ANALYTIC AND GEVREY REGULARITY FOR SOME MODEL EQUATIONS

ANTONIO BOVE AND DAVID TARTAKOFF

Abstract

We state some Gevrey hypoellipticity results for some model equations representing certain classes of sums of squares of vector fields operators．

1．Introduction and statements

The purpose of this talk is to present some results concerning the analytic or Gevrey regularity of solutions of＂sums of squares of vector fields＂type equations with smooth－i．e．analytic－data．

More precisely we are concerned with the regularity of the solutions of second order differential equations

$$
P(x, D) u(x)=f(x)
$$

in an open subset Ω of \mathbb{R}^{n} ，where

$$
\begin{equation*}
P(x, D)=\sum_{j=1}^{r}\left(X_{j}(x, D)\right)^{2}, \quad x \in \Omega \tag{1.1}
\end{equation*}
$$

X_{j} denoting a homogeneous vector field with analytic coefficients．
It is well known since the fundamental paper of Hörmander［10］that the operator in（1．1）is C^{∞}－hypoelliptic if the vector fields $X_{j}, j=$ $1, \ldots, r$ ，and their brackets up to a finite length N generate the n－ dimensional Lie algebra which we identify with \mathbb{R}^{n} itself．When this occurs we say that P satisfies Hörmander＇s condition of order N ．

We shall always assume that Hörmander＇s condition up to a finite order N is verified．

A very natural question then can be asked：assume that the vector fields $X_{j}, j=1, \ldots, r$ ，have real analytic coefficients．Is then P analytic hypoelliptic？

It is known since the famous example of Baouendi－Goulaouic［1］that this is not true（see also Métivier［13］），even though six years later

Tartakoff [21] and Treves [25] independently showed that if the characteristic set is a symplectic manifold and the localized operator is "transversally non-degenerate", then C^{∞}-hypoellipticity entails analytic hypoellipticity.

In particular in the above mentioned paper Treves formulated the following

Conjecture 1 (Treves' first conjecture). If Char P, assumed to be an analytic manifold, contains a smooth curve whose tangent vector at some point is orthogonal, with respect to the symplectic form, to the tangent space to Char P at that point, then P is not analytic hypoelliptic.

This conjecture is still standing unproved and a number of authors have worked on it.

It is easy to see though that the above conjecture cannot account for the following operator produced by Oleinik and Radkevič in [14], [15]:

$$
\begin{equation*}
P\left(x, D_{x}, D_{t}, D_{s}\right)=D_{x}^{2}+x^{2(p-1)} D_{t}^{2}+x^{2(q-1)} D_{s}^{2}, \tag{1.2}
\end{equation*}
$$

where $(x, t, s) \in \mathbb{R}^{3}, p, q$ are non negative integers and $q \geq p$.
Let us denote by G^{s} the class of Gevrey functions of type s and by $G^{\left(s_{1}, \ldots, s_{n}\right)}$ the class of Gevrey functions of partial type $s_{j}, j=1, \ldots, n$, where s, s_{j} are real numbers ≥ 1. They can be defined as follows:

$$
\begin{equation*}
G^{s}=\left\{u\left|u \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad\right| \partial^{\alpha} u(x) \mid \leq C^{1+|\alpha|} \alpha!^{s}, \text { locally in } x\right\} \tag{1.3}
\end{equation*}
$$

where C is a positive constant depending only on u;

$$
\begin{array}{r}
G^{\left(s_{1}, \ldots, s_{n}\right)}=\left\{u\left|u \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad\right| \partial^{\alpha} u(x)\left|\leq C^{1+|\alpha|} \alpha_{1}\right|^{\mid s_{1}} \ldots \alpha_{n}!^{s_{n}},\right. \tag{1.4}\\
\text { locally in } x\},
\end{array}
$$

where $C>0$ depends on u only.
We remark that if $s_{j}=1$ for some $j \in\{1, \ldots, n\}$ we get a function partially analytic with respect to the variable x_{j}.

Coming back to the operator in (1.2) we have the following
Theorem 1 ([15], [7], [3]). The operator P in (1.2) is $G^{q / p}$ hypoelliptic and not better. More precisely we have that if u solves the equation $P u=f$ and f is analytic, then $u \in G^{\left(s_{1}, s_{2}, s_{3}\right)}$ where

$$
s_{1} \geq 1+\frac{1}{p}-\frac{1}{q}, \quad s_{2} \geq 1, \quad s_{3} \geq \frac{q}{p} .
$$

Gevrey regularity for model equations
Moreover each of these threshold values is optimal.
It is then evident that, since the characteristic set of P is a symplectic manifold, Conjecture 1 does not yield any result in this case.

