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ABSTRACT. We state some Gevrey hypoellipticity results for some
model equations representing certain classes of sums of squares of
vector fields operators.

1. INTRODUCTION AND STATEMENTS

The purpose of this talk is to present some results concerning the
analytic or Gevrey regularity of solutions of “sums of squares of vector
fields” type equations with smooth–i.e. analytic–data.

More precisely we are concerned with the regularity of $\mathrm{t}\mathrm{I}\mathrm{l}\mathrm{e}$ solutions
of $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\dot{\mathrm{d}}$ order differential equations

$P(x, D)u(x)=f(.x)$

in an open subset $\Omega$ of $\mathbb{R}^{n}$ , where

(1.1) $P(x, D)= \sum_{j=1}^{r}(X_{j}(x, D))^{2}$ , $x\in\Omega$ ,

$X_{j}$ denoting a homogeneous vector field with analytic coefficients.
It is well known since the fundamental paper of H\"ormander [10] that

the operator in (1.1) is $C^{\infty}$-hypoelliptic if the vector fields $X_{j},$ $j=$
$1,$ . -. , $r$ , and their brackets up to a finite length $N$ generate the n-
dimensional Lie algebra which we identify with $\mathbb{R}^{n}$ itself. When this
occurs we say that $P$ satisfies H\"ormander’s condition of order $N$ .

We shall always assume that H\"ormander’s condition up to a finite
order $N$ is verified.

A very natural question then can be asked: assume that the vector
fields $X_{j},$ $j=1,$ $\ldots$ , $r$ , have real analytic coefficients. Is then $P$ analytic
hypoelliptic?

It is known since the famous example of Baouendi-Goulaouic [1] that
$\mathrm{t}1_{1}\mathrm{i}\mathrm{s}$ is not true (see also M\’etivier [13]), even though six years later
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Tartakoff [21] and Treves [25] independently showed that if the char-
acteristic sct is a symplectic manifold and the localized operator is

$‘(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ non-degenerate”, then $C^{\infty}$-hypoellipticity entails ana-
lytic $\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{o}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{i}_{1)}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}$.

In particular in the above mentioned paper Treves formulated the
following

Conjecture 1 (Treves’ first conjecture). If Char $P$ , assumed $t,\mathit{0}$ be an
$anal,ytic$ manifold, contains a smooth curve whose tangent vector at
some point is orthogonal, with respect to the symplectic form, to the
tangent, space to Char $P$ at that point, then $P$ is not analytic hypoellip-
tic.

This conjecture is still standing unproved and a number of authors
have worked on it.

It is easy to see though that the above conjecture cannot account for
the following operator produced by Oleinik and Radkevi\v{c} in [14], [15]:
(1.2) $P(x, D_{x}, D_{t}, D_{s})=D_{x}^{2}+x^{2(p-1)}D_{t}^{2}+x^{2(q-1\rangle}D_{s}^{2}$ ,

where $(x, t, s)\in \mathbb{R}^{3},$ $p,$ $q$ are non negative integers and $q\geq p$ .
Let us denote by $G^{s}$ the class of Gevrey functions of type $s$ and by

$G^{(s_{1},\ldots,s_{n})}$ the class of Gevrey functions of partial type $s_{j},$ $j=1,$ $\ldots,$
$n$ ,

where $s,$ $s_{j}$ are real numbers $\geq 1$ . They can be defined as follows:
(1.3) $G^{s}=$ { $u|u\in C^{\infty}(\mathbb{R}^{n})$ , $|\partial^{\alpha}u(x)|\leq C^{1+|\alpha|}\alpha!^{s}$ , locally in $x$ },
where $C$ is a positive constant depending only on $u$ ;

(1.4) $G^{(s\iota,\ldots,s_{n})}=\{u|u\in C^{\infty}(\mathbb{R}^{n})$, $|\partial^{\alpha}u(x)|\leq C^{1+|\alpha|}\alpha_{1}!^{s_{1}}\ldots\alpha_{n}!^{s_{n}}$ ,

locally in $x$ },
where $C>0$ depends on $u$ only.

We remark that if $s_{j}=1$ for some $j\in\{1, \ldots, n\}$ we get a function
partially analytic with respect to the variable $x_{j}$ .

