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ABSTRACT. We review some recent results concerning analytic continuation
properties of the Cauchy transform of a domain in the complex plane, of a
corresponding exponential transform and of the resolvent of a hyponormal
operator associated with the domain.

The main result states the equivalence between the mentioned analytic con-
tinuations. As a corollary we obtain apriori regularity of boundaries admitting
analytic continuation of the Cauchy transform.

1. INTRODUCTION

In this note we review some recent results [12], [13], [14], [8] concerning analytic
continuation properties of different objects related to the Cauchy kernel.

The first object is the Cauchy transform of the characteristic function of a domain
in the complex plane. This can be viewed as a kind of one variable $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ (more
precisely, a derivative or residue at infinity) of a function of two complex variables,
known as the exponential transform of the domain. This is our second object of
study.

The exponential transform can be traced back to operator theoretic studies by
$\mathrm{R}.\mathrm{W}$ . Carey, J.D Pincus [3] and K. Clancey [4], [5] (see also [11]). In these works it
appears in a formula involving the resolvent of a hyponormal operator associated to
a bounded positive function (called the principal function of the operator), which
in our case will be the characteristic function of the domain.

This resolvent is our third object of study, but rather than taking an abstract
operator theoretic point of view, we work within an explicit function theoretic model
of the Hilbert space on which the operator acts. The inner product in the Hilbert
space is defined via an adjoint exponential transform, and in the so obtained model
the resolvent of the hyponormal operator, specialized at a certain vector, simply
becomes the Cauchy kernel itself.

The main result [8] is that the above three objects have analytic continuations
from outside the domain across its boundary under exactly the same conditions.
In fact, we give (or, in this note, outline) a direct proof that if one of them has
an analytic continuation then so has the others. As an application we get apriori
regularity of boundaries which admit analytic continuation of the Cauchy transform.
This gives an alternative approach to part of M. Sakai’s complete solution [15], [16]
of that regularity problem.

Details and complete proofs of most matters discussed here can be found in [12],
[13], [14], [8]. Minor parts of the contents are a slightly tentative or inprecise, and
for these we intend to provide full details in [9] and other forthcoming papers.
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2. DEFINITION AND ELEMENTARY PROPERTIES OF THE EXPONENTIAL
TRANSFORM

We first recall the definition of the Cauchy transform of a function (or distribu-
tion) $\rho$ with compact support:

$\hat{\rho}(z)=-\frac{1}{\pi}\int\frac{\rho(\zeta)dA(\zeta)}{\zeta-z}$ ,

where $dA$ denotes two-dimensional Lebesgue measure. Then $\frac{\partial\hat{\rho}}{\partial\overline{z}}=\rho$ in the sense of
distributions. The corresponding exponential transform is defined to be

$E_{\rho}(z, w)= \exp[-\frac{1}{\pi}\int\frac{\rho(\zeta)dA(\zeta)}{(\zeta-z)(\overline{\zeta}-\overline{w})}]$ ,

at least when $\rho\geq 0$ . We shall mainly be concerned with the case that $\rho=\chi_{\Omega}$ for
some an open subset $\Omega$ of $\mathbb{C}$ and we then write

$E_{\Omega}(z, w)= \exp[-\frac{1}{\pi}\int_{\Omega}\frac{dA(\zeta)}{(\zeta-z)(\overline{\zeta}-\overline{w})}]$ .

If the domain $\Omega$ is clear from the context we shall sometimes delete it from notation.
Below we list a few elementary properties of the exponential transform.

$\bullet$ $E_{\Omega}(z, w)$ is analytic in $z$ for $z\not\in\overline{\Omega}$, antianalytic in $w$ for $w\not\in\overline{\Omega}$.
$\bullet$ $E_{a\Omega+b}(az+b, aw+b)=E_{\Omega}(z, w)$ for any $a,$ $b\in \mathbb{C},$ $a\neq 0$ .
$\bullet$ $|E_{\Omega}(z, w)|\leq 2$ . Equality is attained only if $\Omega$ is a disc (up to nullsets) and

$z,$ $w$ diametrically opposite points on the boundary.
$\bullet$ $E_{\rho}(z, w)=1- \frac{1}{\pi z\overline{w}}\int\rho dA+\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{r}$ terms, as $|z|,$ $|w|arrow\infty$ .
$\bullet$ $E_{\rho}(z, w)=1- \frac{\hat{\rho}(z)}{\overline{w}}+\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{r}$terms, as $|w|arrow\infty$ for fixed $z$ .

