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Abstract. We consider the historical version of catalytic processes. We define the cor-
responding historical catalytic occupation time measure (HCOTM) and give its historical
characterization. By using HCOTM we can define the historical occupation density mea-
sure (HODM) and show that HODM may diffuse almost surely.

1. Historical Catalytic Process (HCP)

First of all we will begin with introducing catalytic processes XL(P) with branching rate
functional L(p) = Liw,,, where p = p7 = X% = X7 js a Dawson- Watanabe superprocess
(or super-Brownian motion) with constant branching rate 4 > 0. The study of catalytic
processes has been initiated by Dawson-Fleischmann (1997) [3]. Roughly speaking, X ()
is the special continuous super-Brownian motion which is constructed under the branching
mechanism that the branching occurs only at the place where exists the catalyst whose
time evolution is given as a continuous super-Brownian motion (SBM) X¥ with K = ~dr,
v > 0. In other words, it is nothing but a continuous measure-valued branching Markov
process under the framework that the collision local time L, in the sense of Barlow-
Evans-Perkins [15] of a Brownian path W and ‘catalytic mass process p = p” governs the
branching mechanism. As a matter of fact, the setup and formulation of this catalytic
process is understood rigorously in terms of the general theory of additive functionals due
to E. B. Dynkin (e.g. [11],[12]). In this section we consider the HP representation (=
expression as historical process) which just corresponds to the catalytic process X%®. In
what follows, for simplicity, we put I = Ip = (0,7, 0 < T < co, and denote by C &
C(I,R) the Banach space of real valued continuous paths on I. Let @ := {wsn;s € I}
denote the stopped path at time ¢ € I for a path w € C, and we write the totality of such
those stopped paths {w} by C*. Then notice that the set

~

C(1,C) == {w e C(I,C);w, € C',Vt € I}
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becomes a closed subspace of C(I,C). Set
IXC = {[t,w];t € I,w € C*}.

For this space IxC’, there exists a continuous mapping : C3 w +— W € C (1,C), and this
mapping allows the graph of w € C (I, C) to be a subset of IxC'. When a path w € C is
given, then we can regard @ := {@;t € I} as its path trajectory. Under the above setup
we can discuss the HP representation of the catalytic process. For z € R let II, be the
law on C of the Brownian path W with diffusion coefficient x starting at z at time ¢ = 0.
Then we denote by W = [W, ﬁs,w, s € I,w € C?] the Brownian path process on I. The
semigroup of W is given by

Soppw) = Mewp(Wy), 0<s<t<T, weC', ¢ebB(O), (1)
and by {As; s € I} the corresponding generator. M} (C') denotes the totality of nonnega-
weak convergence.

According to [4], for each t € I there exists an M%(C")-valued time inhomogeneous right
Markov process

~

X ={X0,P,,, sel,peMpC}.
We call X a historical catalytic process (HCP).

Proposition 1. The Laplace transition functional of HCP X is given by
Ps,y exp(‘f(tL(p)a —<P> = exp(ﬂ‘: —Uy (57 K t)) (2)

for0<s<t<T,u€ Mi(C®) and p € pbB(C"). Here the function uy(-,-,t) is the unique
B([0,t]xC’) -measurable bounded nonnegative solution of the equation :

0 o~
*éguw(s”u% t) = ASUQO(S,w’t) - pZui(s,w,t), 0<s<t, weC (3)
U’(P(ta E) t) = @
Proposition 2. The corresponding log-Laplace equation to (3) ts given by
~ ~ ~ i ~
Hs,w‘P(I/Vt) = u(p(s’ w, t) + Hs,w ui(r, Wr7 t)L[W,p”Y](dr)' (4)
. s

Moreover, an easy computation leads to expectation formula.