Coming back to the operator in (1.2) we have the following

Theorem 1 ([15], [7], [3]). The operator $P$ in (1.2) is $G^{q/p}$ hypoelliptic
and not $bett,er$. More precisely we have that if $u$ solves the equation
$Pu=f$ and $f$ is analytic; $t,henu\in G^{(s_{1},s_{2},s_{3})}$ where

$s_{1} \geq 1+\frac{1}{p}-\frac{1}{q}$ , $s_{2}\geq 1$ , $s_{3} \geq\frac{q}{p}$ .
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Moreover each of these threshold values is optimal.

It is then evident that, since the characteristic set of $P$ is a symplectic
manifold, Conjecture 1 does not yield any result in this case.

To account for such cases F. Treves proposed a second conjecture; it
essentially deals with operators of the form “sum of squares” of vector
fields and makes no assumption on the regularity of the characteristic
set. For the precise statement we refer to Treves’ original paper [27].
Here we formulate a much less general form of this conjecture, which
is suitable for our needs in the present discussion.

Definition 1. Let $I=(i_{1}, i_{2}, \ldots, i_{k})$ be a multiindex and $i_{j}\in\{1, \ldots, r\}$ ,
$j=1,$ $\ldots,$

$k$ . We set

(1.5) $X_{I}=\{X_{i_{1}}, \{X_{i_{2}}, \{X_{i_{3}}, \ldots, \{X_{i_{k-1}}, X_{i_{k}}\}\ldots\}\}\}$,

where $\{X_{i}, X_{j}\}$ denotes the Poisson bracket of the (symbols of the) vec-
$tor$ fields $X_{i}$ and $X_{j}$ , so that $X_{I}$ is again a vector field with analytic

coefficients.
(1.6) $|I|=k$ .

Then

Conjecture 2 (Treves’ second conjecture). Let $P$ be as in (1.1) and
let us assume that all the sets involved are analytic manifolds, at least
near a fixed base point. Define:

$\Sigma_{1}=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}P$

$\Sigma_{2}=\Sigma_{1}\cap\bigcap_{|I|=2}X_{I}^{-1}(0)$

(1.7)

$\Sigma_{j}=\Sigma_{j-1}\cap\bigcap_{|I|=j}X_{I}^{-1}(0)$

The above sets are called Poisson strata. We point out explicitly that,
since we are assuming that $P$ satisfies H\"ormander condition, the above
sequence of Poisson strata comes to an end, $i.e$ . there exists an integer
$N$ such that $\Sigma_{N}=\emptyset$ . Evidently we have that

$\Sigma_{1}\supseteq\Sigma_{2}\supseteq.$ $..\supseteq\Sigma_{N-1}\supseteq\Sigma_{N}=\emptyset$ .
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Then the operator $P$ in (1.1) is analytic hypoelliptic if and only if every
Poisson stratum is a $symplect,ic$ manifold.

It is quite straightforward to verify that in the case of the Oleinik-
Radkevi\v{c} operator in (1.2) we have:

$\Sigma_{1}=\{(x, t, s;\xi, \tau, \sigma)|.x=\xi=0\}$

$\Sigma_{2}=\cdots=\Sigma_{p-1}=\Sigma_{1}$

(1.8) $\Sigma_{\rho}=\{(x, t, s;\xi, \tau, \sigma)|x=\xi=0, \tau=0\}$

$\Sigma_{p+1}=\cdots=\Sigma_{q-1}=\Sigma_{p}$

$\Sigma_{q}=\emptyset$ ,

near $\mathrm{t}1_{1}\mathrm{e}$ point $(0, e_{n})$ . In this case we see that the strata $\Sigma_{1},$
$\ldots$ , $\Sigma_{p-1}$

are symplcctic.

Here we address the following question: consider an operator which
is a sum of 3 squares of vector fields in 3 variables and assume that
the associated Poisson stratification has the same symplectic character
(and t,he same H\"ormander numbers) as that of the operator (1.2). By
this we mean that the lengths of the two stratifications are the same-
and that each stratum of one is symplectically diffeomorphic to the
corresponding stratum of the other. In particular this implies that the
relative codimensions are the same.