The latter property says that $\hat{\rho}(z)$ is a derivative, or residue, at infinity with
respect to $w$ of $E_{\rho}(z, w)$ . For example we have, for large enough values of $R$ and
with counterclockwise integration,

$\hat{\rho}(z)=\frac{1}{2\pi i}\int_{|w|=R}E_{\rho}(z, w)d\overline{w}$ .

This can also be written

$\hat{\rho}(z)=-\frac{1}{\pi}\int_{\mathbb{C}}\frac{\partial E_{\rho}(z,w)}{\partial w}dA(w)$.

Taking the $z$-bar derivative gives

$\rho(z)=-\frac{1}{\pi}\int_{\mathbb{C}}\frac{\partial^{2}E_{\rho}(z,w)}{\partial\overline{z}\partial w}dA(w)$. (2.1)

In the definition of the exponential transform we understand that $\exp[-\infty]=0$ .
Then $E_{\rho}(z, z)\rho(z)=0$ . Using this we can compute some distributional derivatives
of $E_{\rho}$ to be

$\frac{\partial E_{\rho}(z,w)}{\partial\overline{z}}=\frac{E_{\rho}(z,w)}{\overline{z}-\overline{w}}\rho(z)$ , (2.2)

$\frac{\partial E_{\rho}(z,w)}{\partial w}=-\frac{E_{\rho}(z,w)}{z-w}\rho(w)$ ,
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$\frac{\partial^{2}E_{\rho}(z,w)}{\partial\overline{z}\partial w}=-\frac{E_{\rho}(z,w)}{|z-w|^{2}}\rho(z)\rho(w)$ . (2.3)

In the sequel we stick to the case $\rho=\chi_{\Omega}$ .

Example: For the unit disc $\mathrm{D}=\mathrm{D}(\mathrm{O}, 1)$ we have

$E(z, w)=\{$

$1- \frac{1}{z\overline{w}}$ for $z,$
$w\not\in\overline{\mathrm{D}}$,

$1- \frac{\overline{z}}{\overline{w}}$ for $z\in \mathrm{D},$ $w\not\in\overline{\mathrm{D}}$ ,
$1- \frac{w}{z}$ for $z\not\in\overline{\mathrm{D}},$ $w\in \mathrm{D}$ ,
$\frac{|z-w|^{2}}{1-z\overline{w}}$ for $z,$ $w\in \mathrm{D}$ .

(2.4)

Investigation of the above expressions shows that $E(z, w)$ , for the unit disc, is
continuous everywhere. This is almost true in general: for any bounded open set
$\Omega,$ $E(z, w)$ is

$\bullet$ continuous in each variable separately,
$\bullet$ jointly continuous except at points $(z, z)$ with $z$ in

$Z=\{z\in\partial\Omega$ : $\int_{\Omega}\frac{dA(\zeta)}{|\zeta-z|^{2}}<\infty\}$ . (2.5)

The set $Z$ consists of those points (if any) on $\partial\Omega$ at which $\Omega$ is “thin”, e.g. has
a sharp outward cusp. It enters into the description of the behaviour of $E$ on the
diagonal:

$E(z, z)=\{$
$>0$ for $z\in(\mathbb{C}\backslash \overline{\Omega})\cup Z$ ,
$=0$ for $z\in\Omega\cup(\partial\Omega\backslash Z)$ .

(2.6)

The general structure of $E(z, w)$ as to $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}$also agrees with
that for the disc, namely

$E(z, w)=\{$

$\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$ in $\overline{\Omega}^{c}\cross\overline{\Omega}^{c}$ ,
$(\overline{z}-\overline{w})\cdot \mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$ in $\Omega\cross\overline{\Omega}^{c}$ ,
$(z-w)\cdot \mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$ in $\overline{\Omega}^{c}\cross\Omega$ ,
$|z-w|^{2}\cdot \mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$ in $\Omega\cross\Omega$ .

(2.7)

3. A FUNCTIONAL MODEL.

The exponential transform originally appeared in the theory of hyponormal op-
erators, see [3], [4], [5], [12], [13], [14], [11], Ch.XI. Below we give a functional model
in which the hyponormal operator acts on a Hilbert space of (equivalence classes
of) functions and distributions on the given domain. The model agrees with the
”standard” model in this context (see [11], Ch.XI.3) except that we have switched
the roles between the operator and its adjoint.

