SOME REPRESENTATIONS OF SUBGROUPS OF THE MAPPING CLASS GROUPS OF SURFACES AND SECONDARY INVARIANTS

笠川 良司（RYOJI KASAGAWA）

1．Introduction

Let Σ_{g} be a closed oriented surface of genus $g \geqq 1$ and \mathcal{M}_{g} its mapping class group consisting of the isotopy classes of orientation preserving diffeomorphisms of Σ_{g} ．We denote the 2 －sphere with 3 －holes by P ．For any $a, b \in \mathcal{M}_{g}$ ，let $N_{a, b}$ be the Σ_{g}－bundle over P with monodromies a^{-1} and b^{-1} ．

Meyer＇s signature 2－cocycle

$$
\operatorname{sign}_{g}: \mathcal{M}_{g} \times \mathcal{M}_{g} \rightarrow \mathbb{Z}
$$

is defined by $\operatorname{sign}_{g}(a, b):=\operatorname{sign}\left(N_{a, b}\right)$ ，where $\operatorname{sign}\left(N_{a, b}\right)$ is the signature of 4－ manifold $N_{a, b}$（see $[10,1]$ ）．Novikov additivity for the signature of manifolds shows that sign_{g} satisfies the cocycle condition．Meyer also defined a 2－cocycle τ_{g} on $S p(2 g, \mathbb{Z})$ over \mathbb{Z} ，which is also called signature 2 －cocycle．It is well－known that the equality $\operatorname{sign}_{g}=\zeta_{g}^{*} \tau_{g}$ holds，where ζ_{g} is the standard representation of \mathcal{M}_{g} to $S p(2 g, \mathbb{Z})$ induced from the obvious action of \mathcal{M}_{g} on the first cohomology group of Σ_{g} ．

Let ι be the hyperelliptic involution on Σ_{g} depicted in Figure 1.

Figure 1．The hyperelliptic involution ι on Σ_{g} ．

The hyperelliptic mapping class group \mathcal{H}_{g} of Σ_{g} is the subgroup of \mathcal{M}_{g} consisting of elements which commute with the class of ι ．It is known that $\mathcal{M}_{1}=\mathcal{H}_{1}=$ $S L(2, \mathbb{Z}), \mathcal{M}_{2}=\mathcal{H}_{2}$ and that $\mathcal{H}_{g}(g \geqq 3)$ is a subgroup of \mathcal{M}_{g} of infinite index．

Meyer's signature cocycle sign_{g} defines a nontrivial class of the second cohomology group of \mathcal{M}_{g} with coefficients in \mathbb{Z} and its restriction to \mathcal{H}_{g} is also nontrivial. But it is trivial in the cohomology group of \mathcal{H}_{g} with coefficients in \mathbb{Q}. Thus there exists a function or a 1 -cochain

$$
\phi_{g}: \mathcal{H}_{g} \rightarrow \mathbb{Q}
$$

such that $\operatorname{sign}_{g}=\delta \phi_{g}$, where δ denotes the coboundary operator defined by $\delta \phi_{g}(a, b)$ $=\phi_{g}(b)-\phi_{g}(a b)+\phi_{g}(a)$ for $a, b \in \mathcal{H}_{g}$. It follows that ϕ_{g} is unique from the fact that the first cohomology group of \mathcal{H}_{g} vanishes. This function ϕ_{g} is called Meyer function. It is known that it is conjugacy invariant. Its values are contained in $\frac{1}{2 g+1} \mathbb{Z}$ and concrete values on Lickorish generators and BSCC maps are calculated by Endo [4], Matsumoto [9] and Morifuji [11].

In the case of $g=1$, under the identification $\mathcal{M}_{1} \cong \mathcal{H}_{1} \cong S L(2, \mathbb{Z})$, Meyer [10] and Atiyah [1] gave the explicit expression of the Meyer function using the Dedekind sums (see also [7]). Thus we can compute the values of it. Moreover Atiyah [1] put various geometric interpretations on the values of ϕ_{1} on hyperbolic elements. Hereafter we regard $S L(2, \mathbb{Z})(=S p(2, \mathbb{Z}))$ as the domain of ϕ_{1}. Hence we have $\delta \phi_{1}=\tau_{1}$.