To account for such cases F. Treves proposed a second conjecture; it essentially deals with operators of the form "sum of squares" of vector fields and makes no assumption on the regularity of the characteristic set. For the precise statement we refer to Treves' original paper [27]. Here we formulate a much less general form of this conjecture, which is suitable for our needs in the present discussion.

Definition 1. Let $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be a multiindex and $i_{j} \in\{1, \ldots, r\}$, $j=1, \ldots, k$. We set

$$
\begin{equation*}
X_{I}=\left\{X_{i_{1}},\left\{X_{i_{2}},\left\{X_{i_{3}}, \ldots,\left\{X_{i_{k-1}}, X_{i_{k}}\right\} \ldots\right\}\right\}\right\} \tag{1.5}
\end{equation*}
$$

where $\left\{X_{i}, X_{j}\right\}$ denotes the Poisson bracket of the (symbols of the) vector fields X_{i} and X_{j}, so that X_{I} is again a vector field with analytic coefficients.

$$
\begin{equation*}
|I|=k \tag{1.6}
\end{equation*}
$$

Then
Conjecture 2 (Treves' second conjecture). Let P be as in (1.1) and let us assume that all the sets involved are analytic manifolds, at least near a fixed base point. Define:

$$
\begin{align*}
& \Sigma_{1}=\operatorname{Char} P \\
& \Sigma_{2}=\Sigma_{1} \cap \bigcap_{|I|=2} X_{I}^{-1}(0) \tag{1.7}\\
& \cdots \\
& \Sigma_{j}=\Sigma_{j-1} \cap \bigcap_{|I|=j} X_{I}^{-1}(0)
\end{align*}
$$

The above sets are called Poisson strata. We point out explicitly that, since we are assuming that P satisfies Hörmander condition, the above sequence of Poisson strata comes to an end, i.e. there exists an integer N such that $\Sigma_{N}=\varnothing$. Evidently we have that

$$
\Sigma_{1} \supseteq \Sigma_{2} \supseteq \cdots \supseteq \Sigma_{N-1} \supseteq \Sigma_{N}=\varnothing \text {. }
$$

Then the operator P in (1.1) is analytic hypoelliptic if and only if every Poisson stratum is a symplectic manifold.

It is quite straightforward to verify that in the case of the OleinikRadkevič operator in (1.2) we have:

$$
\begin{gather*}
\Sigma_{1}=\{(x, t, s ; \xi, \tau, \sigma) \mid x=\xi=0\} \\
\Sigma_{2}=\cdots=\Sigma_{p-1}=\Sigma_{1} \\
\Sigma_{p}=\{(x, t, s ; \xi, \tau, \sigma) \mid x=\xi=0, \tau=0\} \tag{1.8}\\
\Sigma_{p+1}=\cdots=\Sigma_{q-1}=\Sigma_{p} \\
\Sigma_{q}=\varnothing
\end{gather*}
$$

near the point $\left(0, e_{n}\right)$. In this case we see that the strata $\Sigma_{1}, \ldots, \Sigma_{p-1}$ are symplectic.

Here we address the following question: consider an operator which is a sum of 3 squares of vector fields in 3 variables and assume that the associated Poisson stratification has the same symplectic character (and the same Hörmander numbers) as that of the operator (1.2). By this we mean that the lengths of the two stratifications are the sameand that each stratum of one is symplectically diffeomorphic to the corresponding stratum of the other. In particular this implies that the relative codimensions are the same.

The question is: does such an operator then exhibit the same hypoellipticity behaviour as that in (1.2)?

In this talk we consider only model operators and and refer to a paper in preparation [4] for more general results, as well as for the proofs.