So let $\Omega\subset \mathbb{C}$ be a bounded domain. In addition to the exponential transform
itself, we shall need what we call the adjoint exponential transform of $\Omega$ . It is
defined as

$H(z, w)=H_{\Omega}(z, w)=- \frac{\partial^{2}E_{\Omega}(z,w)}{\partial\overline{z}\partial w}=\frac{E_{\Omega}(z,w)}{|z-w|^{2}}$ $(z, w\in\Omega)$ .

It is immediate from (2.7) that $H(z, w)$ is analytic in $z$ , antianalytic in $w$ .
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Example: From (2.4) we see that, for the unit disc $\Omega=\mathrm{D}$ ,

$H(z, w)= \frac{1}{1-z\overline{w}}$ $(z, w\in \mathrm{D})$ . (3.1)

Although we shall not need it, we mention that $H$ can be viewed as a renormal-
ized version of one over the exponential transform of the complementary domain
(see [9]). Precisely:

$H_{\Omega}(z, w)= \lim\underline{1}$
$Rarrow\infty R^{2}E_{\mathrm{J}\mathrm{D}\langle 0,R)\backslash \Omega}(z, w)$

.

Now, for $\phi,$ $\psi\in D(\Omega)=C_{0}^{\infty}(\Omega)$ we define

$\langle\phi, \psi\rangle=\frac{1}{\pi^{2}}\int_{\Omega}\int_{\Omega}H(z, w)\phi(z)\overline{\psi(w)}dA(z)dA(w)$ , (3.2)

$||\phi||=\sqrt{\langle\phi,\phi)}$ .
We cite, from e.g. [11], the following nontrivial fact.

Lemma 3.1. The adjoint exponential transform $H(z, w)$ is nonnegative definite,
$e.g$. in the sense that $\langle\phi, \phi\rangle\geq 0$ for all $\phi\in D(\Omega)$ .

Thus $\langle\cdot, \cdot\rangle$ is an inner product on a quotient space of $D(\Omega)$ . Let $\mathcal{H}(\Omega)$ denote
the completion of that quotient space. Then $\mathcal{H}(\Omega)$ is a Hilbert space with inner
product $\langle\cdot, \cdot\rangle$ and we have natural linear map (given by the construction)

$D(\Omega)arrow \mathcal{H}(\Omega)$ (3.3)
with dense range.

Much of $D(\Omega)$ collapses under the above map, i.e., it has a big kernel. For
example, since $H(z, w)$ is $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$, partial integration shows that, for
any $\varphi\in D(\Omega),$ $\frac{\partial\varphi}{\partial\overline{z}}=0$ as an element of $\mathcal{H}(\Omega)$ . Thus all elements of $D(\Omega)$ can be
said to be ”analytic”, in some very weak sense.

Looking at the expression (3.1) we easily find that

$\int_{\Omega}\int_{\Omega}|H(z, w)|dA(z)dA(w)<\infty$ (3.4)

in the case of the unit disc, and this persists to hold at least for smoothly bounded
domains. (Whether (3.4) holds for all domains we do not know.)

Assuming that (3.4) holds, the inner product (3.2) makes sense for all $\phi,$ $\psi\in$

$L^{\infty}(\Omega)$ , and it is easy to see that $L^{\infty}(\Omega)$ is in the closure of $D(\Omega)$ with respect to
the norm of $\mathcal{H}(\Omega)$ . Thus the map (3.3) extends to $L^{\infty}(\Omega)arrow \mathcal{H}(\Omega)$ . In particular,
we have $1\in \mathcal{H}(\Omega)$ , and also $k_{z}\in \mathcal{H}(\Omega)$ for $z\not\in\overline{\Omega}$ , where

$k_{z}( \zeta)=\frac{1}{\zeta-z}$

denotes the Cauchy kernel, regarded as a function of $\zeta\in\Omega$ with $z\in \mathbb{C}$ a parameter.
Similarly, any distribution (or even analytic functional) with compact support in

$\Omega$ can be considered as an element of $\mathcal{H}(\Omega)$ . Indeed, if $\mu\in \mathcal{E}’(\Omega)$ (the distributions
with compact support in $\Omega$ ) then there is a sequence $\varphi_{n}\in D(\Omega)$ tending weakly
as distributions towards $\mu$ . Since $H(z, w)$ is smooth in both variables the tensor
product $\mu\otimes\overline{\mu}$ acts on $H$ , hence $|| \mu||^{2}=\langle\mu, \mu\rangle=\frac{1}{\pi^{2}}(\mu\otimes\overline{\mu})(H)$ has a natural
meaning. The same is true for $||\mu-\varphi_{n}||^{2}$ , and it follows from the weak convergence
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that $||\mu-\varphi_{n}||^{2}arrow 0$ as $narrow\infty$ . We conclude that $\{\varphi_{n}\}\subset D(\Omega)$ is a Cauchy
sequence with respect to $||\cdot||$ and that $\mu$ in a natural sense represents the limit of
this Cauchy sequence in $\mathcal{H}(\Omega)$ . In other words, the map (3.3) lifts to

