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Abstract. We consider the long term asymptotic behaviors for solutions to a system of
nonlinear partial differential equations. We prove that under some suitable conditions the
unique global nonnegative solution has $L^{1}$-norm non-degeracy as the time $t$ approaches to
infinity. Our method is totally probabilistic, where a limit theorem for measure-valued
processes is used.

1. Introduction

We consider the following system of nonlinear reaction diffusion equations with interaction
terms:

$\{$

$\frac{\partial u_{i}}{\partial t}=$

$\Delta_{\alpha}.u_{i}+\sum a_{i}j\neq ij(uj-ui)+biu_{i}\beta_{i}$

$u_{i}(0, x)=$ $f_{i}(x)$ , $i=1,2,$ $\cdots,$
$k$ in $\mathrm{R}^{d}$ , $t>0$ ,

(1)

where $\Delta_{\alpha_{i}}=-(-\Delta)^{\alpha_{i}}/2,0<\alpha_{i}\leq 2$ , and $a_{ij}>0,$ $b_{i}<0,0<\beta_{i}\leq 2$ for all $i$ and $j$ .
We assume the additional condition betweell these parammeters, so that we may discuss the
asymptotic behaviors of solutions for the Cauchy problem (1) in terms of the corresponding
stochastic processes.

(Assumption) $a_{ii}+b_{i}\beta_{i}\geq 0$ $(\forall i)$ (2)

It is well known that the Cauchy problem (1) has the unique global mild solution $u\equiv u(t, x)$

for the initial function $\mathrm{f}=(f_{1}, \cdots, f_{k})\in C_{p}^{k}$ , and that (1) has the unique global strong
sense solution $u\equiv u(t, x)=(u_{1}(t, X),$ $\cdots,$ $u_{k}(t, X))$ for the initial functions $f_{i}\in \mathrm{D}\mathrm{o}\mathrm{m}(\Delta_{\alpha_{i}})$

$\subset C_{p}$ for all $i$ , with $\mathrm{f}=$ $(f_{1}$ , , . . , $f_{k})\in C_{p}^{k}$ , and also that if the initial data $f_{\iota}\geq 0$ for all $i$ ,
then the solution satisfies $u_{i}(t, x)>0$ for any $i,$ $(1\underline{<}i\leq k)$ . Nemaly, the last assertion
implies that the positivity is preserved for the system (1). Here the space $C_{p}$ is a subset
of $C(\mathrm{R}^{d})$ . As a matter of fact, for $p>d$ the reference function $\varphi_{p}$ is defined by $\varphi_{p}(x):=$

$(1+|x|^{2})^{-}p/2$ for $x\in \mathrm{R}^{d}$ . The norm $||\cdot||_{p}$ id given by $||f||_{P}:= \sup\{|f(x)/\varphi_{p}(x)|;x\in \mathrm{R}^{d}\}$ .

$*\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{h}$ supported in part by JMESC $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}_{- \mathrm{i}\mathrm{n}}$-d CR(A) (1) 09304022 and CR(A) (1)
10304006.

数理解析研究所講究録
1157巻 2000年 95-100 95



Then the sapce of p–continuous functions is given by $C_{p}=C(\mathrm{R}^{d})\cap\{||f||_{p}<\infty\}$ . Let $\mathcal{M}_{p}$

denote the space of nonnegative Radon measures on $\mathrm{R}^{d}$ such that $\langle\mu, \varphi_{p}\rangle<\infty$ holds for
$\mu\in \mathcal{M}$ with the rvague topology. Here $\langle\mu, f\rangle$ indicates the integral of measurable function
$f$ with respect to measure $d\mu$ . The pvague topology means the topology induced by the

elements of $pC_{c}\cup\{\varphi_{p}\}$ . Note that $\mathcal{M}_{p}$ is a Polish space, and also that $C_{p}$ and $\mathcal{M}_{p}$ are in

duality. It is interesting to note that the Lebesgue measure $\lambda=\lambda(dx)$ on $\mathrm{R}^{d}$ is in $\mathcal{M}_{p}$ for

