A cone angle condition on strong convergence of hyperbolic 3－cone－manifolds

Michiniko FUJII

藤井 道彦（京都大•総合人間）

§0．Introduction．

By a hyperbolic 3－cone－manifold，we will mean an orientable riemannian 3－manifold C of constant sectional curvature -1 with cone－type singularity along simple closed geodesics Σ ． To each component of the singularity Σ ，is associated a cone angle．Kojima showed in［4］ that for any values of cone angles，a non－singular part $C-\Sigma$ carries a complete hyperbolic structure $C_{\text {comp }}$ of finite volume，and moreover that if the cone angles of C all are at most π ，then there is an angle decreasing continuous family of deformations of C to the complete hyperbolic 3－manifold $C_{\text {comp }}$ homeomorphic to $C-\Sigma$ ．The complete hyperbolic 3－manifold $C_{\text {comp }}$ has torus cusps at the parts which correspond to the singularity Σ of C ，and $C_{\text {comp }}$ can be regarded as a hyperbolic 3－cone－manifold with cone angles all equal to zero．
Kojima proved the latter claim by using two machineries，the local rigidity by Hodgson－ Kerckhoff［3］and the pointed Hausdorff－Gromov topology［2］．These machineries are funda－ mental when cone angles are $\leq 2 \pi$ ．In particular，the local rigidity implies the practicability of deformations of a hyperbolic 3－cone－manifold with arbitrary small changes in the cone angles，in the case where the initial cone angles all are at most 2π ．Then，if the cone angles of C all are at most π ，one obtains deformations of C with decreasing the cone angles with arbitrary small amount．In［4］，for extending such a small deformation globally，he analyzed phenomena which occur in the two cases，that is，in the case where tubular neighborhoods of the singularity Σ in the deformations are uniformly thick，and in the case where they collapse．For this analysis，he established three relative constants for hyperbolic 3－cone－ manifolds which control the local geometry of cone－manifolds away from the singularity． Lemma 3．1．1 of［4］gives one of them，and is a key lemma to derive the other constants and also to analyze the phenomena above．

In this paper, we will show that the assumption " $\leq \pi$ " in Lemma 3.1.1 [4] about the cone angles can be improved to " $<2 \pi$ " (see Lemma 2), by using fundamental properties on Dirichlet domains of 3 -cone-manifolds (see Lemma 1). Then, without changing the proof performed in the sections 3 and 5 of [4], it can be seen that, for each sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ consisting of deformations of C so that tubular neighborhoods of Σ in deformations C_{i} ($i \in$ $\mathbf{N})$ are uniformly thick, if the cone angles of $C_{i}(i \in \mathbf{N})$ all are less than 2π, then there is a subsequence $\left\{C_{i_{k}}\right\}_{k=1}^{\infty}$ which converges strongly to a hyperbolic 3 -cone-manifold C_{*} homeomorphic to C (see Theorem).

§1. Dirichlet polyhedra and a relative constant for hyperbolic 3-cone-manifolds.

Assume that the singular set Σ of any 3-cone-manifold C considered in this paper forms a link

$$
\Sigma=\Sigma^{1} \cup \ldots \cup \Sigma^{n}
$$

of n components. To each component Σ^{j} of Σ, associated is a cone angle $\alpha^{j} \in[0, \infty)$.
If C is hyperbolic and $\Sigma \neq \phi$, then $N:=C-\Sigma$ has a non-singular but incomplete hyperbolic structure and C inherits a metric induced from a riemannian metric on N. We assume that C is complete with this metric. In particular, the metric completion of N is identical to the metric space C. We have a developing map of N from its universal covering space \tilde{N},

$$
\mathcal{D}_{C}: \tilde{N} \rightarrow \mathbf{H}^{3}
$$

and a holonomy representation

$$
\rho_{C}: \pi_{1}(N) \rightarrow \mathrm{PSL}_{2}(\mathbf{C}) .
$$

They are called a developing map and a holonomy representation of a cone-manifold C.
Let L be a number with $L \leq-1$. Let $\mathcal{C}_{[L, 0]}^{<\theta}$ be the set of pointed compact orientable 3-cone-manifolds of constant sectional curvature $K \in[L, 0]$ so that the cone angles all are less than θ. Let $\mathcal{C}_{K}^{<\theta}$ be a subset of $\mathcal{C}_{[L, 0]}^{<\theta}$ consisting of cone-manifolds with a particular curvature constant K.
Now take a cone-manifold $C \in \mathcal{C}_{K}^{<2 \pi}$ and a point $x \in C-\Sigma$. Then define the following subset of C,

$$
P_{x}:=\{y \in C \mid y \text { admits the unique shortest path to } x\}
$$

and call it a Dirichlet fundamental domain of C about x.