$\mathcal{E}’(\Omega)arrow \mathcal{H}(\Omega)$ .
Thus $k_{z}\in?t(\Omega)$ also for $z\in\Omega$ . It is possible to show that $k_{z}\in \mathcal{H}(\Omega)$ even for

$z\in\partial\Omega$ and that the map $\mathbb{C}arrow \mathcal{H}(\Omega)$ given by $z-tk_{z}$ is weakly continuous (i.e.,
$zrightarrow\langle k_{z}, \phi\rangle$ is continuous for each $\phi\in \mathcal{H}(\Omega))$ . It need not be strongly continuous,
though. See [4] or [11], Ch.XI.

We denote by $A(\Omega)$ the subspace of $7t(\Omega)$ consisting of analytic functions in the
ordinary sense. More precisely, we may define it as:

$A(\Omega)=\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}_{\mathcal{H}(\Omega)}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{k_{z} : z\not\in\Omega\}$ .

Example. In the case of the unit disc we have, by (3.1),

$\langle\phi, \psi\rangle=\frac{1}{\pi^{2}}\int_{\mathrm{D}}\int_{\mathrm{D}}\frac{\phi(z)\overline{\psi(w)}}{1-z\overline{w}}dA(z)dA(w)$.

If $\phi$ and $\psi$ are analytic this reduces, by the meanvalue property of analytic functions,
to

$\langle\phi, \psi\rangle=\phi(0)\overline{\psi(0)}$ .

Thus the holomorphic subspace $A(\Omega)$ of $\mathcal{H}(\Omega)$ collapses to a one-dimensional space
in the case of the unit disc.

From (2.1) (with $\rho=\chi_{\Omega}$ ) and the definition of $H(z, w)$ we conclude that

$\langle\phi, 1\rangle=\frac{1}{\pi}\int_{\Omega}\phi dA$ (3.5)

for any $\phi\in \mathcal{H}(\Omega)$ . In particular,
$\langle k_{z}, 1\rangle=-\hat{\chi}_{\Omega}(z)$ . (3.6)

More generally,
$\langle\rho k_{z}, 1\rangle=-\hat{\rho}(z)$

for (say) $\rho\in \mathcal{E}’(\Omega)$ .
Since $1-E(z, w)$ vanishes at infinity in each of the variables we may represent

it as a double Cauchy-integral of its second mixed derivatives:

1–E$(z, w)= \frac{1}{\pi^{2}}\int\int\frac{\partial^{2}}{\partial\overline{u}\partial v}(1-E(u, v))\frac{dA(u)}{u-z}\frac{dA(v)}{\overline{v}-\overline{w}}$.

Thus we get a representation also of the exponential transform in terms of $k_{z}$ :

$\langle k_{z}, k_{w}\rangle=1-E(z, w)$ . (3.7)

Both (3.6) and (3.7) are valid for all $z,$ $w\in \mathbb{C}$ .
Rom (3.7) combined with (2.6) we see that

$||k_{z}||=\{$
$<1$ for $z\in(\mathbb{C}\backslash \overline{\Omega})\cup Z$ ,
$=1$ for $z\in\Omega\cup(\partial\Omega\backslash Z)$ .

(3.8)

Also, by (3.5), $||1||=\sqrt{\frac{|\Omega|}{\pi}}$.
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By the definition (3.2) of the inner product, the adjoint exponential transform
can be gotten by using $\delta_{z}$ , the Dirac measure at $z$ , instead of $k_{z}$ above:

$\langle\delta_{z}, \delta_{w}\rangle=\frac{1}{\pi^{2}}H(z, w)$ .

This could also have been obtained by differentiating (3.7) and using the fact that

$\frac{\partial}{\partial\overline{z}}k_{z}=-\pi\delta_{z}$ . (3.9)

Next we define a bounded linear operator
$T$ : $\mathcal{H}(\Omega)arrow \mathcal{H}(\Omega)$

by setting, for $\phi\in D(\Omega)$ ,
$(T\phi)(z)=z\phi(z)$ .