In this paper we study some representations induced from the actions of subgroups of the mapping class groups of a surface on the first cohomology group of $\pi_{1}\left(\Sigma_{g}\right)$ with coefficients in the module obtained from the nontrivial representation of $\pi_{1}\left(\Sigma_{g}\right)$ to $\mathbb{Z}_{2}=\operatorname{Aut}(\mathbb{Z})$. As an application of them, in the case of $g=1,2$ (see also $[5,6]$) and 3 , we define some functions on subgroups of \mathcal{H}_{g} using Atiyah-Patodi-Singer ρ-invariants and state that the difference of our function from the Meyer function is a nontrivial homomorphism on the subgroup. Moreover we state that the Meyer function coincides with the average of our functions on a certain subgroup.

2. Some representations of subgroups of the mapping class groups

Let Σ_{g} be a closed oriented surface of genus $g \geqq 1$ and $* \in \Sigma_{g}$ a base point. Let $\omega: \pi_{1}\left(\Sigma_{g}, *\right) \rightarrow \mathbb{Z}_{2}$ be a nontrivial homomorphism which is also regarded as an element of $H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$. If we regard \mathbb{Z}_{2} as $\operatorname{Aut}(\mathbb{Z})$, then using ω, we can obtain
$\pi_{1}\left(\Sigma_{g}, *\right)$-module \mathbb{Z}, which is denoted by \mathbb{Z}_{ω}. We consider the first cohomology group $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right)$ which is isomorphic to $\mathbb{Z}^{2(g-1)} \oplus \mathbb{Z}_{2}$. Moreover it has a natural pairing defined by the cup product, the pairing $\mathbb{Z}_{\omega} \otimes \mathbb{Z}_{\omega} \cong \mathbb{Z}$ and the evaluation on the fundamental class of Σ_{g}. It is found that this pairing induces a symplectic form on the quotient group $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right) /$ torsion and that it is isomorphic to the standard one on $\mathbb{Z}^{2(g-1)}$.

Let $\mathcal{M}_{g *}$ be the mapping class group of Σ_{g} with a base point and $\mathcal{M}_{g *}^{\omega}$ the subgroup of it consisting of elements which preserve ω. This subgroup acts on the group $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right) /$ torsion by pullback. Since this action preserves the symplectic form, if we take a symplectic basis for it, we have the representation

$$
\zeta_{g *}^{\omega}: \mathcal{M}_{g *}^{\omega} \rightarrow S p(2(g-1), \mathbb{Z})
$$

These representations are related to prym representations of Looijenga [8]. Some properties of $\zeta_{g *}^{\omega}$ were investigated in [5, 6].

In this section we study the restrictions of them to subgroups of the hyperelliptic mapping class group of genus $g \geqq 3$.

The hyperelliptic mapping class group \mathcal{H}_{g} of Σ_{g} is naturally isomorphic to the group of isotopy classes of orientation preserving diffeomorphisms which commute with ι under isotopy which also commutes with ι [3]. This description of \mathcal{H}_{g} shows that it acts the set of the fixed points of ι. Thus we have the representation $\sigma: \mathcal{H}_{g} \rightarrow$ $\mathfrak{S}_{2 g+2}$, where $\mathfrak{S}_{2 g+2}$ denotes the symmetric group of degree $2 g+2$ which is the number of the fixed points of ι. Let \mathcal{H}_{g}^{σ} be the kernel of the representation of σ. Let $j: \mathcal{M}_{g *} \rightarrow \mathcal{M}_{g}$ be the natural homomorphism, then we have the short exact sequence $1 \rightarrow \pi_{1}\left(\Sigma_{g}, *\right) \rightarrow \mathcal{M}_{g^{*}} \xrightarrow{j} \mathcal{M}_{g} \rightarrow 1$. Put $\mathcal{H}_{g *}=j^{-1}\left(\mathcal{H}_{g}\right)$ and $\mathcal{H}_{g *}^{\sigma}=j^{-1}\left(\mathcal{H}_{g}^{\sigma}\right)$. The following lemma is known.

Lemma 1. For any $a \in \mathcal{H}_{g}^{\sigma}$, the induced homomorphism a^{*} on $H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$ is the identity.