Lemma 1. The Dirichlet fundamental domain P_{x} of $C \in \mathcal{C}_{K}^{<2 \pi}$ about x has the following properties.
(1) P_{x} is isometrically realized as an interior of a star-shaped geodesic polyhedron in the simply connected 3-dimensional space \mathbf{H}_{K} of constant curvature K. The closure is starshaped geodesic polyhedron. We call this embedded compactified polyhedron a Dirichlet polyhedron of C about x, and denote it again by P_{x}.
(2) Let y be a singular point, then there are two boundary faces of P_{x} both of which include y and whose dihedral angle equals to the cone angle at y. Moreover, the bisecting surface of these two faces contains x.

Proof. See Cooper-Hodgson-Kerckhoff [1].
If $x \notin C-\Sigma$, the injectivity radius of C at x is to be the injectivity radius of $C-\Sigma$ at x. Denote it by $\operatorname{inj}_{x} C$. The key lemma in this paper is the following:

Lemma 2. Given positive numbers $D, I, R>0$, and a curvature bound $L \leq-1$, there is a constant $U:=U(D, I, R, L)>0$ so that if $C \in \mathcal{C}_{[L, 0]}^{<2 \pi}, x \in C$ with $d(x, \Sigma) \geq D$ and $\operatorname{inj}_{x} C \geq I$, then

$$
\operatorname{inj}_{y} C \geq U
$$

for any $y \in C$ with $d(y, \Sigma) \geq D$ and $d(y, x) \leq R$.
Proof. Suppose that there is not such a uniform bound U. Then, for some numbers $D, I, R>0$ and $L \leq-1$, there exists a sequence of cone-manifolds $\left\{C_{i}\right\}_{i=1}^{\infty} \subset \mathcal{C}_{[L, 0]}^{<2 \pi}$ and points $x_{i}, y_{i} \in C_{i}$ such that
(i) $d\left(x_{i}, \Sigma_{i}\right) \geq D, d\left(y_{i}, \Sigma_{i}\right) \geq D$,
(ii) $\operatorname{inj}_{x_{i}} C_{i} \geq I$,
(iii) $d\left(y_{i}, x_{i}\right) \leq R$ and
(iv) $\operatorname{inj}_{y_{i}} C_{i} \leq 1 / i$.

Take a Dirichlet polyhedron $P_{y_{i}}$ of C_{i} about y_{i} in $\mathbf{H}_{K_{i}}$, where K_{i} is a curvature of C_{i}. There are points p_{i}, q_{i} on $\partial P_{y_{i}}$, which are identified in C_{i} and attain the shortest distance to y_{i} from $\partial P_{y_{i}}$. The union of these shortest paths $\overline{p_{i} y_{i}} \overline{q_{i} y_{i}}$ forms a homotopically nontrivial shortest loop l_{i} in C_{i} based at y_{i}.
If i is large enough, p_{i} and q_{i} are on the interior of the faces of $P_{y_{i}}$ respectively. Then by (i), (iv), and the properties of $P_{y_{i}}$ described in Lemma 1, it can been seen that $P_{y_{i}}$ is bounded by the extensions of the two faces.