The adjoint of $T$ is given by
$(T^{*}\phi)(z)=\overline{z}\phi(z)+\hat{\phi}(z)$ .

In fact, using partial integration and the fact that $\frac{\partial}{\partial w}[(z-w)H(z, w)]=-H(z, w)$

we have, for $\phi,$ $\psi\in D(\Omega)$ ,
$\langle z\phi(z), \psi(z)\rangle-\langle\phi(z), \overline{z}\psi(z)\rangle$

$= \frac{1}{\pi^{2}}\int_{\Omega}\int_{\Omega}H(z, w)(z-w)\phi(z)\overline{\psi(w)}dA(z)dA(w)$

$= \frac{1}{\pi^{2}}\int_{\Omega}\int_{\Omega}H(z, w)(z-w)\phi(z)\overline{\frac{\partial\hat{\psi}(w)}{\partial\overline{w}}}dA(z)dA(w)$

$= \frac{1}{\pi^{2}}\int_{\Omega}\int_{\Omega}H(z, w)\phi(z)\overline{\hat{\psi}(w)}dA(z)dA(w)$

$=\langle\phi,\hat{\psi}\rangle$ ,
proving the assertion.

We proceed to compute the commutator of $T$ and $\tau*$ . Multiplication by $z$

certainly commutes with multiplication by $\overline{z}$ , so we just get

$[T, T^{*}] \phi(z)=z(-\frac{1}{\pi}\int_{\Omega}\frac{\phi(\zeta)dA(\zeta)}{\zeta-z})-(-\frac{1}{\pi}\int_{\Omega}\frac{\zeta\phi(\zeta)dA(\zeta)}{\zeta-z})=\frac{1}{\pi}\int_{\Omega}\phi dA$

Thus, using (3.5),
$[T, T^{*}]=1\otimes 1$ ,

where the right member is understood as the operator
$(1\otimes 1)(\emptyset)=\langle\phi, 1\rangle 1$ .

This is a positive multiple of the orthogonal projection onto the subspace spanned
by $1\in \mathcal{H}(\Omega)$ . In particular, $[T, T^{*}]$ is a positive operator, in other words $\tau*$ is a
hyponormal operator.

Using $\zeta$ as the running variable (argument) for the ”functions” in $\mathcal{H}(\Omega)$ and
regarding $z$ as a parameter we have.

$(T-z)k_{z}( \zeta)=(\zeta-z)\cdot\frac{1}{\zeta-z}=1$ .

It follows that, as elements in $\mathcal{H}(\Omega)$ ,
$(T-z)^{-1}1=k_{z}$ ,
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at least for values of $z$ for which the inverse $(T-z)^{-1}$ exists, namely for $z\not\in\overline{\Omega}$ .
Thus, in view of (3.6) and (3.7), we can also express the Cauchy and exponential
transforms in terms of $T$ :

$\langle(T-z)^{-1}1,1\rangle=-\hat{\chi}_{\Omega}(z)$ ,

$\langle(T-z)^{-1}1, (T-w)^{-1}1\rangle=1-E(z, w)$ .

4. ANALYTIC CONTINUATION PROPERTIES

In this section we study analytic continuation properties of functions related to
the Cauchy kernel, for example the Cauchy transform $\hat{\chi}_{\Omega}$ of a domain $\Omega$ . Recall
that $\hat{\chi}_{\Omega}$ is analytic in the exterior of $\Omega$ , but not inside $\Omega$ . A basic question is: for
which domains does this exterior part of the Cauchy transform have an analytic
continuation across $\partial\Omega$ into $\Omega$ ?

For the unit disc $\mathrm{D}$ we have $\hat{\chi}_{\mathrm{D}}(z)=\frac{1}{z}$ for $z\not\in \mathrm{D}$ , which continues analytically
to $\mathbb{C}\backslash \{0\}$ , so this is one example of analytic continuation. In general, it is not
hard to show that any domain with an analytic boundary has the continuation
property, whereas a rough boundary, having for example a corner, never admits
analytic continuation.

A complete characterization of boundaries admitting analytic continuation of the
Cauchy transform has been given by M. Sakai [15], [16]. A different approach was
given in [8], based on previous investigations in [13], [14]. Before stating our main
result (namely the main result of [8]), let us illustrate the ideas by an example.