$p>d$ .
The aim of this paper is to show the $L^{1}$-norm non-degeneracy of nonnegative solutions

as the long time asymptotic behaviors of solutions for the system (1) by taking advan-

tage of probability theory. Our peculiar feature of this paper is as follows. The problem

(1) is deterministic and the result (asymptotic behavior) is also deterministic, while the

method we adopt for the proof is based on the theory of stochastic processes. Our prob-
abilistic approach to this sort of $\cdot$ asymptotic analysis is greatly due to the recent works

on measure-valued stochastic processes, especially, on some limit theorems for Dawson-

Watanabe superprocesses (cf. [9],[10],[11]).

2. Branching Particle System

For simplicity we put $V_{i}= \sum_{j=1}^{k}a_{ij}>0,$ $m_{ij}:=a_{ij}/V_{i}>0$ for all $i,j=1,2,$ $\cdots$ , $k$ .

Moreover, set $c_{\iota}:=-b_{i}/V_{i}>0$ and $\beta_{i}’:=\beta_{i}-1(0<\beta_{i}’\leq 1)$ for all $i$ . Notice that $c_{l}$

ranges over interval $(0, m_{ii}/(1+\beta_{i}’)]$ . In this section let us consider the branching particle

system associated with problem (1). The system in question is supposed to consist of an
aggregate of $k$ distinct types of particles in $\mathrm{R}^{d}(1\leq k<\infty)$ . We denote by $P_{i}$ the particle

of $i$-type $(1 \leq i\leq k)$ . The particle $P_{i}$ of $i$-type migrates according to a symmetric stable
law in $\mathrm{R}^{d}$ with exponent $\alpha_{i}\in(0,2]$ , namely, $P_{i}$ behaves as a symmetric $\alpha_{i}$-stable process in
$\mathrm{R}^{d}$ . Each particle $P_{i}$ has its own lifetime denoted by $\zeta_{i}$ , and the lifetime $\zeta_{\iota}$ is $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{I}^{\cdot}\mathrm{i}\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d}$ as

random variable in exponential distribution with parameter $V_{i}$ , i.e. $\zeta_{i}\sim Ex(V_{i})$ , for each $i$ .

At the end of lifetime, we suppose that either case of the following two cases should occur.

(i) $P_{i}$ mutates into another particle $P_{j}(j\neq i)$ with probability $m_{ij}>0$ .
(ii) It produces $n$-particles of type $i$ with probability $m_{ii}\cdot p^{()}n^{i}(p_{n}^{(i)}>0)$ .

It is very convenient to give the above branching mechanism of each type $i$ with the following

generating function $F_{i}(s)$ . In fact, $F_{i}(s)$ is given by

$F_{i}(s)$ $=$ $s- \frac{b_{i}}{a_{ii}}(1-S)^{\beta_{i}}=s+\frac{c_{\iota}}{m_{ii}}(1-s)^{1}+\beta_{i}$

’

$=$ $s- \frac{b_{i}}{V_{i}m_{ii}}(1-s)^{1+\beta_{i}’}$ ,

where $0\leq s\leq 1$ . Alternatively, we can also give the probabilities $(p_{n}^{(i)})_{n}$ directly. That is
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to say, for each $i$

$p_{n}^{(i)}=$

.

$\frac{c_{i}}{m_{ii}}=-\frac{b_{i}}{a_{ii}}=$ $- \frac{b_{i}}{V_{i}m_{ii}}$ $(n=0)$

$\underline{\mathrm{G}}(1-\beta_{i}’)=$ $-^{\underline{b_{i}}}(2-\beta_{i})$ $(n=1)$ (3)
$m_{ii}$ $a_{ii}$

$- \frac{c_{i}}{m_{ii}}(-1)^{k}=$ $\frac{b_{i}}{a_{ii}}(-1)^{k+1}$ $(n=2,3, \cdots)$ .

