Laplace transform,
and
(B) characte$7\dot{\mathrm{v}}zation$ of the two functions in (7.2) on the hyperplane $x_{1}=0$ which
are obtained from $U(y, x)$ in (7.1), by means of Fourier’s transform and $Laplace’ \mathit{8}$

transform; this will give a harmonic extension formula to $U(y, x)$ in (7.1) from the
hyperplane $x_{1}=0$ .

8. Representations of initial heat distributions by
means of their heat distributions as functions
of time

In the Weierstrass transform (4.1), we obtained the isometrical identity, for any
fixed $x\in R$ ,

$\int_{-\infty}^{\infty}|F(\xi)|^{2}d\xi$

$=$ $2 \pi\sum_{j=0}^{\infty}\frac{1}{j!\Gamma(j+\frac{3}{2})}\int_{0}^{\infty}|\nu[t\partial_{t}u(x, t)]t|2t^{2\frac{1}{2}}j-dt$

$+2 \pi\sum_{j=0}^{\infty}\frac{1}{j!\Gamma(j+\frac{5}{2})}\int_{0}\infty|\theta_{t}^{t}[t\partial_{t}\partial_{x}u(x,t)]|^{2}t^{2j}+\frac{1}{2}dt$ . (8.1)

From this identity, we can obtain the inversion formula

$u(x, t)arrow F(\xi)$ for any fixed $x$ . (8.2)

We, in general, in multi-dimensional Weierstrass transform, established an exact
and analytical representation formula of the initial heat distribution $F$ by means of
the observations

$u(x_{1}, X’, t)$ and $\frac{\partial(x_{1},X’,t)}{\partial x_{1}}$ (8.3)

for $x’=(x_{23,n}, X\cdots, X)\in R^{n-1}$ and $t>0$ , at any fixed point $x_{1}$ , in [21].
We set

$\sigma_{F}=\{\sup|x|, X\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{P}^{F}\}$ (8.4)

and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}F$ denotes the smallest closed set outside which $F$ vanishes almost every-
where. By using the isometrical identities (4.2), (4.4) and (8.1), we can solve the
inverse source problem of determining the size $\sigma_{F}$ of the initial heat distribution $F$

from the heat flow $u(x, t)$ observed either at any fixed time $t$ or at any fixed position
$x$ . See [44].
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9. Representations of the solutions of partial dif-
ferential equations of parabolic and hyperbolic
types by means of time observations

In the problem (8.1), we can obtain a general result, in a very general situation.
Let $D$ be a finitely-connected smoothy bounded domain in $R^{n}$ . We consider a

partial differential equation of parabolic type

$\frac{\partial u}{\partial t}=Au=\triangle u-q(x)u(t>0, x\in D)$ (9.1)

subject to the boundary condition

$\alpha(\xi)u+\{1-\alpha(\xi)\}\frac{\partial u}{\partial\nu}=0$ ($t>0$ , on $\partial D$ ), (9.2)

where $\partial/\partial\nu$ denotes the outer normal derivative on $\partial D$ with respect to $D$ . We
assume that $q(x)$ is H\"older continuous on $\overline{D}=D\cup\partial D,$ $\alpha\in C^{2}(\partial D)$ and $0\leqq$

$\alpha(\xi)\leqq 1$ on $\partial D$ .
Let $U(t, x, y)$ be a fundamental solution for the equations (9.1) and (9.2). Then,

in particular, recall that for any fixed $y\in\overline{D},$ $U(t, x, y)\in C^{1}((0, \infty)\cross\overline{D}),$ $U(t, x, y)$

satisfies (9.1) and (9.2).
Under the above situations, there exist eigenvalues $\{\lambda_{j}\}_{j=}^{\infty}0$ and eigenfunctions

$\{\varphi_{j}\}_{j=0}^{\infty}$ satisfY$\mathrm{i}\mathrm{n}\mathrm{g}$

$- \infty<\lambda 0\leqq\lambda_{1}\leqq\cdots\leqq\lambda_{j}\leqq\cdots,\lim_{jarrow\infty}\lambda_{j}=\infty$ (9.3)

$\{\varphi_{j}\}_{j}^{\infty}=0$ forms a complete orthonormal system in $L_{2}(D)$ , (9.4)

$\int_{D}U(t, x, y)\varphi j(y)dy=e^{-}{}^{t}\varphi j(\lambda_{j}x)$ on $D$ , (9.5)

$A\varphi_{j}(X)=-\lambda j\varphi j(x)$ on $D$ , (9.6)

and

$\varphi_{j}(j=0,1, \cdots)$ satisfies the boundary condition (9.2). (9.7)

Then,

$U(t, x, y)= \sum^{\infty}e-\lambda_{j}t(x)\varphi j\varphi_{j()}j=0y$ (9.8)

converges uniformly on $[\delta, \infty)\cross\overline{D}\cross\overline{D}$ for any fixed $\delta>0$ . For any $f\in L_{2}(D)$ and
for

$f(x)= \sum_{j=0}^{\infty}C_{j}\varphi j(x)$ , (9.9)
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$(U_{t}f)(X)= \sum_{j=0}cje\infty\varphi-\lambda jtj(x)$ (9.10)

converges uniformly on $[\delta, \infty)\cross\overline{D}$ for any $\delta>0$ . Of course, (9.10) represents a
“general” solution of (9.1) satisfying the boundary condition (9.2) and the initial
condition

$\lim_{tarrow+0}||(U_{t}f)(X)-f(X)||L_{2()}D,dx=0$ .

For these properties, see, for example, [17]. By using the fact that (9.10) con-
verges uniformly on $[\delta, \infty)\cross\overline{D}$ for any fixed $\delta>0$ , we can give.

Theorem 9.1 ([45]). $\{C_{j}\}_{j=}^{\infty}0$ and so, $f$ and $(U_{t}f)(X)$ on $\{t>0\}\mathrm{x}D$ can be
determined and represented by the observation

$(U_{t}f)(X)(t>\tau, x\in E)$ (9.11)

for any fixed large positive constant $\tau$ and for a very small set $E$ around any fixed
point $x^{*}\in\overline{D}$ .

Furthermore, a general corresponding result for the solutions of hyperbolic type
is derived by using the Reznitskaya transform. These results may be called the
” principle of telethoscope”.
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