Example (”Classical quadrature domains”).
A classical quadrature domain [1], [6], [7], [17], [12] is a domain $\Omega\subset \mathbb{C}$ such

that, like in the case of the unit disc, the Cauchy transform $\hat{\chi}_{\Omega}$ admits analytic
continuation from the exterior of the domain down to finitely many points in $\Omega$ ,
with only polar singularities at these points. In other words, it is a domain for which
the exterior Cauchy transform is a rational function. An equivalent statement (cf.
the equivalence between (4.4) and (4.6) below) is that there exists a distribution $\rho$

with support in a finite number of points in $\Omega$ (namely the same points as those
above) such that

$\int_{\Omega}\varphi dA=\rho(\varphi)$ (4.1)

for all integrable analytic functions $\varphi$ in $\Omega$ . (The right member of (4.1) is to be
interpreted as the action of $\rho$ on the test function $\varphi.$ )

Suppose that $\Omega$ is quadrature domain as above. Then we can write

$\hat{\chi}_{\Omega}(z)=\frac{r(z)}{p(z)}$ for $z\not\in\Omega$ ,

where $p(z)$ and $r(z)$ are polynomials without common factors. The distribution $\rho$

in (4.1) is supported at the zeros of $p(z)$ , with a multiple zero corresponding to $\rho$

being of higher order at the point. This implies that $\rho(p\varphi)=0$ for every analytic
function $\varphi$ . The degree of $p(z)$ ,

$n=\deg p$ ,

is called the order of the quadrature domain. Then $r(z)$ will have degree $n-1$
because of the behaviour of the Cauchy transform at infinity.
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By (4.1) and the discussion above,

$\int_{\Omega}p\varphi dA=0$

for every $\varphi\in A(\Omega)$ . Since the kernel $H(z, w)$ itself is $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}$ this
leads to

$||p \varphi||_{\gamma\{(\Omega)}^{2}=\frac{1}{\pi^{2}}\int_{\Omega}\int_{\Omega}H(z, w)p(z)\varphi(z)\overline{p(w)\varphi(w)}dA(z)dA(w)=0$

for $\varphi\in A(\Omega)$ . In short:

$p\cdot A(\Omega)=0$ . (4.2)

The polynomial $p(z)$ is minimal with this property, so it follows that
$\dim A(\Omega)=n$

if $\Omega$ is a quadrature domain of order $n$ . Conversely it can be shown (cf. [12], [13])
that $A(\Omega)$ being of finite dimension $n$ implies that $\Omega$ is a quadrature domain of
order $n$ .

Continuing the example, we show that not only does $\langle k_{z}, 1\rangle=-\hat{\chi}_{\Omega}(z)$ have an
analytic continuation up to the zeros of $p(z)$ when $\Omega$ is a quadrature domain, but
also $k_{z}$ itself has such a continuation, as an element of $\mathcal{H}(\Omega)$ . Indeed, using (4.2)
we have, for $z\not\in\Omega$ and regarding functions of $\zeta$ as elements in $\mathcal{H}(\Omega)$ ,

$k_{z}( \zeta)=\frac{1}{\zeta-z}=\frac{1}{\zeta-z}-p(\zeta)\cdot\frac{1}{p(z)(\zeta-z)}=\frac{q(\zeta,z)}{p(z)}$ ,

where
$q( \zeta, z)=-\frac{p(\zeta)-p(z)1}{\zeta-z}$ ,

a polynomial of degree $n-1$ in each of $\zeta$ and $z$ . For us it is appropriate to
regard $q(\cdot, z)$ as a polynomial in $z$ with coefficients in $\mathcal{H}(\Omega)$ . Then we see from the
expression above that $k_{z}$ , for $z\not\in\Omega$ , is a rational function in $z$ with coefficients
in $\mathcal{H}(\Omega)$ and that this rational function has singularities only at the zeros of $p(z)$ .
This proves the continuability of $k_{z}$ .

In addition, using (3.8) and the fact that the set $Z$ (see (2.5)) easily can be
shown to be empty in the present case, we find that the boundary of $\Omega$ satisfies

$\partial\Omega\subset\{z\in \mathbb{C} : ||\frac{q(\cdot,z)}{p(z)}||_{\mathcal{H}(\Omega)}=1\}=\{z\in \mathbb{C} : ||q(\cdot, z)||^{2}=|p(z)|^{2}\}$.