The matrix $M=(m_{ij})\in M(k\cross k)$ is irreducible, implying that the particle can mutate
from any type into any other type with positive probability. Note that under (3), the
system is critical, that is, an average of one particle is produced. In addition we assume
that at the initial time $t=0$ the configuration of the particle $P_{i}$ is described by a Poisson
random measure with intensity measure $\gamma_{i}\lambda$ , where $\gamma_{i}>0(\forall i)$ and $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k}=1$ .
Therefore, $(\gamma_{1},\gamma_{2}, \cdots, \gamma_{k})$ indicates the initial proportion of particles of each type. Suppose
that migration, lifetime and initial configuration of the particles are mutually independent.
We write

$\mathrm{N}=\{\mathrm{N}(t), t>0\}=\{(N1(t), N2(t), \cdots, Nk(t)), t>0\}$ ,

where $N_{i}(t)$ is the random point measure on $\mathrm{R}^{d}$ , defined by the location of the particle of
type $i$ at time $t$ . Here notice that EN(O) $=\mathrm{E}(N_{1}(0), \cdots, N_{k}(0))=(\gamma_{1}\lambda, \cdots, \gamma_{k}\lambda)\overline{=}\Lambda$ .

3. Renormalization Procedure and Dawson-Watanabe Superprocess

We consider a limit procedure for the branching particle system, named the renormalization
procedure, or the short time high density limit. It is sufficient to describe the n-th step
of renormalizing procedure. Actually we let the mass of particle be $1/n$ , and change the
lifetime parameter of the $i$ type particle into $n^{\beta_{iV_{i}}’}$ . In accordance with the above-mentioned
change, we let the mutation probability $\mathrm{C}^{\backslash },1_{1\mathrm{a}11}\mathrm{g}\mathrm{e}$ into $n\beta_{j}’\gamma n\iota/\cdot$ . The illtellsity of the $\mathrm{i}\iota \mathrm{l}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}$

Poisson configuration is changed from A into $n\Lambda$ . Then we have the mass process

$\mathrm{N}^{(n)}=\{\mathrm{N}^{(n)}(t)\}=\{(N_{1}(n)(t), N_{2}(n)(t), \cdots, N(n)k(t)), t>0\}$

instead of $\mathrm{N}=\{\mathrm{N}(t)\}$ . Under the aforementioned limiting procedure the process $\mathrm{N}^{(n)}$

converges in distribution as $narrow\infty$ in the Skorohod space

$D([0, \infty),\frac{\mathcal{M}_{p}\cross\cdots\cross \mathcal{M}_{p}}{k\mathrm{t}\mathrm{i}\mathrm{m}\ominus \mathrm{s}})$

to the $\mathcal{M}_{p}^{k}$-valued Markov process $\mathrm{X}=\{\mathrm{X}(t)\}=\{(X_{1}(t), \cdots,x_{k(}t)), t\geq 0\}$ with $\mathrm{X}(\mathrm{O})=$

A (cf. [10]). For any $\mu=(\mu_{1}, \cdots, \mu_{k})\in \mathcal{M}_{p}^{k}$ and $\mathrm{f}=(f_{1}, \cdots, f_{k})\in b\mathcal{B}(\mathrm{R}^{d})$ we define

$\langle\mu, \mathrm{f}\rangle_{k}=\sum_{=i1}^{k}\int fi(x)d\mu_{i}(x)$ .
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The Laplace transition functional for $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}-\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{d}$ processes X is given by

$\mathrm{E}_{\mu}\exp\{-\langle \mathrm{x}(t), \mathrm{f}\rangle_{k}\}=\exp\{-\langle\mu, \mathrm{u}(t)\rangle_{k}\}$ , $t>0$ , (4)

where $\mathrm{u}(t)=(u_{1}(t, x),$ $\cdots,$ $u_{k}(t, X))\in C_{p}^{k}$ is the unique solution of the Cauchy problem (1).

