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Analytic Continuation beyond the Ideal Boundary
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§1. Introduction.

In the present article we shall be concerned with the analytic continuation
of a meromorphic function or differential “beyond the ideal boundary”. To
explain the results we start with a noncompact Riemann surface R and a
meromorphic differential ¥ = d¥ on R. We try to extend the differential
¥ (or the function W) beyond the ideal boundary 0R of R. Of course this
makes no sense in an ordinary way, for there is nothing beyond 0R. The
surface K is a whole world as a Riemann surface, so that we cannot reach
even OR.

The traditional way to deal with a similar (not the same in any sense)
problem is to regard R as a subsurface of another surface Ry and try to ¢
to (the whole or to a portion of) Ry. The Schwarz reflection principle and
Painlevé theorem in the classical theory of functions give famous examples
of such procedure. They supply powerful techniques provided that the ideal
boundary is supposed to be visible or touchable and is actually realized as
analytic curves. Although such observation often gives a good device for the
study of analytic functions and Riemann surfaces, it essentially yields a kind
of tautology. Indeed, what we really want to do should be the construction
of Ry! In the following we shall pay more attention to the construction of Fq
than to the extension of ¢ to the difinite supersurface of R. '

On the other hand, the Riemann mapping theorem or the generalized
uniformization theorem due to Koebe serve another kind of analytic continu-
ations, on which our idea is based. We review these theorems to see why we
are more interested in them for the study of noncompact Riemann surfaces.
For the sake of simplicity we suppose that R is a simply connected plain
domain with more than two boundary points. Then the Riemann mapping
theorem states that there exists a univalent holomorphic function f on R
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which maps R onto the open unit disk . By this theorem — or more pre-
cisely we have to say “through f” — the (ideal) boundary OR is realized as
an analytic curve — the unit circle dD. The function f is then extended
to a meromorphic function on the whole Riemann sphere C. Each rational
function comes from an analytic functions on R by extending analytically
beyond the ideal boundary to C. More precisely: for any rational function
p (on (fl) the composition (p|py) o f of its restriction to the open unit disk
with [ gives a function which can be analytically continued beyond the ideal
boundary.

Similarly for the Koebe uniformization theorem. We note that these
theorems are, as is well known, valid also for any planar Riemann surface R,
where the ideal boundary plays a substantial role. Our aim is thus to find a
compact surface Ry and a conformal embedding of R into Ry.

Now, how about surfaces of positive genus? This is the case where our
point of view is more important and we are concerned with the problem in
the present paper.

§2. Embedding Theorems.
The following theorem is basic for the subsequent study.

DEFINITION. A (multivalued) meromorphic function f on a general non-
compact Riemann surface R is called an S-function, if df is a canonical
semiexact differential of Kusunoki (see [4]), or equivalently, if Im f has the
same boundary behavior as a (Q)Li-principal function of Sario (see [1] and

[5])-

The name S-function is an abbreviation of a stream function which sug-
gests that it describes a steady flow (of an ideal fluid) on the surface. In fact,
an S-function is a mullivalued meromorphic function (a complex velocity
potential function) on R such that

1. the number of poles of f is finite,

2. for some compact set K the Diriclet integral ||df||mx of df is finite,
and

3. Tm [ is, in a sense to be precisely stated, constant on each ideal bound-
ary component of R.
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These mathemnatical conditions can be physically expressed as follows:
an S-function f is a complex velocity potential function on R (in the classical
sense of Klein (see [7] and [13])) such that

1. the sinks and sources on R are finite in number,

2. the (kinetic) energy of the flow is finite apart from the sinks and sources,
and

3. the (ideal) boundary of R is impenetrable.

THEOREM 2.1. Let R be a noncompact Riemann surface of (positive)
finite genus, and [ an S-function on R. Then there exists a compact surface R
of the same genus as R, a conformal mapping ¢ : B — R, and a meromorphic
function f on R such that

1. the set R\ «(R) is a null set in the sense of Lebesgue,

2. { is holomorphic on &\ ((R),

3. four=fon R, and

4. on each component of R\ ¢(R) the function Im f is constant.

Rougly speaking, the ideal boundary dR of R is realized on R as a set of
stream arcs of the extended flow f on R whose total area vanishes.

By a routine method of thinking (that is, via the conformal embedding
t: R — R), the surface It can be identified with the enbedded subsurface «( R)
of R, so that we can say that f is analytically continued beyond the ideal

boundary to the compact Riemann surface R of the same genus.

We sometimes restrict ourselves to the case of singularity-free contin-
uations, that is, we consider only the case where the extended functionis
holomorphic (instead of meromorphic) on the extended part R\ «(R). To
show the situation explicitly we use the term holomorphic continuation in-
stead of analytic continuation. Nonholomorphic continuations beyond the
ideal boundary are studied in [2], [3] and [12], for example, while one of
the examples of the holomorphic continuations beyond the ideal boundary is
given in the previous embedding theorem.
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Note that when we refer to a holomorphic or meromorphic continuation
of a function or differential on a noncompact Riemann surface R we always
consider the conformal embeding of the given R into compact surfaces of the
same genus.-

We use the above theorem to show the following theorem.