Actually we have the
Theorem 2. Let $q \geq p \geq 1$.
(i) Consider the operator

$$
\begin{equation*}
P_{1}\left(x, D_{x}, D_{t}, D_{s}\right)=D_{x}^{2}+x^{2(p-1)}\left(D_{t}+x^{q-p} D_{s}\right)^{2}+x^{2(q-1)} D_{s}^{2} \tag{1.9}
\end{equation*}
$$

Then P_{1} is $G^{q / p}$-hypoelliptic.
(ii) Consider the operator

$$
\begin{equation*}
P_{2}\left(x, D_{x}, D_{t}, D_{s}\right)=D_{x}^{2}+x^{2(p-1)}\left(D_{t}+x^{q-p} D_{s}\right)^{2}+x^{2(q-1)} D_{t}^{2} \tag{1.10}
\end{equation*}
$$

Then:

Gevrey regularity for model equations
(a) If $q \geq 2 p, P_{2}$ is $G^{q / p}$-hypoelliptic.
(b) If $p \leq q<2 p, P_{2}$ is $G^{3-2(p / q)}$-hypoelliptic.

Some comments to Theorem 2 are in order.
1- It is easy to check that the Poisson stratification associated to the model operators P_{1} and P_{2} is the same as that of the OleinikRadkevič operator in (1.2), namely (1.8).
2- In the case of a generic sum of three squares of analytic ector fields with a Poisson stratification symplectically diffeomorphic to (1.8) it is possible to deduce a standard form for the vector fields. By inspection of the construction the standard forms can be classified in a symplectically invariant way into two broad classes of which P_{1} and P_{2} are model representatives.
3- The index $\frac{q}{p}$ is obviously optimal in this generality, since it is so in the case of the operator (1.2). In the range $p \leq q<2 p$ we have $3-2 \frac{p}{q}<\frac{q}{p}$, hence the threshold obtained in (ii)(b) is worse than that in (ii)(a). We are not able to prove that (ii)(b) is an optimal result.
4- The (motivation of the) proof of (ii)(b) is deeply microlocal. When $q<2 p$ we obtain an apparently less sharp result because of the existence of null bicharacteristics of the vector field D_{x} issuing from points in the intersection of the characteristic varieties of the other vector fields.
5- When $p=q$ we obtain analytic hypoellipticity.

As a final remark we want to point out that if the number of symplectic strata of the Poisson stratification "increases", then we can hope to obtain a better Gevrey hypoellipticity threshold. This is the case for the following

Theorem 3 ([5]). Let $p, q, \ell, k \in \mathbb{N}, q \geq p \geq 1$ and $k \leq \ell(q-1)$. Set

$$
\begin{equation*}
P_{3}\left(x, t ; D_{x}, D_{t}, D_{s}\right)=D_{x}^{2}+x^{2(q-1)}\left(D_{t}+\left(x^{2 k}+t^{2 \ell}\right) D_{s}\right)^{2}+x^{2(p-1)} D_{t}^{2} \tag{1.11}
\end{equation*}
$$

Then P_{3} is G^{s}-hypoelliptic for every $s \geq s_{0}$ with

$$
s_{0}=\frac{(q-1)(q+2 k)}{(p-1)(q+2 k)+q-p}
$$

We remark that the Poisson stratification associated to the operator in (1.11) is

$$
\begin{gather*}
\Sigma_{1}=\{(x, t, s ; \xi, \tau, \sigma) \mid x=\xi=0\} \\
\Sigma_{2}=\cdots=\Sigma_{p-1}=\Sigma_{1} \\
\Sigma_{p}=\{(x, t, s ; \xi, \tau, \sigma) \mid x=\xi=0 \tau=0\} \\
\Sigma_{p+1}=\cdots=\Sigma_{q-1}=\Sigma_{p} \tag{1.12}\\
\Sigma_{q}=\{(x, t, s ; \xi, \tau, \sigma) \mid x=\xi=0 t=\tau=0\} \\
\Sigma_{q+1}=\cdots=\Sigma_{q+2 k-1}=\Sigma_{q} \\
\Sigma_{q+2 k}=\varnothing
\end{gather*}
$$

Moreover we have

$$
s_{0} \leq \frac{q+2 k}{q}
$$

and $s_{0}=1$ if $p=q$.

2. Proof of (i) in Theorem 2

Just to give the flavor of the technique we employ we want to prove here part (i) of Theorem 2. Let

$$
\begin{equation*}
X_{1}=D_{x}, \quad X_{2}=x^{p-1}\left(D_{t}+x^{q-p} D_{s}\right), \quad X_{3}=x^{q-1} D_{s} \tag{2.1}
\end{equation*}
$$

be the three vector fields the sum of whose squares equals P_{1}. From now on we shall write P instead of P_{1}.

