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§0. Introduction.

In this article two relationships between the hyperbolic metric and the
Riemann surface theory are studied. After preparing some results of the au-
thor ([3]) which motivate the subsequent observation and discussion, we give
a short report of the author’s two joint papers ([1] and [2]) with Masumoto.

The first relationship is rather indirect. The hyperbolic metric is con-
nected with the area of the complement of the conformal image of a fixed
plane domain. Such a property is shared with also by conformally embedded
noncompact Riemann surface of genus one in various tori. In fact, we had
found the property first for the case of genus one, and then knew that the
same is valid for the classical case. As an application of our result, we can
also show a simple yet general relation between the hyperbolic, euclidean,
and spherical metrics. See [3]. The results in [3] have been generalized to
general Riemann surfaces in [1], where the proofs are slightly simplified.

The second relationship is, on the other hand, direct. Being motivated
by the previous works [3] and [1], we observe the hyperbolic metric on vari-
ous simply connected domains on a fixed Riemann surface and consider an
extremal problem. We see that the extremal problem has a unique solution
and show that the extremal domain has very natural and interesting proper-
ties, which are described in terms of quadratic differentials. It is worth while
to point out that the extremality is closely connected with the Riemann
mapping theorem. '

Finally, as an application of the above results, we give a method how
to construct a fundamental domain for a discontinuous group consisting of
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conformal automorphisms of the Riemann surface under consideration. We
have, in particular, a new method of construction of a fundamental domain
for a Fuchsian group. The fundamental domain thus obtained is in general
neither Dirichlet nor Ford.

§1. Conformal embedding of an open torus into tori and area
theorems.

We begin with some basic results necessary for the subsequent sections.
For the full-length discussion, see [3].

Let R be a noncompact Riemann surface of genus one, which will be called
“an open torus” for short. Fix a canonical homology basis x = {a,b} of R
modulo dividing cycles. The pair (R',x’) will be called a (homologically)
marked open torus. ~

Let R’ be a torus (= a compact Riemann surface of genus one) and
x' = {a',V'} a canonical homology basis of R’. We can and do always assume
that the curve a’ is a geodesic with respect to the naturally defined flat
metric on the torus R’ which comes from an (essentially unique) holomorphic
differentail on R’.

If a conformal mapping ¢’ of R into R’ preserves the homology, i.e., if

Ci'(a) ~ d, 7'(b) ~ b’

where ~ reads “is homologous to”), then we say that ¢’ is a conformal
g .
embedding of (R, x) into (R, x') and simply write as

i (R,x) — (R',x), conformal.

"Two conformal embeddings
i (Ryx) = (R, x), 1" (Bx) = (R",X")

are said to be equivalent if there exists a conformal (necesssarily surjective)
mapping f : R’ — R" with f o4’ = i". Each equivalence class [R’,x',%'] is
called a (compact) continuation of (R, x), and the set of all continuations
of (R,x) is denoted by C(R,x). The modulus of a [R',x',7] € C(R,X) is,
by definition, the modulus of the marked torus (R', x’), and is denoted by
T[R',x',7']. The set of moduli 7[R, x’,7'] € C(R, ) is denoted by

M(R,x)={r e C|r=1[R,x,i], [R,X,i]€ C(R x)}



It is a subset of the (open) upper half plane
H:={r e C|Im7 > 0}.

The following theorem describes the set C(R, x) or M (R, x) in the euclid-
lan geometry. Part (2) and (3) are not always necessary for our discussion
below, which are included here for the later reference (see §2), however.

THEOREM. (1) M(R,x)is a closed disk: | 7 — 15 |[< pp, Im7g >0, 0<
pE < Im7g. ‘
(2) Parametrize IM(R, x) as

Ty = T + pEe(t"%)” (-1 <t<1).

Then, to each point 7, € dM (R, x) there corresponds a unique continuation
[R¢, x1,1) € C(R, x) such that the complement R, \ i;(R) is a Lebesgue null
set consisting of parallel segments whose inclination with the geodesw a; is
mt/2, where x; = {a;, b, }.