Let $\phi_{i}(\leq \pi)$ be the angle between the segments $\overline{p_{i} y_{i}}$ and $\overline{q_{i} y_{i}}$ at y_{i}. If $\phi_{i} \rightarrow \pi$ as $i \rightarrow \infty$, then $\operatorname{vol}\left(B_{R+I}\left(C_{i}, y_{i}\right)\right) \rightarrow 0$ by (iv). This is a contradiction since $B_{I}\left(C_{i}, x_{i}\right) \subset B_{R+I}\left(C_{i}, y_{i}\right)$ by (iii) and $\operatorname{vol}\left(B_{I}\left(C_{i}, x_{i}\right)\right)>0$ by (ii). Thus there is a number ϕ so that $\phi_{i} \leq \phi<\pi$. Therefore the loop l_{i} bends at y_{i} with angle uniformly away from π.
Let us lift l_{i} to a geodesic segment s_{i} in $\mathbf{H}_{K_{i}}$, based at y_{i} so that $p_{i}\left(=q_{i}\right)$ is its middle point. Let ρ_{i} be a holonomy representation of $C_{i} ; \rho_{i}: \pi_{1}\left(C_{i}-\Sigma_{i}\right) \rightarrow \operatorname{PSL}_{2}(\mathbf{C})$. Then the action of $\rho_{i}\left(l_{i}\right)$ on $\mathbf{H}_{K_{i}}$ is either parabolic, loxodromic or elliptic. In any cases, the orbit of s_{i} by the action of a group generated by $\rho_{i}\left(l_{i}\right)$ forms a piecewise geodesic which bends with angle uniformly away from π, and the length of s_{i} goes to 0 when $i \rightarrow \infty$.
If there is a subsequence $\{k\} \subset\{i\}$ so that $\rho_{k}\left(l_{k}\right)$ all are parabolic, then the orbit of s_{k} goes to the ideal boundary of $\mathbf{H}_{K_{k}}$. This a contradiction, since the bending angle of the orbit of s_{k} should approaches π as $k \rightarrow \infty$ in the case where the orbit of s_{k} goes to ∞ and the length of s_{k} goes to 0 as $k \rightarrow \infty$.
If $\rho_{i}\left(l_{i}\right)$ is loxodromic, the orbit of s_{i} squeezes onto the axis of $\rho_{i}\left(l_{i}\right)$ since the length of s_{i} approaches 0 when $i \rightarrow \infty$. In particular, the axis of $\rho_{i}\left(l_{i}\right)$ becomes close to y_{i} when $i \rightarrow \infty$.
If there is a subsequence $\{k\} \subset\{i\}$ so that $\rho_{k}\left(l_{k}\right)$ all are loxodromic, the length of $\rho_{k}\left(l_{k}\right)$ goes to 0 when $k \rightarrow \infty$. If k is large enough, there is a very short simple closed geodesic in C_{k} near y_{k}. Then choose a new reference point z_{k} on this simple closed geodesic, take the Dirichlet polyhedron $P_{z_{k}}$ about z_{k}, consider two hypersurfaces of $\mathbf{H}_{K_{i}}$ which bounds $P_{z_{k}}$ and perform the same argument as before. This gives a contradiction.
Therefore $\rho_{i}\left(l_{i}\right)$ all but finitely many exceptions are elliptic. Take a subsequence $\{j\} \subset\{i\}$ so that $\rho_{j}\left(l_{j}\right)$ all are elliptic. The orbit of s_{j} rounds around a geodesic which is an extension of a lift of a component of Σ_{j}. Since the length of s_{j} goes 0 when $i \rightarrow \infty, y_{j}$ approaches the geodesic. This contradicts (i).

§2. Strong convergence of hyperbolic 3-cone-manifolds.

Let C be a compact orientable hyperbolic 3 -cone-manifold with singularity Σ. The singular set Σ has been assumed to form a link

$$
\Sigma=\Sigma^{1} \cup \ldots \cup \Sigma^{n}
$$

of n components. Let \mathcal{T} be the maximal tube about Σ, that is, a union of open tubular neighborhoods \mathcal{T}^{j} 's which has the following properties,
(a) each component \mathcal{T}^{j} is an equidistant tubular neighborhood to the j-th component Σ^{j} of Σ,
(b) among ones having the property (a), the set of radii arranged in order of magnitude from the smallest one is maximal in lexicographical order.

Let us demote by $\partial \mathcal{T}^{j}$ an abstract boundary of \mathcal{T}^{j}. The actual boundary $\partial \mathcal{T}$ of \mathcal{T} in C is a union of isometrically embedded tori with a finite number of contact points. The first contact point on $\partial \mathcal{T}$ is the point which admits two shortest paths to Σ from $\partial \mathcal{T}$. The finest point on $\partial \mathcal{T}$ is the point on $\partial \mathcal{T}$ which attains the minimum among $\left\{\operatorname{inj}_{x}(C) \mid x \in \partial \mathcal{T}\right\}$.
A deformation of a hyperbolic 3-cone-manifold C is a hyperbolic 3-cone-manifold C_{a} together with a reference homeomorphism $\xi_{a}:(C, \Sigma) \rightarrow\left(C_{a}, \Sigma_{a}\right)$.
Now take a sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ of compact orientable hyperbolic 3 -cone-manifolds with the following properties,
(1) each C_{i} is a deformation of C with a reference homeomorphism $\xi_{i}: C \rightarrow C_{i}$,
(2) $\alpha_{i}^{j}<2 \pi$ for all $1 \leq j \leq n$ and any $i \in \mathbf{N}$, where α_{i}^{j} is a cone angle along the component Σ_{i}^{j},
(3) $\left\{\alpha_{i}^{j}\right\}_{i=1}^{\infty}$ converges to a number $\beta^{j} \in[0,2 \pi]$ for all $1 \leq j \leq n$.