Denote by φ an Ehrenpreis type cut off function; this means that for any pair of open sets $\omega, \Omega \subset \mathbb{R}^{3}, \omega \subset \Omega$, there is a positive constant C_{0} such that $\varphi \equiv 1$ on ω and

$$
\left|D^{\alpha} \varphi(x)\right| \leq C_{0}^{1+|\alpha|} N^{|\alpha|}
$$

for $|\alpha| \leq q N$. Here N denotes an arbitrarily large positive integer. Of course, whatever the choice of N is, the so defined function φ depends on N, but we omit to write this dependence to keep the notation simple.
¿From now on N will be as large as required; we stress that when $|\alpha|$ is close to N the bound for φ is essentially a bound for analytic functions.

Gevrey regularity for model equations
The other ingredient we need for our proof is an a priori estimate of Rothschild-Stein type:

$$
\begin{equation*}
\sum_{j=1}^{3}\left\|X_{j} u\right\|^{2}+\|u\|_{\frac{1}{q}}^{2} \leq C\left(|\langle P u, u\rangle|+\|u\|^{2}\right) \tag{2.2}
\end{equation*}
$$

where $\|\cdot\|_{s}$ denotes the norm in the Sobolev space of order s and $\|\cdot\|_{0}=\|\cdot\|$ is the L^{2} norm.

Let φ be a cut off function of the type described above and let us replace u by $\varphi D_{s}^{r} u$ in (2.2). Evidently the Gevrey (analytic) regularity for u can be deduced from from a suitable estimate of $\varphi D_{s}^{r} u$, where r is a large positive integer and $N \sim r$:

$$
\begin{equation*}
\sum_{j=1}^{3}\left\|X_{j} \varphi D_{s}^{r} u\right\|^{2}+\left\|\varphi D_{s}^{r} u\right\|_{\frac{1}{q}}^{2} \leq C\left(\left|\left\langle P \varphi D_{s}^{r} u, \varphi D_{s}^{r} u\right\rangle\right|+\left\|\varphi D_{s}^{r} u\right\|^{2}\right) \tag{2.3}
\end{equation*}
$$

Let us consider the term containing P in the right hand side. Commuting P with φD_{s}^{r} we must estimate expressions of the type

$$
\left\langle\left[X_{j}^{2}, \varphi D_{s}^{r}\right] u, \varphi D_{s}^{r} u\right\rangle
$$

with $j=1,2,3$. Let us start with $j=3$. We may write

$$
\begin{aligned}
& \left|\left\langle\left[X_{3}^{2}, \varphi D_{s}^{r}\right] u, \varphi D_{s}^{r} u\right\rangle\right| \\
& \quad \leq 2\left|\left\langle X_{3} \varphi_{s}^{\prime} D_{s}^{r-1} u, X_{3} \varphi D_{s}^{r} u\right\rangle\right|+\left|\left\langle\frac{1}{N} X_{3} \varphi_{s s}^{\prime \prime} D_{s}^{r-1} u, N X_{3} \varphi D_{s}^{r-1} u\right\rangle\right|
\end{aligned}
$$

where N is a large integer comparable in size with r and we are neglecting terms in which one of the $r s$-derivatives has been transferred onto φ, thus yielding a shift with a net gain whose (pure) iteration would lead to analyticity.

The above quantity can be estimated by:

$$
\begin{align*}
& \left|\left\langle\left[X_{3}^{2}, \varphi D_{s}^{r}\right] u, \varphi D_{s}^{r} u\right\rangle\right| \tag{2.4}\\
& \leq \frac{1}{2}\left\|X_{3} \varphi D_{s}^{r} u\right\|^{2}+C\left[\left\|X_{3} \varphi^{\prime} D_{s}^{r-1} u\right\|^{2}\right. \\
& \left.\quad+\left\|\frac{1}{N} X_{3} \varphi^{\prime \prime} D_{s}^{r-1} u\right\|^{2}+\left\|N X_{3} \varphi D_{s}^{r-1} u\right\|^{2}\right]
\end{align*}
$$