Since $||q(\cdot, z)||^{2}=\langle q(\cdot, z), q(\cdot, z)\rangle$ is a polynomial in $z$ and $\overline{z}$ it follows that $\partial\Omega$ is
a subset of an algebraic curve. This result was first obtained by $\mathrm{H}.\mathrm{S}$ . Shapiro and
D. Aharonov [1]. One can prove that $\partial\Omega$ is actually the whole algebraic curve in
the right member above, minus at most finitely many points [7].

This finishes the example on (classical) quadrature domains. Our main result
(below) can be viewed as a generalization of the example to a more general class of
quadrature domains (sometimes called ”quadrature domains in the wide sense”, see
[17] $)$ . It amounts to replacing the finite set in the example by an arbitrary compact
subset of $\Omega$ .

Theorem 4.1. ([8]) Let $\Omega\subset \mathbb{C}$ be open and bounded and let $K\subset\Omega$ be compact.
Then the following statements are equivalent.
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$\bullet$ (i) The map $\mathbb{C}\backslash \Omegaarrow \mathbb{C}$ given by
$z\mapsto+\langle k_{z}, 1\rangle$

extends analytically to $\mathbb{C}\backslash Karrow$ C.
$\bullet$ (ii) The map $(\mathbb{C}\backslash \Omega)^{2}arrow \mathbb{C}$ given by

$(z, w)\vdasharrow\langle k_{z}, k_{w}\rangle$

extends $analytically/antianalytically$ to $(\mathbb{C}\backslash K)^{2}arrow$ C.
$\bullet$ (iii) The Hilbert space-valued map $\mathbb{C}\backslash \Omegaarrow \mathcal{H}(\Omega)$ given by

$zrightarrow k_{z}$

extends analytically to $\mathbb{C}\backslash Karrow \mathcal{H}(\Omega)$ .

More precise forms of the statements are that there exist, in the three cases,
analytic functions (or maps)

$\bullet f$ : $\mathbb{C}\backslash Karrow \mathbb{C}$,
$\bullet$ $F:(\mathbb{C}\backslash K)^{2}arrow \mathbb{C}(\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c})$,
$\bullet\Phi$ : $\mathbb{C}\backslash Karrow \mathcal{H}(\Omega)$ ,

such that, respectively,
$\bullet$ $\langle k_{z}, 1\rangle=f(z)$ for $z\in \mathbb{C}\backslash \Omega$ ,
$\bullet$ $\langle k_{z}, k_{w}\rangle=F(z, w)$ for $z,$ $w\in \mathbb{C}\backslash \Omega$ ,
$\bullet$ $k_{z}=\Phi(z)$ for $z\in \mathbb{C}\backslash \Omega$ .
As for analyticity of Hilbert space-valued maps we adopt a weak definition:

$\Phi$ : $\mathbb{C}\backslash K$ a $\mathcal{H}(\Omega)$ is analytic iff the function $zrightarrow\langle\Phi(z), \phi\rangle$ is analytic for each
$\phi\in \mathcal{H}(\Omega)$ . Since a function of two complex variables (e.g., $\langle k_{z},$ $k_{w}\rangle$ ) is analytic iff
it is analytic in each variable separately, the essence of the theorem therefore is the
implication

$zrightarrow\langle k_{z}, 1\rangle$ extends $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}\Rightarrow$

$zrightarrow\langle k_{z}, \phi\rangle$ extends analytically for every $\phi\in \mathcal{H}(\Omega)$ .

Proof. We shall prove the theorem under the simplifying assumptions that (3.4)
holds and that $\Omega=\mathrm{i}\mathrm{n}\mathrm{t}\overline{\Omega}$ . The general case is treated in [8]. The approach we
present here is however different from that in [8].

As indicated above, it is enough to prove $(\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})$ . So assume (i), let $f(z)$

denote the analytic continuation of $\langle k_{z}, 1\rangle=-\hat{\chi}_{\Omega}(z)$ to $\mathbb{C}\backslash K$ and we shall find an
analytic continuation $\Phi(z)$ of $k_{z}$ itself. It is convenient to continue $f$ further, in an
arbitrary fashion over $K$ to all of $\mathbb{C}$ , and then think of $f$ as the Cauchy transform
of

$\rho=\frac{\partial f}{\partial\overline{z}}$ .
In this process we may have to modify $f$ near $\partial K$ and let the support of $\rho$ go
slightly outside $K$ , but then we are on the other hand free to take $\rho$ as smooth
as we like, which simplifies the interpretation of the forthcoming formulas. This
enlargement of the support does not change anything in principle, so for simplicity
of notation we still assume that

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\rho\subset K$. (4.3)

Thus assumption (i) now takes the form
$\hat{\chi}_{\Omega}=\hat{\rho}$ on $\mathbb{C}\backslash \Omega$ (4.4)
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or, equivalently,
$\langle k_{z}, 1\rangle=\langle\rho k_{z}, 1\rangle$ for $z\in \mathbb{C}\backslash \Omega$ .