THEOREM 2.2. Let R be an noncompact torus (= a noncompact Rie-
mann surface of genus one). Then there is a closed disk 9(R) in the upper
half plane H which has the following property: There is a meromorphic fnc-
tion on R which is meromorphically continued to a torus R, if and only if
the modulus of R (with respect to a canonical homology basis of I~Z) belongs
to the disk MO(R), where M is a unimodular transformation.

This is just a paraphrase of the main theorem in [8]. Hence we omit the
detailed proof.

§3. Uniqueness Theorem.

I'o see another aspect of our theorem we give an explanation — limited
for the case of finite genus — why the uniquness theorem for Kusunoki’s
canonical semiexact differentials holds. For the original and precise definition
of the canonical semiexact differentials, see [4]. Cf. also [1] and [5]. We shall
be content with the intuitively stated definition given in section 2. The
uniqueness theorem of Kusunoki is

THEOREM 3.1. A canonical semiexact differential on R identically van-
ishes if it is holomorphic on K.

Kusunoki also showed the existence of the so-called elementary differen-
tials:

THEOREM 3.2. Let R be a noncompact Riemann surface of genus ¢g(0 <
g < co) and {a;,b;}I_, a canonical homology basis modulo dividing cycles
of . Then, there is a holomorphic canonical semiexact differential ¢; on R
such that

/ ¢j=5jk7 j)kr:lz«za"'vg’
Jag

where §;; is the Kronecker’s symbol. For each j the differential ¢; is uniquely
determined.
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REMARK 3.1. In these theorems the finiteness of the genus of R is not
required. But we will consider only the case of finite genus in the following.

Now suppose that R is of finite genus. Then, our theorem in §2 explains
why the uniqueness theorem holds. Indeed, the differential is holomorphically
continued to a compact Riemann surface and it suffices to apply the classical
theory to the extended differential. This theorem also proves the uniqueness
part of the following theorem:

THEOREM 3.3. Let R be a noncompact Riemann surface of finite genus
g and {a;,b; }§=1 a canonical homology basis modulo dividing cycles. Then,
for any g-tuple (¢1,¢2, - ,¢,) € CY, there is a unique holomorphic canonical
semiexact differential ¢ on K with

/QSICLta k=1,2,--,g.
J ay

To verify the existence it suflices to consider the linear combination

1P+ capa + -+ ey,

One might think that the theory of canonical semiexact differentials on a
Riemann surface of finite genus simply reflects the theory of abelian differ-
entials on a single compact Riemann surface. This is not the case, however.
Although we finally have to consider a single differential

9251: d— (c1dr + 2z + -+ + cydy)

and a single compact Riemann surface R onto which (& is holomorphically
continued, each differential ¢; holomorphically continued to a compact Rie-
mann surface IN?, of genus g, which may be different from each other. In other
words, theory of canonical semiexact differentials (or equivalently, the theory
of principal functions) on a single noncompact Riemann surface is, even in the
case of finite genus, simultaneously concerned with infinitely many compact
Riemann surfaces. The Riemann-Roch and the Abel theorems formulated
by them ([4] and [5]) therefore reflect a deep function-theoretic property.



125

§4. Some Necessary Conditions.

Now we recall the theorem of Behnke-Sommer: There is a holomorphic
differential on a R with arbitrarily prescribed periods. To give general criteria
for a given meromorphic function (resp. differential) on R to be holomor-
phically (resp. meromorphically) continued (to a compact torus) is not easy.
Here we give one of the simpleset examples, which corresponds to the second
theorem in §2.

THEOREM 3.4. Let R and 9M(R) be as in Theorem 2.2. Let df be a
meromorphic differential on K and set

o= /df, and 0= /df,
Ja b

where {a,b} is a canonical homology basis of R modulo dividing cycles. If
df is meromorphically continued to a torus, then

m'a +n'g

m”a + n"p € M(ER)

"

for some integers m/, n’,m”, n” with m'n” —m'n’ = £1.

The observation in this section loses sense for surfaces of infinite genus;
it would be interesting and important to make clear the mechanism for the
general case. For the case of finite genus (> 1) the results in [9] and [10] will
be useful.

A more detailed necessary condition than Theorem 4.1 can be given by
using the results in [6]. We have proved there and will prove in a forthcoming
paper that the added portion R\ t(R) can be neither so large nor too small.
For the simplicity we restrict ourselves to a so-called normal holomorphic
differential on a noncompact Riemann surface of genus one and continuations
which preserve the canonical homology bases. We state the following theorem
without proof, which will appear elsewhere.

THEOREM 4.2. For any noncompact torus R with a canonical homology
basis ¥ = {a,b} modulo dividing cycles, there exists a positive constant K
with the following property. If a holomorphic differential ¢ = d® on R with

[
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is meromorphically continued to a compact torus R with a canonical homol-
ogy basis corresponding to y, then the oscillation of ® on the ideal boubdary
of R is bounded by K.

REMARK 4.1. We have a similar condition as for the lower bound.
REMARK 4.2. Another metrical property of the realized ideal boundary
are studied in [11]; the area of the added portion has an interesting property.
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