The question is: does such an operator then exhibit the same hy-
poellipticity behaviour as that in (1.2)?.

In this talk we consider only model operators and and refer to a paper
in preparation [4] for more general results, as well as for the proofs.

Actually we have tlle

Theorem 2. Let $q\geq p\geq 1$ .

(i) Consider the operator

(1.9) $P_{1}(x, D_{x}, D_{t}, D_{s})=D_{x}^{2}+x^{2(p-1)}(D_{t}+x^{q-p}D_{s})^{2}+x^{2(q-1)}D_{s}^{2}$ .

Then $P_{1}$ is $G^{q/\rho}$ -hypoelliptic.
(ii) Consider the operator

(1.10) $P_{2}(.x, D_{x}, D_{t}, D_{s})=D_{x}^{2}+x^{2(\rho-1)}(D_{t}+x^{q-p}D_{s})^{2}+x^{2(q-1)}D_{t}^{2}$ .

Then:
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$(a)$ If $q\geq 2p,$ $P_{2}$ is $G^{q/p}$ -hypoelliptic.
$(l))$ If $p\leq q<2p,$ $P_{2}$ is $G^{3-2(p/q)}-hypoell\iota pt\iota c$ .

Sorne commcnts to Theorem 2 are in order.

1-It is easy to check that the Poisson stratification associated to
tlle model operators $P_{1}$ and $P_{2}$ is the same as that of the Oleinik-
Radkevi\v{c} operator in (1.2), namely (1.8).
2- In thc case of a generic sum of three squares of analytic ector
fields with a Poisson stratification symplectically diffeomorphic
to (1.8) it is possible to deduce a standard form for the vector
fields. By inspection of the construction the standard forms can be
classified in a symplectically invariant way into two broad classes
of wfiich $P_{1}$ and $P_{2}$ are model representatives.
3- The index $\frac{q}{p}$ is obviously optimal in this generality, since it is
so in the case of the operator (1.2). In the range $p\leq q<2p$ we
have $3-2 \frac{p}{q}<\frac{q}{p}$ , hence the threshold obtained in $(\mathrm{i}\mathrm{i})(\mathrm{b})$ is worse
than that in $(\mathrm{i}\mathrm{i})(\mathrm{a})$ . We are not able to prove that $(\mathrm{i}\mathrm{i})(\mathrm{b})$ is an
optimal result.
4- The (motivation of the) proof $()\mathrm{f}(\mathrm{i}\mathrm{i})(\mathrm{b})$ is deeply microlocal.
When $q<2p$ we obtain an apparently less sharp result because of
the existence of null bicharacteristics of the vector field $D_{x}$ issuing
from points in the intersection of the characteristic varieties of the
other vector fields.
5- When $p=q$ we obtain analytic hypoellipticity.

As a final remark we want to point out that if the number of symplec-
tic strata of the Poisson stratification “increases”, then we can hope to
obtain a better Gevrey hypoellipticity threshold. This is the case for
the following

Theorem 3 ([5]). Let $p,$ $q,$ $p,$ $k\in \mathrm{N},$ $q\geq p\geq 1$ and $k\leq\ell(q-1)$ . Set

(1.11)
$P_{3}(x, t;D_{x}, D_{t}, D_{s})=D_{x}^{2}+x^{2(q-1)}(D_{t}+(x^{2k}+t^{2\ell})D_{s})^{2}+x^{2(p-1)}D_{t}^{2}$ .
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Then $P_{3}$ is $G^{s}-hypoellipt,ic$ for every $s\geq s_{0}$ with

$s_{0}= \frac{(q-1)(q+2k)}{(p-1)(q+2k)+q-p}$ .

We remark that the Poisson stratification associated to the operator
in (1.11) is

$\Sigma_{1}=\{(x, t, s;\xi, \tau, \sigma)|x=\xi=0\}$

$\Sigma_{2}=\cdots=\Sigma_{\rho-1}=\Sigma_{1}$

$\Sigma_{p}=\{(x, t, s;\xi, \tau, \sigma)|x=\xi=0\tau=0\}$

(1.12) $\Sigma_{\rho+1}=\cdots=\Sigma_{q-1}=\Sigma_{\rho}$

$\Sigma_{q}=\{(x, t, s;\xi, \tau, \sigma)|x=\xi=\mathrm{O}t=\tau=0\}$

$\Sigma_{q+1}=\cdots=\Sigma_{q+2k-1}=\Sigma_{q}$

$\Sigma_{q+2k}=\emptyset$ .