By this lemma, we have $\mathcal{H}_{g}^{\sigma} \subset \mathcal{M}_{g}^{\omega}$ and $\mathcal{H}_{g *}^{\sigma} \subset \mathcal{M}_{g *}^{\omega}$ for any $\omega \neq 0 \in H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$. We denote the class of ι in \mathcal{H}_{g}^{σ} by the same letter ι.

Lemma 2. For any lift $\tilde{\iota}$ of $\iota \in \mathcal{H}_{g}^{\sigma}$ to $\mathcal{H}_{g^{*}}^{\sigma}$, the image of $\tilde{\iota}$ by $\zeta_{g^{*}}^{\omega}$ commutes with those of all elements of $\mathcal{H}_{g *}^{\sigma}$.

The fundamental group $\pi_{1}\left(\Sigma_{g}, *\right)$ of Σ_{g} is presented by $<\alpha_{i}, \beta_{i}(1 \leqq i \leqq g) \mid$ $\prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right]=1>$, where the generators are depicted in Figure 2.

Figure 2. The generators of $\pi_{1}\left(\Sigma_{g}, *\right)$.
Let $\alpha_{i}^{*}, \beta_{i}^{*}(1 \leqq i \leqq g)$ be the dual basis for $H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$ to the one for $H_{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$ which is given by the homology classes of α_{i}, β_{i}.

Lemma 3. For any nonzero class $\omega \in H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$, there exists a $\in \mathcal{H}_{g}$ such that $a^{*} \omega=\alpha_{k}^{*}$ for some k.

Direct computations show that the representation matrix of $\zeta_{g *}^{\alpha_{k}^{*}}(\tilde{\imath})$ with respect to a symplectic basis for $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right) /$ torsion is given by $\pm\left(I_{2(k-1)} \oplus\left(-I_{2(g-k)}\right)\right)$, where $I_{2(k-1)}$ and $I_{2(g-k)}$ are the identity matrices of rank $2(k-1)$ and $2(g-k)$ respectively. And $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right) /$ tor sion decomposes to the direct sum of two symplectic submodules over \mathbb{Z}. This result and Lemma 2 imply the following lemma.

Lemma 4. For any nonzero $\omega \in H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$, the representation matrix of $\zeta_{g *}^{\omega}(\tilde{\iota})$ with respect to some symplectic basis is $\pm\left(I_{2(k-1)} \oplus\left(-I_{2(g-k)}\right)\right.$ for some k. Moreover $H^{1}\left(\pi_{1}\left(\Sigma_{g}, *\right), \mathbb{Z}_{\omega}\right) /$ torsion is decomposed to the direct sum of two symplectic submodules over \mathbb{Z} on which $\zeta_{g *}^{\omega}(\tilde{\imath})$ is \pm the identity.

If we take a fixed point e of ι as a base point $*$ of Σ_{g}, we can consider the group \mathcal{H}_{g}^{σ} as a subgroup of $\mathcal{H}_{g *}^{\sigma}$.

Corollary 5. The representation $\zeta_{g e}^{\omega}$ induces two representations of \mathcal{H}_{g}^{σ} to $S p(2(k-$ $1), \mathbb{Z})$ and $S p(2(g-k) . \mathbb{Z})$, where k is the integer in Lemma 3.

3. Some functions on subgroups of $\mathcal{H}_{g *}$ of low genus.

In this section we consider the case of $g=1,2$ and 3 .
Let H^{\prime} be the set $H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \backslash\{0\}$ for $g=1,2$ and the set $\left\{\omega \in H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \backslash\right.$ $\{0\} \mid k=2$ in Lemma 4$\}$ for $g=3$.

Lemma 6. The number $\sharp H^{\prime}$ of the elements of H^{\prime} is 3,15 and 35 for $g=1,2$ and 3 respectively.