Let us take a look at the term with $j=2$. We have:

$$
\begin{aligned}
& \left\langle\left[X_{2}^{2}, \varphi D_{s}^{r}\right] u, \varphi D_{s}^{r} u\right\rangle \\
& \quad=2\left\langle x^{p-1}\left(\varphi_{t}^{\prime}+x^{q-p} \varphi_{s}^{\prime}\right) D_{s}^{r} u, X_{2} \varphi D_{s}^{r} u\right\rangle \\
& \quad+
\end{aligned}
$$

Before proceeding further we need two remarks: (a) Since $p \leq q$ we cannot in general recover an X vector field using one s-derivative. Hence, to place a vector field before the main term, we must use the a priori estimate (2.3), thus using (i.e., gaining) less than one s-derivative. (b) A term of the form $x^{p-1}\left(\varphi_{t}^{\prime}+x^{q-p} \varphi_{s}^{\prime}\right)$ can be estimated by $|x|^{p-1}\left|\varphi^{\prime}\right|$ near the origin.

We can then conclude:

$$
\begin{align*}
& \left|\left\langle\left[X_{2}^{2}, \varphi D_{s}^{r}\right] u, \varphi D_{s}^{r} u\right\rangle\right| \tag{2.5}\\
& \leq \frac{1}{2}\left\|X_{2} \varphi D_{s}^{r} u\right\|^{2}+C\left[\left\|x^{p-1} \varphi^{\prime} D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2}\right. \\
& \left.\quad+\left\|\frac{1}{N} x^{p-1} \varphi^{\prime \prime} D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2}+\left\|N x^{p-1} \varphi D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2}\right]
\end{align*}
$$

where $\varphi^{\prime}, \varphi^{\prime \prime}$ stand for first and second derivatives of φ (in s or t).
The term $j=1$ is negligible at this stage, since we may take $D_{x} \varphi=0$ near $x=0$ and if $x \neq 0$ our operator is evidently analytic hypoelliptic (actually it is elliptic). In spite of this fact though, terms involving brackets with X_{1} do play an important role in the following because of the presence of the powers of x scattered around by the other fields.

To stress this fact it is more convenient to replace $\varphi D_{s}^{r} u$ with an expression of the form $x^{a} \varphi^{(m)} D_{s}^{r-\frac{b}{q}} u$, where a, m and b are integers.

Gevrey regularity for model equations
Using (2.4) and (2.5) we then obtain:

$$
\begin{align*}
& \sum_{j=1}^{3}\left\|X_{j} x^{a} \varphi^{(m)} D_{s}^{r} u\right\|^{2}+\left\|x^{a} \varphi^{(m)} D_{s}^{r} u\right\|_{\frac{1}{q}}^{2} \tag{2.6}\\
& \leq C\left[\left|\left\langle P x^{a} \varphi^{(m)} D_{s}^{r} u, x^{a} \varphi^{(m)} D_{s}^{r} u\right\rangle\right|+\left\|x^{a} \varphi^{(m)} D_{s}^{r} u\right\|^{2}\right] \\
& \leq \frac{1}{2} \sum_{j=1}^{3}\left\|X_{j} x^{a} \varphi^{(m)} D_{s}^{r} u\right\|^{2}+C\left[\left\|x^{a} \varphi^{(m)} D_{s}^{r} P u\right\|^{2}\right. \\
& +\sum_{j=1}^{3}\left\|X_{j} x^{a} \varphi^{(m+1)} D_{s}^{r-1} u\right\|^{2}+\sum_{j=1}^{3}\left\|\frac{1}{N} X_{j} x^{a} \varphi^{(m+2)} D_{s}^{r-1} u\right\|^{2} \\
& \quad+\sum_{j=1}^{3}\left\|N X_{j} x^{a} \varphi^{(m)} D_{s}^{r-1} u\right\|^{2} \\
& +\left\|x^{a+p-1} \varphi^{(m+1)} D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2}+\left\|\frac{1}{N} x^{a+p-1} \varphi^{(m+2)} D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2} \\
& \\
& \left.\quad+\left\|N x^{a+p-1} \varphi^{(m)} D_{s}^{r-\frac{1}{q}} u\right\|_{\frac{1}{q}}^{2}\right] .
\end{align*}
$$

Actually the exponent on x never needs to increase beyond $q-2$; if $a+p-1 \geq q-1$, instead of using the subelliptic part of (2.5) we convert $x^{a+p-1} D_{s}$ into $x^{a+p-1-(q-1)} X_{3}$, and, since $p<q$, the exponent on x has actually decreased.