Moreover we have
$s_{0}\leq\underline{q+2k}$ ,

$q$

and $s_{0}=1$ if $p=q$ .

2. PROOF OF (I) IN THEOREM 2

Just to give the flavor of the technique we employ we want to prove
here part (i) of Theorem 2. Let

(2. 1) $X_{1}=D_{x}$ , $X_{2}=x^{p-1}(D_{t}+x^{q-\rho}D_{s})$ , $X_{3}=x^{q-1}D_{s}$ ,

be the tllree vector fields the sum of whose squares equals $P_{1}$ . From
now on we shall write $P$ instead of $P_{1}$ .

Denote by $\varphi$ an Ehrenpreis type cut off function; this means that for
any pair of open sets $\omega,$

$\Omega\subset \mathbb{R}^{3},$ $\omega\not\subset\Omega$ , there is a positive constant
$C_{0}$ such that $\varphi\equiv 1$ on $\omega$ and

$|D^{\alpha}\varphi(x)|\leq C_{0}^{1+|\alpha|}N^{|\alpha|}$ ,

for $|\alpha|\leq qN$ . Here $N$ denotes an arbitrarily large positive integer. Of
course, whatever the choice of $N$ is, the so defined function $\varphi$ depends
on $N$ , but we omit to write this dependence to keep the notation simple.

$i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}$ now on $N$ will be as large as required; we stress that when
$|\alpha|$ is close to $N$ the bound for $\varphi$ is essentially a bound for analytic
functions.
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Thc otber ingredient we need for our proof is an a priori estimate of
Rotbschild-Stein type:

(2.2) $\sum_{j=1}^{3}||X_{j}u||^{2}+||u||_{\frac{21}{q}}\leq C(|\langle Pu, u\rangle|+||u||^{2})$ ,

where $||$ $||_{s}$ denotes tbe norm in the Sobolev space of order $s$ and
$||\cdot||_{0}=||\cdot||$ is tlle $L^{2}$ norm.

Let $\varphi$ be a cut off function of the type described above and let us
replace $u$ by $\varphi D_{s}^{r}u$ in (2.2). Evidently the Gevrey (analytic) regularity
for $u$ can be deduced from from a suitable estimate of $\varphi D_{s}^{r}u$ , where $r$

is a large positive integer and $N\sim r$ :

(2.3)

$\sum_{j=1}^{3}||x_{j\varphi}D_{s}^{r}u||^{2}+||\varphi D_{s}^{r}u||_{\frac{21}{q}}\leq C(|\langle P\varphi D_{s}^{r}u, \varphi D_{s}^{r}u\rangle|+||\varphi D_{s}^{r}u||^{2})$ .

Let us consider the term containing $P$ in the right hand side. Com-
muting $P$ with $\varphi D_{s}^{r}$ we must estimate expressions of the type

$\langle[X_{j}^{2}, \varphi D_{s}^{r}]u, \varphi D_{s}^{r}u\rangle$ ,

with $j=1,2,3$ . Let us start with $j=3$ . We may write

$|\langle[X_{3}^{2}, \varphi D_{s}^{r}]u, \varphi D_{s}^{r}u\rangle|$

$\leq 2|\langle X_{3}\varphi_{s}’D_{s}^{r-1}u, X_{3}\varphi D_{s}^{r}u\rangle|+|\langle\frac{1}{N}X_{3}\varphi_{ss}’’D_{s}^{r-1}u, NX_{3}\varphi D_{s}^{r-1}u\rangle|$,

where $N$ is a large integer comparable in size with $r$ and we are neglect-
ing terms in which one of the $rs$-derivatives has been transferred onto
$\varphi$ , thus yielding a shift with a net gain whose (pure) iteration would
lead to analyticity.