Corollary 3. The following expectation formula holds :

B X, ) = [ Mowp(Wiu(du). ©)
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2. Historical Catalytic Occupation Time Measure (HCOTM)

Suggested by Dawson et al. [4] (cf. (2.4.1), p.43), from (3.23) {3, p.240] we can certainly
define pathwise the historical catalytic occupation time measure (HCOTM) Y related to
XL by

~ t ~ -
(Vo) = [ dr(XEO,0(r,))  for 9 € pbB(0, %C), ©)
for fixed 0 < s <t < T. Since X% is right continuous from definition, the integral (6)
makes sense, and actually HCOTM )7[3’,3] is a finite random measure defined on [s, t]xC'. By

the standard argument of Dynkin (1991) [16], we can obtain the following characterization
theorem of HCOTM {ff[s,t]} via Laplace transition functional.

Theorem 4. The Laplace transition functional of {X,Y} is given by

P,y exp {—(Xi?,0) — (Viou, )} = exp(ps, —upy(s, 1)) (7

for p € ML(CY), for fized 0 < s <t < T and for ¢ € pbB(C') and ¢ € pbB(|0,t] xC).
Here the function ugy(-,-,t) is the unique B([0,t]xC’) -measurable bounded nonnegative
solution of the nonlinear integral equation :

~ t ~
Up (8, w, 1) + Il 4 i uiﬂp(r, W, t) Liw,pm (dr)

= (W) + Ty [ dr(r, ). ®

3. Historical Catalytic Occupation Density Measure (HCODM)

For the occupation time process there is a sufficient L2-criterion for the existence of abso-

lutely continuous states. In particular, it is well known [3] that the L-density ys4(z) =

y[l;fg) of catalytic occupation time measure Y = Y1) = YL [ XL0)] exists.

Lemma 5. (cf. [3], Proposition 5 (a), p.240) Let p(r,a,b) be the transition density of the
standard Brownian motion B = (B,). Then the L*(P,,) -limit y[i(g)(z) of

yfs,t](z) = <)/[S,t]7p(€7 ) Z)), >0
ezists ase | O for each z € R%, d < 3.

Lemma 6. (cf. [3], Proposition 5 (b), p.241) With respect to Ps ,, the random measure
Y54 on R? (d < 3) is absolutely continuous with density function Yis), namely,

P, {Y[s,t](dz) = y[s,t](z)dz} =1 holds.
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In what follows we assume that d = 1. Note that when d = 1, we have the sharpened
existence result of Brownian collision local time Ly, of the catalyst process p7. Indeed,
it belongs to the class K¢ of branching rate functionals with parameter ¢ = 1 /2. That is

to say,
Mo | G2 (W,) Ly (dr) < Onlt — s2y(a), 0<s<t<N, a€R.
When the occupation time process
Y, = /Ot drX,(), t>0

possesses a jointly continuous occupation density field y = {y.(z); t > 0,z € R} with
probability one, we can define the occupation density measure (or the so-called super-
Brownian local time measure)

N (dr) = dyr(2), zeR

on R,;. Analogously, we can consider the historical version of the catalytic occupation
density measure. In fact, the historical catalytic occupation density measure (HCODM)
S\f‘s’t] (d[r,w]) is defined by

] TLO (dfr, ) (r, w)6:(W5) (9)

forz€R,0<s<t<T,and vy € pbB([s,t] xC'). The main assertion of this paper is as
follows.

Theorem 7. The HCODM S\fs’t] s 133,“ -a.s. diffuse as a measure on |s,t|xC, i.e., it does
not carry mass at any single point set in [s, t]xC'.

Proof. Let z,(2) be the density field of X*(.). From the definition of occupation time
measure, it follows that

yr(2) = A dszs(2), t>0, zeR,

implying that y,.(2) provides almost surely with an absolutely continuous measure on the
time parameter set R, . Hence, it is obvious that the original catalytic occupation density
measures {A\*(-); z € R} are almost surely diffuse (cf. [2]). While, the almost sure dif-
fuseness of HCODM )\zst yields from identical law property. It suffices to note that the
law L(AF, 1(F); Ps) of Af, y is equivalent to the law E(A 4(F x C); P,,) of /\[S y for any
z € R, any Borel set F € B(I7), and 0 < s <t <T'. This completes the proof.
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