For each $\omega \in H^{\prime}$, let $\Delta_{g *}^{\omega}$ denote $\mathcal{H}_{g *} \cap \mathcal{M}_{g *}^{\omega}$ for $g=1,2$ and $\mathcal{H}_{g *}^{\sigma}$ for $g=$ 3. For any $\omega \in H^{\prime}$, the image of $\Delta_{g *}^{\omega}$ by $\zeta_{g^{*}}^{\omega}$ is contained in $\{i d\}, S L(2, \mathbb{Z})$ and $S L(2, \mathbb{Z}) \times S L(2, \mathbb{Z})$ for $g=1,2$ and 3 respectively under an appropriate choice of a symplectic basis for the representation space. In the case of $g=3$, let $\zeta_{g *}^{\omega+}$ and $\zeta_{g *}^{\omega-}$ be the composition of $\zeta_{g^{*}}^{\omega}$ with the projection from $S L(2, \mathbb{Z})$ to the first and second factor $S L(2, \mathbb{Z})$ respectively.

For each $\omega \in H^{\prime}$, the function

$$
\Phi_{g *}^{\omega}: \Delta_{g *}^{\omega} \rightarrow \frac{1}{3} \mathbb{Z}
$$

is defined by $0,\left(\zeta_{2 *}^{\omega}\right)^{*} \phi_{1}$ and $\left(\zeta_{3 *}^{\omega+}\right)^{*} \phi_{1}+\left(\zeta_{3 *}^{\omega-}\right)^{*} \phi_{1}$ for $g=1,2$ and 3 respectively. It is easy to see that these functions are well defined.

Lemma 7. The equality $\delta \Phi_{g *}^{\omega}=\left(\zeta_{g *}^{\omega}\right)^{*} \tau_{g-1}$ holds on $\Delta_{g^{*}}^{\omega}$ for each $\omega \in H^{\prime}$.

4. The main theorem

In this section we define some functions on subgroups of the mapping class groups and state the main theorem.
Let ω be a nonzero class in $H^{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$. For any $a \in \mathcal{M}_{g^{*}}^{\omega}$, put $M_{a}:=\Sigma_{g} \times$ $[0,1] /(x, 0) \sim(a(x), 1)$. Then M_{a} is a Σ_{g}-bundle over $S^{1}=[0,1] / 0 \sim 1$ with the identification i of Σ_{g} with the fiber at $0 \in S^{1}$ and with the section $s: S^{1} \rightarrow$ M_{a} defined by the base point $*$ of Σ_{g}. It is easily checked that there is a unique homomorphism $\omega_{a}: \pi_{1}\left(M_{a}, s(0)\right) \rightarrow \mathbb{Z}_{2}=\{ \pm 1\} \subset U(1)$ satisfying the equalities $i^{*} \omega_{a}=\omega$ and $s^{*} \omega_{a}=1$. We define the function $\rho_{\omega}: \mathcal{M}_{g^{*}}^{\omega} \rightarrow \mathbb{Q}$ by $\rho_{\omega}(a):=\rho_{\omega_{a}}\left(M_{a}\right)$ for each $a \in \mathcal{M}_{g *}^{\omega}$. Here $\rho_{\omega_{a}}\left(M_{a}\right)$ is the Atiyah-Patodi-Singer ρ-invariant for $\left(M_{a}, \omega_{a}\right)$.

In general, the Atiyah-Patodi-Singer ρ-invariant is a diffeomorphism invariant for a pair of a closed oriented manifold of odd dimension and a unitary representation of the fundamental group of it to $U(n)$. If a metric on the manifold is given, then the invariant is defined by the difference of the η-invariant of the signature operator on the manifold and n times that of signature operator with coefficients in the flat bundle obtained from the unitary representation. Thus ρ-invarinats take their values in \mathbb{R}. If a unitary representation factors through a finite group, then the value of the ρ-invariant belongs to \mathbb{Q}.

For each $\omega \in H^{\prime}$, we define a rational valued function $\mu_{g *}^{\omega}$ on $\Delta_{g *}^{\omega}$ by

$$
\mu_{g *}^{\omega}:=\rho_{\omega}+\Phi_{g *}^{\omega} .
$$

These functions have the following properties.
Lemma 8. For any $a \in \Delta_{g *}^{\omega}$ and $f \in \mathcal{H}_{g *}$, the following hold.

1. $\mu_{g *}^{\omega}(1)=0$,
2. $\mu_{g *}^{\omega}\left(a^{-1}\right)=-\mu_{g *}^{\omega}(a)$,
3. $\mu_{g^{*}}^{\left(f^{-1}\right)^{*} \omega}\left(f a f^{-1}\right)=\mu_{g *}^{\omega}(a)$,
4. $\operatorname{sign}_{g}=\delta \mu_{g *}^{\omega}$ on $\Delta_{g *}^{\omega}$.