The above quantity can be estimated by:

(2.4) $|\langle[X_{3}^{2}, \varphi D_{s}^{r}]u, \varphi D_{s}^{r}u\rangle|$

$\leq\frac{1}{2}||X_{3}\varphi D_{s}^{r}u||^{2}+C[||X_{3}\varphi’D_{s}^{r-1}u||^{2}$

$+|| \frac{1}{N}X_{3}\varphi’’D_{s}^{r-1}u||^{2}+||NX_{3}\varphi D_{s}^{r-1}u||^{2}]$ .

Let us take a look at the term with $j=2$ . We have:
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$\langle[X_{2}^{2}, \varphi D_{s}^{r}]u, \varphi D_{s}^{r}u\rangle$

$=2\langle x^{p-1}(\varphi_{t}’+x^{q-p}\varphi_{s}’)D_{s}^{r}u, X_{2}\varphi D_{s}^{r}u\rangle$

$+ \langle\frac{1}{N}x^{p-1}(D_{t}+x^{q-p}D_{s})^{2}D_{s}^{r}u, Nx^{p-1}\varphi D_{s}^{r}u\rangle$ .

Before proceeding further we need two remarks: (a) Since $p\leq q$ we can-
not in general recover an X vector field using one $s$-derivative. Hence,
to place a vector field before the main term, we must use the a priori
estimate (2.3), thlls using (i.e., gaining) less than one $s$-derivative. (b)
A term of the form $x^{p-1}(\varphi_{t}’+x^{q-\mathrm{P}}\varphi_{s}’)$ can be estimated by $|x|^{p-1}|\varphi’|$

near the origin.
We can then conclude:

(2.5) $|\langle[X_{2}^{2}, \varphi D_{s}^{r}]u, \varphi D_{s}^{r}u\rangle|$

$\leq\frac{1}{2}||X_{2}\varphi D_{s}^{r}u||^{2}+C[||x^{p-1}\varphi’D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}}$

$+|| \frac{1}{N}x^{p-1}\varphi’’D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}}+||Nx^{p-1}\varphi D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}]}$ ,

where $\varphi’,$ $\varphi’’$ stand for first and second derivatives of $\varphi$ (in $s$ or $t$ ).
The term $j=1$ is negligible at this stage, since we may take $D_{x}\varphi=0$

near $x=0$ and if $x\neq 0$ our operator is evidently analytic hypoelliptic
(actually it is elliptic). In spite of this fact though, terms involving
brackets with $X_{1}$ do play an important role in the following because of
the presence of the powers of $x$ scattered around by the other fields.

To stress this fact it is more convenient to replace $\varphi D_{s}^{r}u$ with an
expression of the form $x^{a}\varphi^{(m)}D_{s}^{r-\frac{b}{q}}u$ , where $a,$ $m$ and $b$ are integers.
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Using (2.4) $\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}(2.5)$ we then obtain:

(2.6) $\sum_{j=1}^{3}||X_{\uparrow}x^{a}\varphi^{(m)}D_{s}^{7}.u||^{2}+||x^{a}\varphi^{(m)}D_{s}^{r}u||_{\frac{21}{q}}$

$\leq C[|\langle Px^{a}\varphi^{(m)}D_{s}^{r}u, x^{a}\varphi^{(m)}D_{s}^{r}u\rangle|+||x^{a}\varphi^{(m)}D_{9}^{r},u||^{2}]$

$\leq\frac{1}{2}\sum_{j=1}^{3}||X_{j}x^{a}\varphi^{(m)}D_{s}^{r}u||^{2}+C[||x^{a}\varphi^{(m)}D_{s}^{r}Pu||^{2}$

$+ \sum_{j=1}^{3}||X_{j}x^{a}\varphi^{(m+\iota)}D_{s}^{r-1}u||^{2}+\sum_{j=1}^{3}||\frac{1}{N}X_{j}x^{a}\varphi^{(m+2)}D_{s}^{r-1}u||^{2}$

$+ \sum_{j=1}^{3}||NX_{j}x^{a}\varphi^{(m)}D_{s}^{r-1}u||^{2}$

$+||x^{a+p-1} \varphi^{(m+1)}D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}}+||\frac{1}{N}x^{a+p-1}\varphi^{(m+2)}D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}}$

$+||Nx^{a+p-1}\varphi^{(m)}D_{s}^{r-\frac{1}{q}}u||_{\frac{21}{q}}]$ .