Then we call this $\mathrm{X}=\{\mathrm{X}(t), t>0\}$ a $k$ multitype $\{\alpha_{i}, d, \beta_{i^{-1,V_{i}}}\}_{-}$ Dawson-Watanabe
superprocess.

4. Long Term Asymptotic Behavior

First of all we define the critical dimension $d_{c}$ . Indeed, for our models $d_{c}$ is given by $d_{c}$

$:= \min\{\alpha_{i}:1\leq i\leq k\}/\min\{\beta_{i}-1:1\leq i\leq k\}$ . For $d<d_{c}$ (resp. $d=d_{c}$ ), namely,
for the subcritical (resp. critical) case, it is well known (cf. [9], $[10\rfloor,[11]$ ) that there exists
local extinction in the branching particle system $\mathrm{N}$ , hence the measure-valued process X
as its limit has also local extinction. Therefore, if we take into account the probabilistic
representation of the solution $\mathrm{u}(t)$ for problem (1), i.e.,

$\mathrm{u}(t)=-\log \mathrm{E}_{\delta}\exp\{-\langle \mathrm{x}(t), \mathfrak{h}_{k}\}$ , (5)

then as asymptotic behavior, clearly the solution proves to be degenerate as time $t$ ap-
proaches to infinity. On the other hand, for the case $d>d_{c}$ , that is, for the supercritical
case, both systems $\mathrm{N}$ and X may possibly possess non-trivial equilibrium state as long
time asymptotic behaviors [10], [11].

For simplicity, we set $\mathcal{M}:=M_{F}(\mathrm{R}^{d})$ , which is the totality of finite measures on $\mathrm{R}^{d}$ .
Define the set $D_{m}$ by

$D_{m}:=$ { $(x_{1},$
$\cdots,$

$x_{d})\in \mathrm{R}^{d}$ : $0\leq x_{i}<m$ , for $i=1,2,$ $\cdots,$
$d$}.

We set $\tilde{N}_{0}^{\gamma}:=\Sigma_{i=1}^{k}\gamma_{i}Ni(\mathrm{o})\in \mathcal{M}$ for $\mathrm{N}(\mathrm{O})=(N1(\mathrm{o}), \cdots, N_{k}(\mathrm{o}))\in \mathcal{M}^{k}$ . Note that here
we do not assume Poisson random configration for the initial state $\mathrm{N}(\mathrm{O})$ . We are now in a
position to state the main result in this paper.

Theorem 1. ( $L^{1}$-Norm Non-Degeneracy of Unique Global Nonnegative Solution) Let
$d>d_{c}$ . If the condition

$\lim_{marrow\infty}\mathrm{E}|\tilde{N}_{0}^{\gamma}(X-Dm)-m|d=0$ (6)

holds $unifo7w_{y}$ in $x\in \mathrm{R}^{d}$ , then for any $\mathrm{f}(\neq 0)\in(C_{c}^{+})^{k}$

$\lim_{tarrow\infty}||^{[\mathrm{f}]}u_{i}(t)||_{L}1>0$. (7)

Proof. Set $N(k):=\{1,2, \cdots, k\}\subset \mathrm{N}$ and $6_{k}^{\mathrm{v}}:=\mathrm{R}^{d}\cross N(k)$ . We consider the basic
process $Z_{t}$ , which is $S_{k}$-valued Markov process whose generator $A$ is given by the following
unbounded operator on $C_{p}^{k}$ :

$(A \mathrm{f})_{i}(x)=\Delta\alpha_{i}f_{i}(_{X})+V_{i}\sum_{j\neq i}mij(f_{j}(x)-f_{i}(x))$
. (8)
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Let $T_{t}$ denote the correponding semigroup on $C_{\mathrm{p}}^{k}$ . Actually, for the measure