The main property in this lemma is 4 . In order to prove it, we need the following theorem proved by Atiyah, Patodi and Singer.

Theorem 9 (Atiyah-Patodi-Singer [2]). Let M be a closed oriented manifold of odd dimension and $\alpha: \pi_{1}(M) \rightarrow U(n)$ a unitary representation. If M is the boundary of a compact oriented manifold N with α extending to a unitary representation of $\pi_{1}(N)$ then $\rho_{\alpha}(M)=n \operatorname{sign}(N)-\operatorname{sign}_{\alpha}(N)$.

We consider the Σ_{g}-bundle $N_{a, b}$ over P, where $a, b \in \mathcal{M}_{g *}^{\omega}$. There is a unique homomorphism $\omega_{a, b}: \pi_{1}\left(N_{a, b}\right) \rightarrow \mathbb{Z}_{2} \subset U(1)$ satisfying the same condition as ω_{a}. We apply Atiyah-Patodi-Singer's theorem to the pair ($N_{a, b}, \omega_{a, b}$) and use the LeraySerre spectral sequence of the fibration $N_{a, b} \rightarrow P$. Then we have the property 4 in Lemma 8. Using Lemma 8, it is easy to see that the function $\mu_{g^{*}}^{\omega}$ descends to a function μ_{g}^{ω} on $\Delta_{g}^{\omega}:=j\left(\Delta_{g *}^{\omega}\right)$ for any $\omega \in H^{\prime}$.

Theorem 10. The difference $\phi_{g}-\mu_{g}^{\omega}$ is a nontrivial homomorphism from Δ_{g}^{ω} to \mathbb{Q} for any $\omega \in H^{\prime}$ and the equality $\phi_{g}=\frac{1}{\sharp H^{\prime}} \sum_{\omega \in H^{\prime}} \mu_{g}^{\omega}$ holds on \mathcal{H}_{g}^{σ} for $g=1,2$ and 3.

Since the Meyer function ϕ_{g} has the same properties as those in Lemma 8, the former part of this theorem follows from Lemma 8 and nontrivial examples which can be given explicitly. The latter follows from Lemma 8 and $H^{1}\left(\mathcal{H}_{g}^{\sigma}, \mathbb{Q}\right)^{\mathfrak{S}_{2 g+2}}=\{0\}$ which is obtained from the fact of $H^{1}\left(\mathcal{H}_{g}, \mathbb{Q}\right)=\{0\}$ using the Hochschild-LeraySerre spectral sequence of the short exact sequence $1 \rightarrow \mathcal{H}_{g}^{\sigma} \rightarrow \mathcal{H}_{g} \rightarrow \mathfrak{S}_{2 g+2} \rightarrow 1$.

References

[1] M. F. Atiyah, The logarithm of the Dedekind η-function, Math. Ann. 278(1987), 335-380.
[2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Camb. Phil. Soc. 78(1975), 405-432.
[3] J. Birman and H. Hilden, On the mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66(1971), 81-115.
[4] H. Endo, Meyer's signature cocycle and hyperelliptic fibrations, Math. Ann. 316(2000), 237257.
[5] R. Kasagawa, On a function on the mapping class group of a surface of genus 2, to appear in Topology Appl.
[6] R. Kasagawa, ρ-invariants, signature cocycles and the mapping class group of a surface, preprint.
[7] R. Kirby and P. Melvin, Dedekind sums, μ-invariants and the signature cocycle, Math. Ann. 299(1994), 231-267.
[8] E. Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64(1997), 69-83.
[9] Y. Matsumoto, Lefshetz fibrations of genus two; -a topological approach-, in Proceedings of the 37th Taniguchi symposium on topology and Teichmüller spaces, ed. by Sadayoshi Kojima et al. 1996, World Scientific Publishing Co. pp123-148.
[10] W. Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201(1973), 239-264.
[11] T. Morifuji, On Meyer's function of hyperelliptic mapping class groups, preprint, 1998.

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguroku, TOKyo, 152-8551, Japan

E-mail address: kasagawa@math.titech.ac.jp