Actually tlle exponent on $x$ never needs to increase beyond $q-2$ ;
if $a+p-1\geq q-1$ , instead of using the subelliptic part of (2.5) we
convert $x^{a+p-1}D_{s}$ into $x^{a+p-1-(q-1)}X_{3}$ , and, since $p<q$ , the exponent
on $x$ has actually decreased.

We stress the fact that this trick only works in the case of the operator
in (1.9). It is evident that, in order to do the same for the model
operator in (1.10), we must “bound” $D_{s}$ by $D_{t}$ (or rather some power
of $D_{s}$ by $D_{t}$ ) and this in turn means that we need to microlocalize the
estimation procedure. Fnrthermore, in case (1.10), even if we could
apply such a procedure, there should be some (in general not conic)
region of the cotangent bundle for which no treatment of this type
would be possible, so that we must then follow another approach.

Following [3], it is possible to iterate inequality (2.6), with the expo-
nent on $x$ never exceeding $q-2$ .

Denoting by $\rho$ the number of $x$-derivatives landing onto the various
powers of $x$ (we recall that the behavior of $\phi$ with respect to $\mathrm{x}$ plays
no role here), by $c$ the number of $X_{2}$ vector fields landing onto $\varphi$ (they
each carry the factor $x^{p-1}$ ), by $e$ the number of times that a power of $x$

exceeds $q-1$ , thus allowing us to decrease by $e$ the power of $D_{s}$ and by
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$f\mathrm{t}l1\mathrm{e}$ Ilumber of $X_{3}$ fields landing onto the cut off function and yielding
good analytic-growth terms, we obtain:

(2.7) $\sum_{j=1}^{3}||X_{j}x^{a}\varphi^{(m)}D_{s}^{r}u||^{2}+||x^{a}\varphi^{(m)}D_{s}^{r}u||_{\frac{21}{q}}\leq||x^{a}\varphi^{(m)}D_{s}^{r}Pu||^{2}$

$+ \sup_{\triangle\geq 0}C^{\triangle}[\sum_{j=1}^{3}||N^{-\ell}X_{j^{X^{a-\rho+c(p-1)-e(q-1)}}\varphi^{(m+c+f+\ell)}D_{s}^{r-e-f-\frac{\mathrm{c}+\rho}{q}}u||^{2}}$

$+||N^{-\ell}x^{a-\rho+c(\rho-1)-e(q-1)}\varphi^{(m+c+f+\ell)}D_{s}^{r-e-f-\frac{c+\rho-1}{q}}u||_{\frac{21}{q}]}$ ,

where
$\triangle=e+f+c+\rho$

is the quantity by which $D_{s}^{r}$ is decreased in the process, $C$ is a fixed
positive constant and the following constraints hold:

(2.8)

Pursuing this task until the $s$-derivatives are used up and choosing
$a=m=0$ as a starting point, we obtain (suppressing the term with
Pu),

$\sum_{j=1}^{3}||x_{j\varphi}D_{s}^{r}u||^{2}+||\varphi D_{s}^{r}u||_{\frac{21}{q}}$

$\leq\sup_{r-1\leq\triangle\leq r}C^{\triangle}(N^{-\ell}|\varphi^{(c+f+\ell+1)}|||u||)^{2}\leq CC_{1}^{r}N^{2(c+f)}$ .

Keeping into account the relations (2.8), the definition of $\triangle$ and the
fact that the worst estimate occurs if $f$ is minimum and $c$ is maximum,
we get that $-\rho+c(p-1)-e(q-1)\sim 0$ and

$e \frac{q-1}{q}+\frac{c}{q}+\frac{\rho}{q}\sim r$ ,

from $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{l}\iota$ we deduce tllat
$c\sim\underline{q}r$ ,

$p$

so $\mathrm{t}l\iota \mathrm{a}\mathrm{t}$

$c+f \leq\frac{q}{p}r$ .
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Choosing $N\sim r$ we reacb the desired conclusion.
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