(3) pe =04 R € Oyp. Here O4p stands for the class of Riemann surfaces
which carry no nonconstant (singlevalued) analytic functions with a finite
Dirichlet integral.

To investigate more detailed properties of the moduli disk M(R, x) and
to see its close relation with the classical theory of univalent functions, we
consider the continuations with a fixed modulus 7:

CT(R7X) = {[ ' X'y ]EC(R X)IT[ ]:T}, TEM(RaX)-

In other words, we consider all possible conformal embeddings of (R, x) into
a fixed marked torus (R', x') with modulus 7.

The euclidean disk M(R, x) is, as is well known, simultaneously a hyper~
bolic disk in H as well as a sphemcal disk in the Riemann sphere C. The
hyperbolic and spherical centers of M(R, x) are respectively denoted by 75
and 7g, and similarly for the radii: the hyperbolic radius of M(R,x) is py
and the spherical radius pg.

The domains H, C, and C have standard metrics with their curvature
normalized. Denote by

dsg, ds¢, and dsp



the normalized hyperbolic, euclidean, and spherical metrics on
H, C, and C
respectively. By the normalization we can write them as

_dr] _ _ 2|dr]
dsg = " dsc = |dr|, and dsg = TP

The distance functions induced from these metrics are respectively de-
noted by

du(-,"), dc(,), and dg(s,).
We finally set |

rTH = d]H[(T, TH), TE = dC(T7 TE): and rs = d@(T’TS)?

where 7 is a point in M(R, x).
Each marked torus (R',X') carries a unique normalized holomorphic dif-

ferential ¢ such that
/ ¢ =1,

which induces the standard euclidean metric on R'. The area of the whole
surface R’ measured by this metric is denoted by

AR]= AR, X',

and the area of the complement of the embedded surface '( R) in R’ similarly

measured is denoted by
o R = R, x',7'].

Furthermore, we consider
a, = sup{a[R, X, | [R,X,i] € C7(R,X)}, 7€ M(R,X).

With these definitions we have

THEOREM. (1) There exists a unique [R', x’,7'] € C;(R, x) with a[R', X', i =
o

T 2 dspr



(3) max{a[R]|[R,X,i'] € C(R,x)} = ar, = 2Z.

2
Concerning the spherical and hyperbolic metrics, we first set
14 Q[R,] ! ; ! A ! r ;! Y [
SR = AR Sy = sup{S[R', X, ¥] | [R',x,i'] € C-(R,x)}
q . _ olR] | o R A C
AlR] = A, = sup{A[R, X, ] | [R,X',¥] € Cr(R, X)}

m(1+|7[?)’
and have the following two theorems:

THEOREM. (1) There exists a unique [R’',x’,7'] € C(R, x) with S[R'; X', ] =
S,.

) 8, = cosh pg — coshr

sinh py

(3) maX{S[RI,X',i'] | [R’,X’,il] e C(R,X)} =S, = tanh%, :

THEOREM. (1) There is a unique [R',x’,7'] € C.(R, x) with A[R,x',¢] =
A, '

tan? ps _ tan? r
(2) AT:t pS21 ¢ 22?“ ‘
| any (1 +tan 5)
(3) max{S[R,x,i] | [R,X,i] € C(R,x)} = Ay = tan"2.
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§2. Area theorems in the classical theory of univalent functions.

To state the prototype of the theorems in the preceding section and to
state some new results in the classical theory, we now consider a general
domain G (C C) and fix a point { € . For simplicity we assume that
¢ = 0o. Let F(G,() be the class of all conformal embeddings of GG into (@
normalized at (. That is, we set

fz)=1/(z=()+r(z =)+

f is univalent meromorphic and
about { |~

HQQ:{ﬁGﬁC

Furthermore we consider the set of coefficients of (z — ():

K(G,¢) :={k € C | k = Ky for some f € F(G, ().



THEOREM. (1) F(G,()is a closed disk: | x — * |[< p*, & €C, p* 20.
(2) Parametrize the periphery 0K (G, () of the disk as

ke = kS + pre™ (=1 <t < 1).