We stress the fact that this trick only works in the case of the operator in (1.9). It is evident that, in order to do the same for the model operator in (1.10), we must "bound" D_{s} by D_{t} (or rather some power of D_{s} by D_{t}) and this in turn means that we need to microlocalize the estimation procedure. Furthermore, in case (1.10), even if we could apply such a procedure, there should be some (in general not conic) region of the cotangent bundle for which no treatment of this type would be possible, so that we must then follow another approach.

Following [3], it is possible to iterate inequality (2.6), with the exponent on x never exceeding $q-2$.

Denoting by ρ the number of x-derivatives landing onto the various powers of x (we recall that the behavior of ϕ with respect to x plays no role here), by c the number of X_{2} vector fields landing onto φ (they each carry the factor x^{p-1}), by e the number of times that a power of x exceeds $q-1$, thus allowing us to decrease by e the power of D_{s} and by
f the number of X_{3} fields landing onto the cut off function and yielding good analytic-growth terms, we obtain:

$$
\begin{align*}
.7) & \sum_{j=1}^{3}\left\|X_{j} x^{a} \varphi^{(m)} D_{s}^{r} u\right\|^{2}+\left\|x^{a} \varphi^{(m)} D_{s}^{r} u\right\|_{\frac{1}{q}}^{2} \leq\left\|x^{a} \varphi^{(m)} D_{s}^{r} P u\right\|^{2} \tag{2.7}\\
+\sup _{\Delta \geq 0} C^{\Delta} & {\left[\sum_{j=1}^{3}\left\|N^{-\ell} X_{j} x^{a-\rho+c(p-1)-e(q-1)} \varphi^{(m+c+f+\ell)} D_{s}^{r-e-f-\frac{c+\rho}{q}} u\right\|^{2}\right.} \\
+ & \left.\left\|N^{-\ell} x^{a-\rho+c(p-1)-e(q-1)} \varphi^{(m+c+f+\ell)} D_{s}^{r-e-f-\frac{c+\rho-1}{q}} u\right\|_{\frac{1}{q}}^{2}\right]
\end{align*}
$$

where

$$
\Delta=e+f+c+\rho
$$

is the quantity by which D_{s}^{r} is decreased in the process, C is a fixed positive constant and the following constraints hold:

$$
\left\{\begin{array}{l}
0 \leq a-\rho+c(p-1)-e(q-1)<q-1 \tag{2.8}\\
|\ell| \leq c+f
\end{array}\right.
$$

Pursuing this task until the s-derivatives are used up and choosing $a=m=0$ as a starting point, we obtain (suppressing the term with $P u$),

$$
\begin{aligned}
\sum_{j=1}^{3}\left\|X_{j} \varphi D_{s}^{r} u\right\|^{2} & +\left\|\varphi D_{s}^{r} u\right\|_{\frac{1}{q}}^{2} \\
& \leq \sup _{r-1 \leq \Delta \leq r} C^{\Delta}\left(N^{-\ell}\left|\varphi^{(c+f+\ell+1)}\right|\|u\|\right)^{2} \leq C C_{1}^{r} N^{2(c+f)}
\end{aligned}
$$

Keeping into account the relations (2.8), the definition of Δ and the fact that the worst estimate occurs if f is minimum and c is maximum, we get that $-\rho+c(p-1)-e(q-1) \sim 0$ and

$$
e \frac{q-1}{q}+\frac{c}{q}+\frac{\rho}{q} \sim r
$$

from which we deduce that

$$
c \sim \frac{q}{p} r
$$

so that

$$
c+f \lesssim \frac{q}{p} r
$$

Gevrey regularity for model equations
Choosing $N \sim r$ we reach the desired conclusion.