Theorem. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ be a sequence of compact orientable hyperbolic 3-cone-manifolds as above. Suppose that there is a constant $D_{1}>0$ such that $D_{1} \leq$ radius \mathcal{T}_{i}^{j} for any $1 \leq j \leq n$ and any $i \in \mathbf{N}$. Then there is a subsequence $\left\{C_{i_{m}}\right\}_{m=1}^{\infty}$ which converges strongly to a hyperbolic 3-cone-manifold C_{*} homeomorphic to C, where the notion "converge strongly" is defined as follows; the sequence $\left\{C_{i_{m}}\right\}_{m=1}^{\infty}$ converges geometrically to the cone-manifold C_{*} homeomorphic to C and a sequence $\left\{\rho_{i_{m}}\right\}_{i_{m}}^{\infty}$ of their holonomy representations converges algebraically to the holonomy representation ρ_{*} of C_{*} with respect to the identification by $\xi_{i_{m}}$.
Remark. The property (2) induces the following one,
(4) there is a constant $V_{\text {max }}$ such that $\operatorname{vol}\left(C_{i}\right) \leq V_{\text {max }}$.

Remark. By the argument on geometric convergence due to Gromov [2], it can be shown that the following property is satisfied,
(5) the sequence $\left\{\left(C_{i}, c_{i}\right)\right\}_{i=1}^{\infty}$ has a subsequence $\left\{\left(C_{i_{k}}, c_{i_{k}}\right)\right\}_{k=1}^{\infty}$ which converges geometrically to a complete metric space.

Proof. Take a subsequence $\left\{i_{k}\right\} \subset\{i\}$ which satisfies the properties (1), $\ldots,(5)$. By choosing a further subsequence, we may assume that the sequence $\left\{C_{i_{k}}\right\}_{k=1}^{\infty}$ satisfies the following properties also,
(6) $c_{i_{k}}$ lies on a component $\partial \mathcal{T}_{i_{k}}^{c}$ with a constant reference number c, and
(7) $f_{i_{k}}$ lies on a component on a component $\partial \mathcal{T}_{i_{k}}^{f}$ with a constant reference number f.

Then the sequence $\left\{c_{i_{k}}\right\}_{k=1}^{\infty}$ has the same property as in Kojima [4,section 4], except for the condition on the range of the cone angles.

By following the arguments described in section 3 and section 5 of [4], we can verify that Corollary 5.1.4 of [4] holds with replacing the cone angle condition " $\alpha_{i}^{j} \leq \pi$ " with " $\alpha_{i}^{j}<2 \pi$ ", if Lemma 3.1.1 of [4] holds with the cone angle condition " $<2 \pi$ ". Lemma 2 is exactly such a version of Lemma 3.1.1 of [4]. Then Corollary 5.1.4 of [4] with the cone angle condition " $\alpha_{i}^{j}<2 \pi$ " holds. This is what we need.

References

1. D. Cooper, C. Hodgson and S. Kerckhoff, The Orbifold Theorem: Working Notes, the MSJ workshop at Tokyo Institute of Technology, 1998.
2. M. Gromov, Structures métriques pour les variétés riemanniennes, Ceduc/Fernand Nathan, Paris, 1981.
3. C.D. Hodgson and S.P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Diff. Geom. 48(1998), 1-59.
4. S. Kojima, Deformations of hyperbolic 3-cone-manifolds, J. Diff. Geom. 49(1998), 469-516.

Faculty of Integrated Human Studies
Kyoto University
Sakyo-ku
Kyoto 606-8501
JAPAN
E-mail address: mfujii@math.h.kyoto-u.ac.jp