Then, to each point «; € K (G, () there corresponds a unique f; € F(G, ()
such that C\ f;(@) is a null set consisting of parallel segments with inclination
wt /2. '

(3) p*=0<=>G€OAD.

§3. Hyperbolic metric and other metrics.

We write each of the pairs
(H,dsg), (C,dsc), and (C, ds¢)

simply as (X, dsx). Let D be a disk in H and dsp the hyperbolic metric of
D itself. From the results obtained in §1 and §2, we easily have:

THEOREM. For each X = H, or C, or C, the differential quotient

dSX

dsp

assumes a constant value on each concentric circle of (X, dsx).

We invoke the invariance of the hyperbolic metric under Mobius trans-
formations, to implant the above theorem into Riemann surface theory. To
this end we need the following definition.

DEFINITION. Let R be a general Riemann surface, d the distance function
induced from the complete conformal metric on I with constant curvature.
A simply connected domain D on R is called an open inlrinsic disk with
center at py € R if
(i) 9D includes more than one point, and
(i1) D is given by

D ={p€ R|d(p,po) <r}

for some positive r. If the closure D of an open intrinsic disk D is again
simply connected, then we call D a closed intrinsic disk. 'The boundary of



a closed intrinsic disk is always a closed Jordan curve 2, which we call an
intrinsic circle.

The following theorem is a generalization of the previous theorem.

THEOREM. Let R be a Riemann surface and D an open intrinsic disk with
center at py. Denote by ds% and ds%, the complete conformal metrics on R
and D with constant curvature, respectively. Then, the differential quotient

dsg
EEE(P)

is a smooth function of r := dgr(p, po), and in particular, it assumes a constant
value on each concentric intrinsic circle.

8§4. Hyperbolic maximal domains and fundamental domains for a
discrete group of conformal automorphisms.

Now we recall the Riemann mapping theorem and one of its proofs. It is
reasonable to consider an extremal problem with respect to the differential
quotients. .

Let R be a Riemann surface and let I' be a discrete subgroup of conformal
automorphisms of R. Denote by R* the set of points on R which are fixed
by no nontrivial element of I'. We assume, furthermore, that the quotient
R*/T is conformally equivalent to neither C nor C.

For any fixed point p € R* we define @g (R) to be the class of simply
connected domains D on R such that

(i) D contains the point p, and

(ii) ¥(D)N D =0 for any vy € T'\ {zd.}.

The class @g (R) has a quasi-order relation ; which is defined as follows:

d
DEFINITION. For Dy, D, € @g(R): D, ; D, < d8D2

(p) < 1.
Sp,

Roughly speaking, the class is quasi-ordered by observing whether the
natural local inclusion map is a contraction.

THEOREM. Each class @; (R), where p € R*, has a unique maximum ele-
ment.

3This is not always the case for the boundary of an open intrinsic disk.



The following terminology is useful:

DEFINITION. Let R, I', and R* be as above. A simply connected domain D
on R is called hyperbolically mazimal if it is the maximum element in the

class 2, (R) for some p € R*.

A hyperbolically maximal domain has remarkable function-theoretic prop-
erties, which are studied in [2]. Here we state only some of them.

THEOREM. Let R, I', and R* be as before. Let D be a hyperbolically
maximal domain for I'. Then

(i) D is a fundamental domain for I'.

(i) D is locally finite.

(iii) 9D is a Lebesgue null set.

(iv) 0D is piecewise analytic and the corner angle at a vertex is 2m/n
with an integer n.

Our extremal problem thus gives a new method how to construct a funda-
mental domain for a Fuchsian group. By statement (iv) of the last theorem
we see that the fundamental domain obtained in this way coincides with
neither Ford nor Dirichlet. For the detailed discussion and examples see [2].

References

[1] Masumoto, M. and M."Shiba: Intrinsic disks on a Riemann surface, Bull.
London Math. Soc. 27(1995), 371-379.

[2] Masumoto, M. and M. Shiba: submitted.

[3] Shiba, M: The euclidean, hyperbolic, and spherical spans of an open
Riemann surface of low genus and the related area theorems, Kodai

Math. J. 16(1993), 118-137.