$\nu(d(X, k)):=(\sum_{i=1}^{k}\mu_{i}\otimes\delta_{i})(d(X_{1}, \cdots, x_{d}, k))$ on $S_{k}$ ,

$T_{\ell}$ has an integral expression with respect to the transition probability. Namely,

$T_{t}\nu(\tilde{\mathrm{y}})$ $\equiv T_{t}\mathcal{U}(\{y_{k}\}_{k}dj=1’)$

$=$ $\int_{S_{k}}\nu(d\{X_{k}\}, d\{i\})\mathrm{p}(Z_{t}\in d\tilde{\mathrm{y}}=d(\{yk\},j)/Z_{0}=\tilde{\mathrm{X}}=(\{xk\},i)=(X_{1}, \cdots, Xd, i))$ .

Lemma 2. When $d>d_{c}$ , then under (6) we have the convergence $T_{t}\mathrm{N}(0)arrow\Lambda$ in $\mathcal{M}_{p}^{k}$ .

This is due to Dobrushin’s asymptotically Poisson argument [1] (see also [12]). As a conse-
quence, it is obvious that $T_{t}\mathrm{N}^{(n)}(0)arrow\Lambda$ in $\mathcal{M}_{p}^{k}$ as $tarrow\infty$ . Repeating the renormalization
procedure in \S 3, we readily deduce that $T_{t}\mathrm{X}(0)$ also converges to A in $\mathcal{M}_{p}^{k}$ as $tarrow\infty$ . So
that, this convergence is valid even in the sense of probability as well. Thus we attain

Proposition 3. If $d>d_{c}$ and $T_{t}\mathrm{X}(0)arrow\Lambda$ in probability (as $tarrow\infty$ ), then $\mathrm{X}(t)$ converges
in distribution to the non-trivial equilibrium state $\mathrm{X}(\mathrm{O})$ as $tarrow\infty$ and $\mathrm{E}\mathrm{X}(\infty)=\Lambda$ holds.

While, we have
$\mathrm{u}(t)=T_{t}\mathrm{f}-\int_{0}^{\mathrm{t}}Tt-s\mathrm{h}(S)ds$ , (9)

where

$\mathrm{h}(t, x)=(h_{1}(t, x),$ $\cdots,$ $h_{i}(t, X),$ $\cdots,$
$hk(t,X))=(\cdots, V_{i}C_{i}u_{i}(1+\beta it, X), \cdots)$ .

Hence, from Proposition 3, an easy computation leads to the following expression.

Lemma 4. We have

$\mathrm{E}_{\mu}\exp\{-\langle \mathrm{x}(\infty), \mathrm{f}\rangle_{k}\}=\exp\{-\langle\Lambda, \mathrm{f}\rangle_{k}+J_{0}^{\infty}\langle\Lambda, \mathrm{h}(s)\rangle_{k}ds\}$ .

By choosing special cases

$\Lambda_{i}=(0, \cdots, 0,\check{\lambda}, 0, \cdots, 0)i$ and $\mu=(0, \cdots , 0,\check{\delta}_{x}, 0i, \cdots , 0)$ ,

we can proceed calculation to obtain

$\lim_{tarrow\infty}||u_{i}^{[\mathrm{f}_{()}}]t||_{L^{1}}$ $=$ $\lim_{t}\langle\Lambda_{i}, u_{i}([\mathrm{f}]t)\rangle$

$=$ $\lim_{t}(-\log \mathrm{E}_{\Lambda}. \exp\{-\langle \mathrm{x}(t), \mathrm{f}\rangle k\})$

$=$ $-\log \mathrm{E}_{\mathrm{t}^{\mathrm{e}}}\mathrm{x}\mathrm{p}\{-\langle \mathrm{x}(\infty), \mathfrak{h}_{k}\}>0$

where we employed Lemma 4. This completes the proof.
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