References

[1] M.S. Baouendi and C. Goulaouic, Analyticity for Degenerate Elliptic Equations and Applications Proc. Symp. in Pure Math. 23 (1971), pp. 79-84.
[2] A. Bove and D.S. Tartakoff, Propagation of Gevrey Regularity for a Class of Hypoelliptic Equations, Transactions of the A.M.S. 348(7) (1996), pp. 25332575.
[3] A. Bove and D.S. Tartakoff, Optimal Non-Isotropic Gevrey Exponents for Sums of Squares of Vector Fields, Comm. P.D.E. 22(7) (1997), pp. 1263-1282.
[4] A. Bove and D.S. Tartakoff, In preparation.
[5] A. Bove and D.S. Tartakoff, In preparation.
[6] M. Christ, Certain Sums of Squares of Vector Fields Fail to Be Analytic Hypoelliptic, Comm. in P.D.E. 10 (1991), pp. 1695-1707.
[7] M. Christ, Intermediate Gevrey Exponents Occur, Comm. in P.D.E. 22 (1997), pp. 359-379.
[8] L. Ehrenpreis, Solutions of some Problems of Division IV, Amer. J. Math. 82 (1960), pp. 522-588.
[9] N. Hanges and A. Himonas, Singular Solutions for Sums of Squares of Vector Fields, Comm. in P.D.E. 16(8,9) (1991), pp. 1503-1511.
[10] L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math. 119 (1967), pp. 147-171.
[11] L. Hörmander, The Analysis of Linear Partial Differential operators, vols. I-IV, Springer Verlag, Berlin, 1985.
[12] K. Kajitani and S. Wakabayashi, Hypoelliptic Operators in Gevrey Classes, Recent Developments in Hyperbolic Equations, L. Cattabriga et al. Ed.s, Pitman Research Notes in Math. 183 (1988), pp. 115-134.
[13] G. MÉtivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), pp. 823-860.
[14] O. Oleinik, On the analyticity of solutions to partial differential equations and systems, Soc. Math. de France, Astérisque 2-3 (1973), pp. 272-285.
[15] O. Oleinik and Radkevich, R., Conditions for the analyticity of all solutions of a second order linear equation (Russian) Uspehi Mat. Nauk 177(3) (1974), pp. 221-222.
[16] L.P. Rothschild and E.M. Stein, Hypoelliptic Differential Operators and Nilpotent Groups, Acta Math. 137 (1977), pp. 248-315.
[17] E.M. Stein An Example on the Heisenberg Group Related to the Lewy Operator, Inventiones mathematicae 69 (1982), pp. 209-216.
[18] D.S. Tartakoff, Gevrey Hypoellipticity for Subelliptic Boundary Value Problems, Communications on Pure and Applied Math. 26 (1973), pp. 251-312.
[19] D.S. Tartakoff, On the Global Real Analyticity of Solutions to \square_{b} on Compact Manifolds, Comm. in P.D.E. 1 (1976), pp. 283-311.
[20] D.S. Tartakoff, On the Local Gevrey and Quasianalytic Hypoellipticity for \square_{b}, Comm. in P.D.E. 2 (1977), pp. 699-712.
[21] D.S. Tartakoff, Local Analytic Hypoellipticity for \square_{b} on Non-Degenerate Cauchy Riemann Manifolds, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), pp. 30273028.
[22] D.S. Tartakoff, On the Local Real Analyticity of Solutions to \square_{b} and the $\bar{\partial}$-Neumann Problem, Acta Math. 145 (1980), pp. 117-204.
[23] D.S. Tartakoff, Operators with Multiple Characteristics - An L^{2} Proof of Analytic Hypoellipticity, Conference on Linear Partial and Pseudodifferential Operators, Rend. Sem. Mat. Univ. Politec. Torino (1983), pp. 251-282.
[24] D.S. Tartakoff, Global (and local) analyticity for second order operators constructed from rigid vector fields on products of tori, Transactions of the A.M.S. 348(7) (1996), pp. 2577-2583.
[25] F. Treves, Analytic Hypo-ellipticity of a Class of Pseudo-Differential Operators with Double Characteristics and Application to the $\bar{\partial}$-Neumann Problem, Comm. in P.D.E. 3 (6-7) (1978), pp. 475-642.
[26] F. Treves, Hypo-Analytic structures, Local Theory, Princeton University Press, Princeton, N.J., 1992.
[27] F. Treves, Symplectic Geometry and Analytic Hypoellipticity, Proc. Symposia Pure Math., 65 (1999), pp. 201-219.

Dipartimento di Matematica, Università di Bologna, Piazza di Porta
S. Donato 5, 40127 Bologna, Italia

E-mail address: bove@dm.unibo.it
Department of Mathematics, University of Illinois at Chicago, m/c 247,851 S. Morgan St., Chicago IL 60607

E-mail address: dst@uic.edu