We claim that the extension of $k_{z}$ itself is given by $\rho k_{z}$ , i.e., that, in the notation
introduced after the statement of the theorem,

$\Phi(z)=\rho k_{z}$ . (4.5)

Similarly we will have that the continuation of $\langle k_{z}, k_{w}\rangle$ in (ii) of the theorem is
given by

$F(z, w)=\langle\rho k_{z}, \rho k_{w}\rangle=\langle\Phi(z), \Phi(w)\rangle$ .
That $\Phi$ defined by (4.5) is, in fact, analytic $\mathbb{C}\backslash Karrow \mathcal{H}(\Omega)$ is immediate from

the definition of analyticity and from (4.3): in the expression for $\langle\Phi(z), \phi\rangle$ (where
$\phi\in \mathcal{H}(\Omega)),$ $z$ will not meet any singularity until it reaches $K$ . Alternatively, we
may compute, using (3.9):

$\frac{\partial}{\partial\overline{z}}\Phi(z)=-\pi\rho\delta_{z}=-\pi\rho(z)\delta_{z}$ ,

which is the zero element in $\mathcal{H}(\Omega)$ when $z\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\rho$.
It remains to verify that $\Phi(z)=k_{z}$ as elements in $\mathcal{H}(\Omega)$ for $z\not\in\Omega$ . By an

approximation argument [2], (4.4) can be shown to imply that

$\int_{\Omega}\varphi dA=\int_{\Omega}\varphi\rho dA$ (4.6)

for every integrable analytic function $\varphi$ in $\Omega$ . Note that (4.4) says exactly that (4.6)
holds for all $\varphi=k_{z},$ $z\not\in\Omega$ , so the opposite implication (that (4.6) implies (4.4)) is
trivially true.

Choosing in (4.6) the integrable analytic function

$\varphi(\zeta)--\int_{\Omega}H(\zeta, w)k_{z}(\zeta)\overline{\phi(w)}dA(w)$

for $z\not\in\overline{\Omega},$ $\phi\in D(\Omega)$ gives
$\langle k_{z}, \phi\rangle=\langle\rho k_{z}, \phi\rangle$ .

Thus $k_{z}=\rho k_{z}$ as elements in $\mathcal{H}(\Omega)$ for $z\not\in\overline{\Omega}$ , and by continuity also for $z\not\in\Omega$ .
This proves the theorem.

$\square$

Taking instead
$\varphi(\zeta)=\int_{\Omega}H(\zeta, w)\overline{\phi(w)}dA(w)$

in (4.6) gives similarly $\langle 1, \phi\rangle=\langle\rho, \phi\rangle(\phi\in D(\Omega))$ . Hence
$1=\rho$ as elements in $\mathcal{H}(\Omega)$ . (4.7)

Conversely, (4.7) implies that $k_{z}=\rho k_{z}$ for $z\not\in\Omega$ . Thus an additional equivalent
statement to those in Theorem 4.1 is that $1\in fi(\Omega)$ is ”carried” by $K$ in the sense
that it has a representative (such as $\rho$ above) with support in $K$ .

The above analytic continuation result may look innocent, but it is indeed pow-
erful. Our main application is the apriori regularity of some free boundaries in two
dimensions:

Corollary 4.2. ([15], [8]) If $\hat{\chi}_{\Omega}$ has an analytic continuation from the exterior of
$\Omega$ across $\partial\Omega$ , then $\partial\Omega$ is contained in a real analytic varieiy.
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There are examples showing that $\partial\Omega$ may have singular points, of certain specific
types. These can be completely classified [16].

Proof. By direct arguments, as in [10] (proof of Lemma 2.11) or [8] (Lemma 4.4),
or by using a newly invented theory of”quasi balayage” [18], one shows that the set
$Z$ defined by (2.5) is empty under the assumtions of the corollary. Then it follows
from (2.6) or (3.8) that, in the notation of the theorem,

$\partial\Omega\subset\{z\in \mathbb{C}\backslash K : F(z, z)=0\}=\{z\in \mathbb{C}\backslash K : ||\Phi(z)||=1\}$ ,

which proves the corollary. $\square$
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